

Imperial College London

Properties of Radiomanganese-54, 52, 52m, 51, 51m

Isotope	Emission details	Half-life t _{1/2}	Other emissions?	Other considerations?
Manganese-54	γ (100%), 0.84 MeV	313 days	No	Not for human use
Manganese-52	β+ (30%), 0.24 MeV	5.6 days	γ (100%), 0.74, 0.94, 1.43 MeV	Good image quality but high energy gammas ¹
Manganese-52m	β+ (97%), 1.17 MeV	21 min	γ (100%), 1.43 MeV	Generator production but poor image quality, high E gamma
Manganese-51	β ⁺ (97%),	46 min	γ (1%); ⁵¹ Cr γ (10%),	Dosimetry from radioactive

- Radioisotopes with long physical half-lives are matched for use with processes that have long biological half-lives
- Long-lived isotopes have applications in processes with long biological time frames for example, cell tracking, antibody labelling

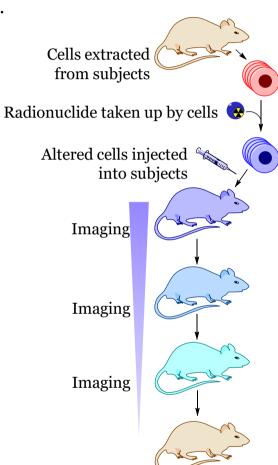
^{1.} Wooten, A. et al, Appl Radiat Isotopes, 2015, 96, 154

^{2.} Graves, SA., et al, Sci Rep, 2017, 7, 3033

^{3.} Chu, SYF., et al, The Lund/LNBL Nuclear Data Search, 1999, accessed 20/03/19.

Properties of Radiomanganese-54, 52, 52m, 51, 51m

Isotope	Emission details	Half-life t _{1/2}	Other emissions?	Other considerations?
Manganese-54	γ (100%), 0.84 MeV	313 days	No	Not for human use
Manganese-52	β+ (30%), 0.24 MeV	5.6 days	γ (100%), 0.74, 0.94, 1.43 MeV	Good image quality but high energy gammas ¹
Manganese-52m	β+ (97%), 1.17 MeV	21 min	γ (100%), 1.43 MeV	Generator production but poor image quality, high E gamma
Manganese-51	β ⁺ (97%), 0.96 MeV	46 min	γ (1%); ⁵¹ Cr γ (10%), 0.32 MeV. ²	Dosimetry from radioactive daughter 51 Cr γ , $t_{1/2}$ = 28 days. 3
Copper-64	β ⁺ (18%), 0.28 MeV	12.7 hrs	γ (43%), 1.35 MeV	
Zirconium-89	β+ (23%), 0.40 MeV	3.3 days	γ (99%), 0.91 MeV	
Iodine-124	β ⁺ (23%), 2.13 MeV	4.2 days	γ (85%), 0.60, 0.72, 1.69 MeV	Poor image quality, high energy gammas

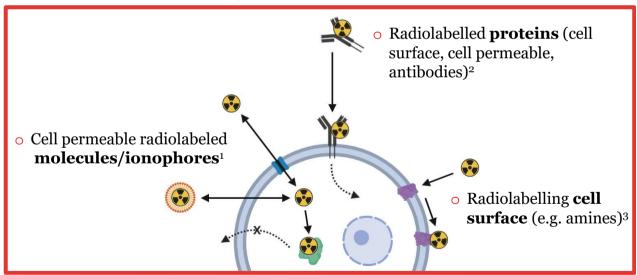

^{1.} Wooten, A. et al, Appl Radiat Isotopes, 2015, 96, 154

^{2.} Graves, SA., et al, Sci Rep, 2017, 7, 3033

^{3.} Chu, SYF., et al, The Lund/LNBL Nuclear Data Search, 1999, accessed 20/03/19.

