Hazen

UNDERSTANDING THE PARADIGM SHIFT: FROM WASTEWATER TREATMENT PLANTS TO WATER RESOURCE RECOVERY FACILITIES

Derya Dursun, Ph.D., P.E. 01/29/19

From Sludge Disposal to Resource Recovery

Aim: Maximizing the utilization of resources in biosolids and minimizing landfill disposal & combustion without energy recovery.

WATER RESOURCE RECOVERY FACILITIES NOT WASTEWATER TREATMENT PLANTS

WWTP's are not polluters. The name has changed

Water resource recovery facilities produce: clean water, recover nutrients, and have the potential to reduce the nation's dependence upon fossil fuel through the production and use of renewable energy.

Looking at Big Picture – Holistic Approach

Resources in Biosolids

Biosolids are now recognized as a source of multiple recoverable assets

Energy

Organics

Maximize RESOURCE RECOVERY of Constituents

Resources	Use	Possible Issues
Water	valuable in agriculture in arid climate	cost of transport
Organic matter	vital to soils	putrescible, odors
Nutrients	food for soil, plants & animals	impacts to water
Energy	renewable, displaces oil/gas air emissions	maybe no use of nutrients & organic matter

MINIMIZE POTENTIAL RISKS OF CONSTITUENTS

Reduce/control/mitigate trace elements (e.g. metals), pathogens, synthetic and natural organic chemical compounds

Are We Recovering the Proper Resources?

Energy:

- Net zero energy facilities
- Integrated waste management approach

Nutrients:

- Marketable biosolids endproducts
- Increased value of soil amendments and fertilizers
- Struvite recovery
- Metals (Rare Earth Elements) recovery

Value per dry ton of residuals

SOURCE: Environmental Science & Technology

Energy Recovery/ Co-digestion

Biosolids and Energy Neutrality

Advanced Biosolids Treatment

- Reduced Mass
- Greater Energy Recovery Potential
- Higher quality
 Biosolids

Codigestion

- Impacts to Overall Mass
- Greater Energy Recovery Potential
- Needs assessment to determine impacts to biosolids quality

Advanced Biosolids Treatment

Technologies use combinations of pressure, temperature and chemical inputs

Heat

• ~330°F

Pressure

• 90 to 130 psi

Time

• 20 to 30 minutes

Cell lysis

COD solubilization

Class A (maybe) via time/ temperature

Preheated material for digestion (maybe)

Thermal Hydrolysis Pretreatment (THP)

Process

- Treats dewatered sludge (from 14 to 17%) prior to anaerobic digestion, under the following conditions:
 - High temperature of 150 - 170° C (300 – 340° F)
 - Under pressure of 6 to 9 bars (90 130 psi)
 - Reaction time 22 to 30 min
- Dewatered sludge Input to digestion 8 to 11%

Result

- Decrease viscosity
 - Allows sludge mixing at higher concentration
 - Decrease digestion volume
- Sterilized sludge (Class A)
- Improves anaerobic digestion
 - Increase VS reduction
 - Improve biogas production
 - Reduce mass for further processing
- Improve final dewatering

Before TH

After TH

Thermochemical Hydrolysis Pretreatment, PONDUS

- Applicable to TWAS
- The process uses increased pH and heat to hydrolyze the TWAS

- Enhanced Biogas Production (up to 30%)
- Improved VSR (up to 6% increase)
- Improved digestibility of feed solids thus less energy required to heat, pump, and mix
- The hydrolyzed sludge could generate dryer cake thus lowering polymer consumption (3-6%)

Thermo-Chemical Hydrolysis Post-treatment Lystek

- Exposes dewatered
 biosolids to heat, high pH
 conditions (9.5-10) and high
 sheering to create a highsolids flowable biosolids
 product (13% to 15% TS)
- Hydrolyzed biosolids is refed to digesters for additional VS destruction (10-50%)
- 10 facilities in North America

Lystek Re-feed Process for increased digestion capacity and biogas production

- Enhanced Biogas
 Production
- The solids concentration after Lystek process is 15%.
- Generates liquid Class A product

Codigestion

Different sources can be added in Anaerobic Digester to boost energy generation

- Fats, Oils & Grease
- Food Waste
- Source Separated Organics
- Brewery waste
- Whey
- Woody Biomass etc

It is possible to double your biogas generation with small amount of HSW addition

Combine with Water Resource Recovery Facilities

just be aware there are not that many anaerobic digestion plants in AZ $_{\mbox{\scriptsize Kobrick},\,\mbox{\scriptsize Doug},\,\,1/28/2019}$ KD5

Why Water Resource Recovery Facilities

- Infrastructure already in place
- ~15-30% excess digestion capacity nationwide
- Energy demand on the rise
- Located in populated areas: proximity to waste streams
- Still, need to be economically viable!