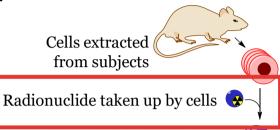
Cell Tracking

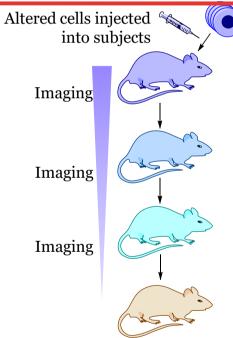
- Cell therapies ideally **need to be tracked for as long as possible**.
 - Location
 - Survival
 - o Safety/Efficacy



Direct Cell Tracking

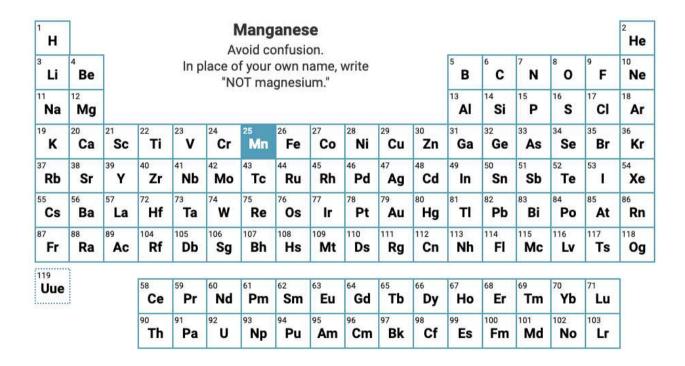
All images © Madeleine Iafrate, 2019


Cell Tracking


- Cell therapies ideally **need to be tracked for as long as possible**.
 - Location
 - o Survival
 - Safety/Efficacy
- The physical properties of manganese-52 are ideally suited to direct cell tracking:

• All need a suitable chelator to stop the radiometal going free!

Direct Cell Tracking

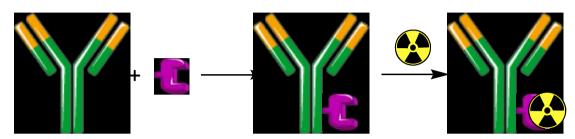


All images © Madeleine Iafrate, 2019

- 1. Gawne, PG., et al, Dalton Trans., 2018, 47(28), 9283
- 2. Graves SA., et al, Bioconj. Chem., 2015 26(10), 2008
- 3. Bansal A., et al, EJNMMI Res., 2015, **51**(1), 19

Chemistry of Manganese

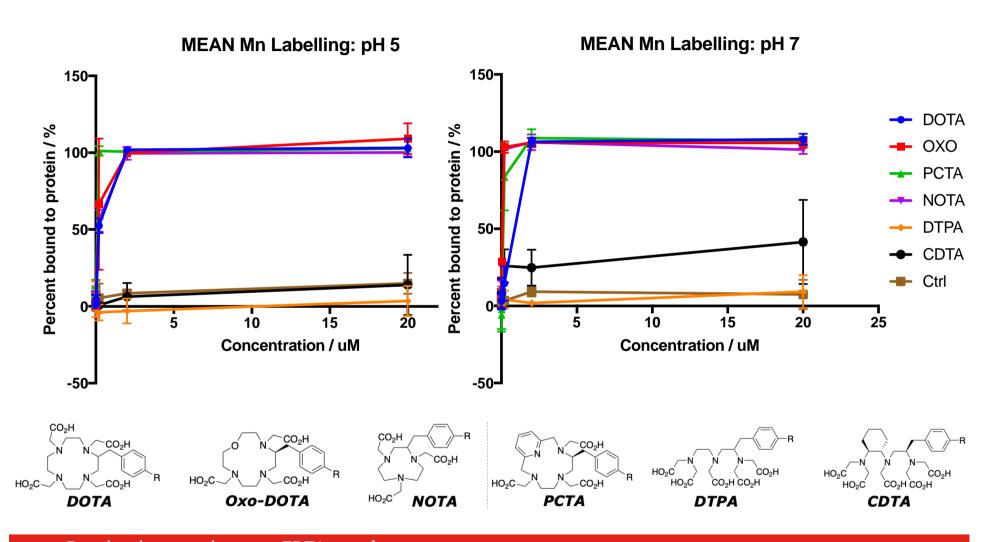
• Manganese can exist in a range of different oxidation states, as can its second and third row transition metal congeners, technetium and rhenium.


Chemistry of Manganese

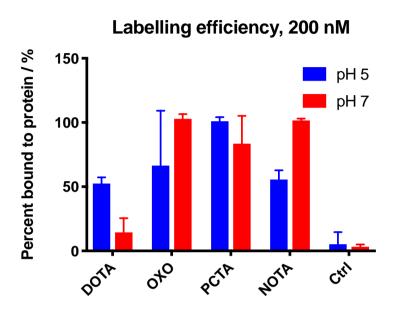
- Manganese can exist in a range of different oxidation states, as can its second and third row transition metal congeners, technetium and rhenium.
- Chemical comparisons can be drawn between the three metals, which have similar chemistry (due to their periodic relation). However, **manganese is extremely stable in the +2** oxidation state.
- Commercially available chelators:

Goal: perform a preliminary survey to determine which if any of these chelators would be optimal for 52Mn biomolecule labelling

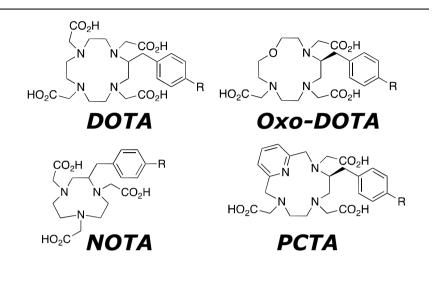
Experimental


AIM: Fast, efficient labelling at low concentration under mild conditions.

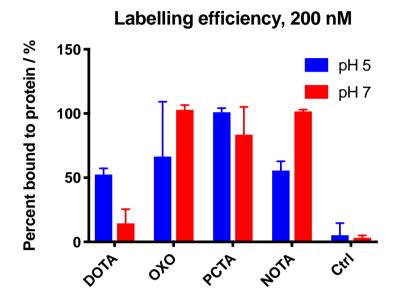
Scheme 1. The antibody was conjugated with the bifunctional chelators and the conjugates were incubated with ⁵²Mn at a range of concentrations to compare the labelling efficiency of the chelators.

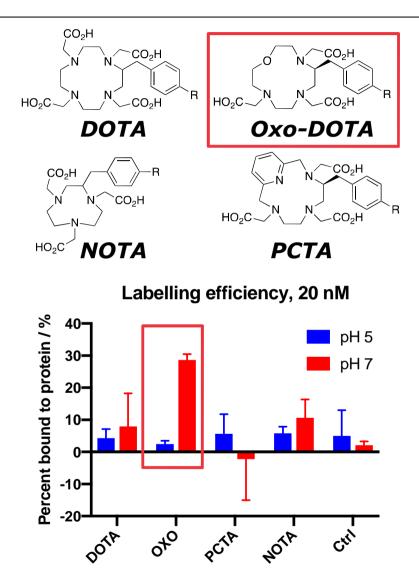

- Several trastuzumab immunoconjugates of bifunctional chelators (DOTA, oxo-DOTA, NOTA, PCTA, DTPA, CDTA, see below panel) were incubated at room temperature with ⁵²MnCl₂ at a range of antibody concentrations at pH 5 and 7.²
- Reactions were quenched after 45 minutes with EDTA (50 mM, 2 μ L). Labelling efficiencies from each dilution assay were analysed by iTLC.

Labelling Efficiency: Overview



Reaction time: 40 minutes, \rightarrow EDTA quench pH 5 = NH₄OAc / pH 7 = PBS n = 2, errors = σ


Macrocyclic Chelators for Mn(II)


• Of the commercially available macrocyclic chelators tested, oxo-DOTA and NOTA were efficient chelators of Mn(II) at pH 7, and PCTA at pH 5.

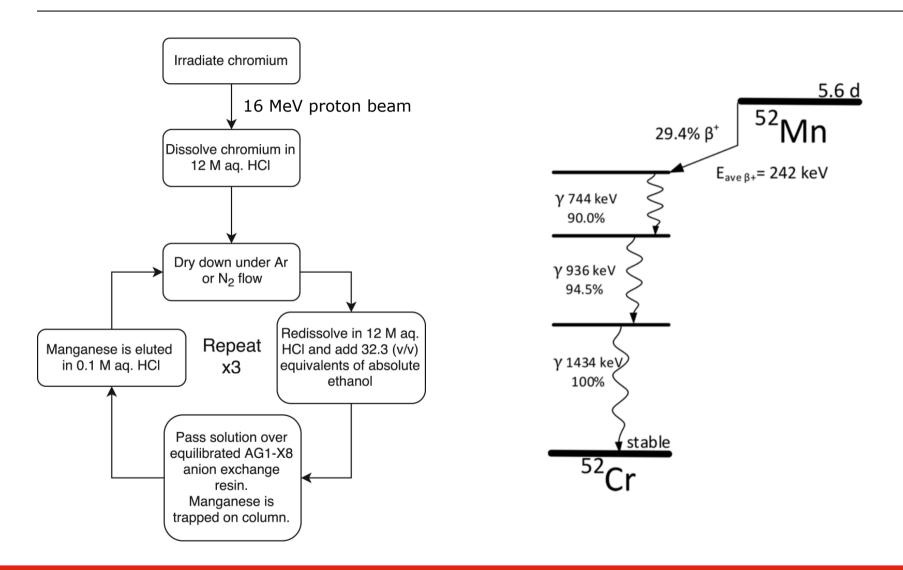
Macrocyclic Chelators for Mn(II)