Biogas to Energy

"Energy Balance Considerations"

Sludge Drying

RNG Pipeline Injection

Vehicle Fuel (CNG)

Electricity Production

The value of biogas varies for each utilization method

Cost/Benefit Analysis

Economic balance is important to the practice

% Volatile solids loading from HSW

Nutrient Recovery

Struvite: From Nuisance to Resource Recovery

NH₄ & PO₄ released in digestion, typically Mg limited Mg addition for odor control (i.e. Mg(OH)₂) can promote struvite formation

Struvite Removal can be costly

NYC Newtown creek – \$270,000 to clean digester transfer lines

NYC Newtown Creek WPCP

Example Technologies to Recover Struvite

Recovery can be practiced from:

- Digested biosolids: positive impact on dewatering
- Centrate/filtrate

Multiform™

Recovering Phosphorus and Nitrogen as high value fertilizer

Organics Recovery

Biosolids Recovery driven by Regulations

Biosolids offset need for fertilizers

Fate and value dictated by suitability for land application

Value as land amendment

Federal and state regulations regarding biosolids characteristics

Regulated Parameters

Pathogen reduction

Vector attraction reduction

Trace elements

Non-regulated Parameters

Moisture

Odor

Trace organic compounds

Nutrients

Biosolids Market

Land application is STILL the most common market

Triggers

- Revenue potential
- Ease of operation
- Movement towards energy neutrality
- Land application regulations

Nutrient limits associated with land application will impact decision to implement nutrient recovery

Increasing the Value of Biosolids Products

Classification dependent on quality and ability to meet regulations

Shift to Class A/EQ biosolids will create additional possibilities for biosolids management

Higher quality biosolids potentially have higher demand and value

- Land application
- Third party soil blending
- Thermal fuel

Revenue Potential and Ease of Operation

Biosolids market value

- Product characteristics
- Public perception/ acceptance in the specific region

Specialty Products

Courtesy of Materials Matters

Soil amendment products with demand

Targeted characteristics

- Stable
- No odors
- Accommodates handling
- Consistent appearance
- Nutrients content

QUESTIONS

Derya Dursun, Ph.D., P.E

ddursun@hazenandsawyer.com

858 - 7645529

Hazen

Water, Nutrient, Energy Recovery Case Study

F. Wayne Hill WRC, Gwinnett County, Georgia – Resource Recovery

Gwinnett County, GA

60 mgd advanced WWTP

0.08 mg/L TP effluent limit

- ✓ IPR,
- ✓ Nutrient Recovery,
- ✓ Energy Recovery (CHP/FOG/HSW)

Treated Effluent Discharged to Lake Lanier - Indirect Potable Reuse

BNR Activated Sludge

Tertiary Clarification

Tertiary UF membrane filtration

O₃/BAC/O₃

Digester Gas-to-Energy System 2.1 MW Engine FOG/HSW Receiving Station

Average Power Cost:

Facility	Cost
F.Wayne Hill	\$0.036/kWh
Yellow River	\$0.071/kWh
Crooked Creek	\$0.069/kWh

60,881,169 kWhr: Total Power Consumed 9,165,440 kWhr: Self Generated Produced \$2,300,000 Savings in in Purchased Power with Real Time Power Structure and Engine Generator

Nutrient Recovery Facility – WASSTRIP + Recovery

52,000 lbs/month recovered

Nutrient Recovery Equipment and Product

FWH Nutrient Recovery

- ✓ Eliminated nuisance struvite issues
- ✓ Significant reduction in alum use for P limit
- ✓ Benefit to dewatering

Year	Avg Dewatering Polymer Dose Rate (lb/DT)
2013	51
2014	44
2015	32
2016	28

Year	Avg Dewatering Cake Solids %TS Concentration (%TS)
2013	21.8
2014	22.2
2015	23.4
2016	23.9

Codigestion – Driven by Regulations California Regulations

- AB341 (2011): Increase solid waste diversion to 75% by 2020
- AB1594 (2014): Removes incentive for green waste to be used as ADC
- SB1383 (2016): Regulation to be developed by 2018 targeting short-lived climate pollutants by 2030:
 - Divert 50% of organic waste from landfills by 2020
 - Divert 75% of organic waste from landfills by 2025
 - Achieve 40% reduction of methane emissions by 2020

cut this slide, not interested in Calif regs Kobrick, Doug, 1/28/2019 KD4