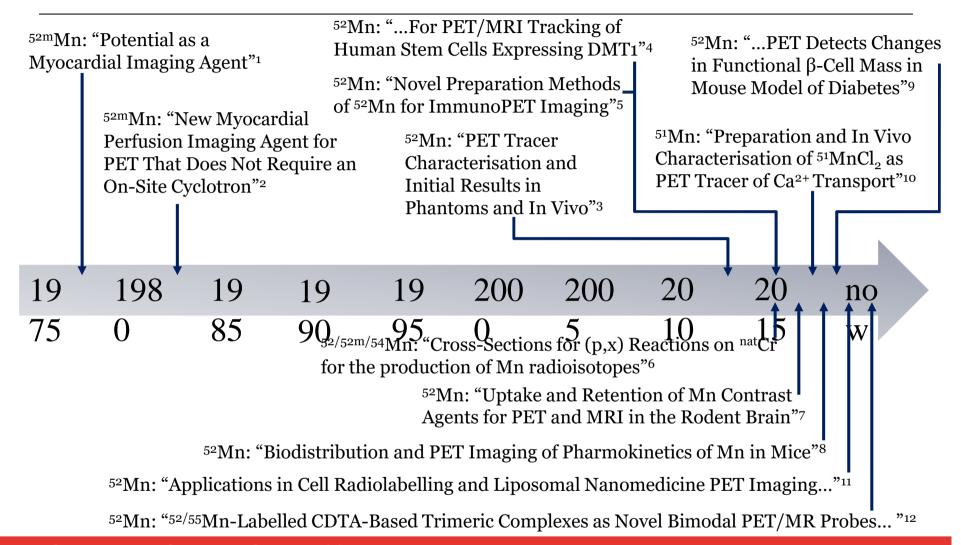
- Of the commercially available macrocyclic chelators tested, oxo-DOTA and NOTA were efficient chelators of Mn(II) at pH 7, and PCTA at pH 5.
- Additionally at even lower concentrations, it is clear that there is a significant result regarding the labelling efficiency of oxo-DOTA.

Conclusions

- **Manganese-52 direct cell tracking agents** could monitor cells *in vivo* noninvasively by PET for longer than we've ever been able to before.
- **Macrocyclic chelators** are shown to chelate ⁵²Mn(II) at radiopharmaceutically relevant concentrations.
- **Oxo-DOTA** has emerged as a lead compound for future radiopharmaceutical development due to ease of labelling, without the need of heating.
- **pH** changes inside a cell could make a significant difference to the stability of complexes formed:

 Further studies needed to ascertain whether this is thermodynamic or kinetic instability.
- Future work will investigate **serum stability** of the bifunctional conjugates used.
- This work is transferable to **other manganese isotopes** because they have identical chemical properties.


Imperial College London



Production of Manganese-52, by J. Fonslet (Hevesy Lab) et al.

Applications of Radiomanganese in Nuclear Medicine

- 1. Chauncey, D. et al, J Nuc Med, 1977, **18**(9), 933
- 2. Urquhart, J. et al, Am J Cardiol, 1982, **49**(4), 979
- 3. Topping, GJ. et al, Med Phys, 2013, 40(4), 042502
- 4. Lewis, CM. et al, Theransotics, 2015, **5**(3), 227
- 5. Graves SA. et al, Bioconj Chem, 2015, **26**(10), 2118
- 6. Wooten, A. et al, Appl Radiat Isotopes, 2015, 96, 154
- 7. Brunnquell, CL. et al, Contrast Media Mol Imaging, 2016, 11(5), 371
- 8. Wooten, A. et al, PLoS One, 2017, 12(3), e0174351
- 9. Hernandez, R. et al, Diabetes, 2017, 66(8), 2163
- 10. Graves, SA. et al, Sci Rep, 2017, 7(1), 3033
- 11. Gawne, PG. et al, Dalton Trans, 2018, 47(28), 9283
- 12. Brandt, MR. et al, Dalton Trans, 2019, 48, 3003