

Information Resources

Title:	RADIOCHEMICAL PURITY TESTING
Version No:	1
Author:	Jim Ballinger
Date of Issue:	19/12/2012
Review Date:	18/12/2014

Radiochemical Purity Testing of Radiopharmaceuticals

Contents

- 1.1 General description of thin-layer chromatographic (TLC) techniques
- 1.2 Consumables
- 1.3 Thin-layer chromatography of technetium radiopharmaceuticals Full list
- 1.4 Thin-layer chromatography of technetium radiopharmaceuticals Simplified strategy
- 1.5 Thin-layer chromatography of other radiopharmaceuticals
- 1.6 Solid-phase extraction cartridge methods
 - 1.6.1 Consumables
 - 1.6.2 General procedure
 - 1.6.3 Preparation of reagents
 - 1.6.4 Table of systems
- 1.7 ^{99m}Tc-exametazime extraction methods
- 1.8 High-pressure liquid chromatography (HPLC)
 - 1.8.1 General procedure
 - 1.8.2 HPLC systems for SPECT radiopharmaceuticals
 - 1.8.3 HPLC systems for PET radiopharmaceuticals

1.1 General description of thin-layer chromatographic (TLC) techniques

Radiochemical purity (RCP) is the proportion of the radioactivity which is present in the desired chemical form. It is sometimes called labelling efficiency. A minimum acceptable RCP is specified for each radiopharmaceutical, in order that the impurities do not interfere with the quality of the image or result in an unacceptably high radiation dose to the patient (eg free iodide going to the thyroid gland).

^{99m}Tc labelled agents constitute the vast majority of the radiopharmaceuticals used in nuclear medicine. The main impurities which can be present are free pertechnetate (^{99m}TcO₄) and reduced hydrolysed (RH) ^{99m}Tc colloid. Generally two TLC systems are used, one to quantify each of the main impurities, and the % bound (RCP) is calculated by subtracting the total impurities from 100%.

Radiopharmaceutical TLC is generally performed using paper or fibreglass sheets (stationary phase) which are easily cut using scissors into narrow strips, from 1x6 cm to 2x20 cm. A spotting line is carefully marked in pencil 1-2 cm from the bottom of the strip. A solvent front may be marked near the other end of the strip. A drop of the radiopharmaceutical is placed on the spotting line and the strip is placed in a tank or tube containing the mobile phase (solvent) specified. When the strip is placed in the tank, the spot must remain above the level of the solvent. The solvent is allowed to migrate up the strip until it reaches the top or the premarked solvent front, then the strip is removed and allowed to dry.

There are two approaches to determining the distribution of radioactivity along the strip. One is to image the strip, using a radiochromatogram scanner, phosphor imager (digital autoradiography), or gamma camera. Quantification is then performed by placing regions of interest along the radiochromatogram. If imaging equipment is not available, the alternative is to cup the strip into two or more pieces and determine the activity in each portion using a dose calibrator or gamma counter, depending on the level of activity present. The "cut-and-count" technique has the disadvantage that the cut point(s) is/are based on the assumed chromatographic behaviour of the components which may be present. Although a reasonable profile could be obtained by cutting the strip into 10 or 20 portions, this is not practical for routine use.

For a more complete description of the theory and practice of RCP testing, the reader is referred to "Quality control methods for radiopharmaceuticals" by T Theobald and P Maltby in *Sampson's Textbook of Radiopharmacy* (4th edition, T Theobald, editor, The Pharmaceutical Press, 2010).

1.2 Consumables

Stationary phases	
ITLC-SG	Instant thin-layer chromatography, silica gel
	SGI0001, Agilent <u>www.agilent.com</u>
ITLC-SA	Instant thin-layer chromatography, silicic acid
	A120B12, Agilent
3MM	Whatman 3MM chromatography paper
No 1	Whatman No 1 chromatography paper
Silica gel	Silica gel 60, e.g. Merck
Alumina	Aluminium oxide, Bakerflex
Cellulose	Cellulose, e.g. Merck
Mobile phases	
Butanone	2-butanone = methyl ethyl ketone = MEK
1 M Sodium acetate	82 mg/mL anhydrous sodium acetate or 136 mg/mL sodium
	acetate trihydrate
0.1 M Citrate	21 mg/mL monosodium citrate dihydrate
1 M Ammonium acetate	77 mg/mL ammonium acetate
Mixtures of volatile solvents sh	nould be made freshly

1.3 Thin-layer chromatography of technetium radiopharmaceuticals - Full list

Radiopharm- aceutical	Stationary phase	Mobile phase	Rf RH-Tc	Rf TcO ₄	Rf Tc- bound
Polar					
99mTc-Pertechnetate	ITLC-SG	Acetone or saline	0.0	1.0	-
^{99m} Tc-MDP/HDP	ITLC-SG or 3MM	Acetone	0.0	1.0	0.0
	ITLC-SG	1 M Sodium acetate or saline	0.0	1.0	1.0
^{99m} Tc-DTPA	ITLC-SG or 3MM	Acetone	0.0	1.0	0.0
	ITLC-SG or 3MM	Saline	0.0	1.0	1.0
^{99m} Tc-DMSA	3MM	Acetone	0.0	1.0	0.0
	ITLC-SA	Butanol acidified with 0.3 M HCl	0.0	0.9	0.5
^{99m} Tc-Pyrophosphate	ITLC-SG or 3MM	Acetone	0.0	1.0	0.0
	ITLC-SG	Water	0.0	1.0	1.0
^{99m} Tc-IDAs	ITLC-SA	20% Sodium chloride	0.0	1.0	0.0
	3MM (Spot must be dry)	Butanone	0.0	0.9	0.0
	ITLC-SG	Water or 50% acetonitrile	0.0	1.0	1.0

00m		1	1		
^{99m} Tc(V)-DMSA	ITLC-SG	Butanone	0.0	1.0	0.0
	ITLC-SG	Saline	0.0	1.0	1.0
	Silica gel	Butanol-acetic	0.0	0.8	0.5
		acid-water (3:2:3)			
Particulate					
^{99m} Tc-MAA	ITLC-SG or	Acetone or saline	0.0	1.0	0.0
	3MM				
^{99m} Tc-Colloid (tin	ITLC-SG or	Acetone or saline	0.0	1.0	0.0
colloid, nanocolloid)	ЗММ				
Non-polar					
99mTc-Sestamibi	Alumina	Ethanol	0.0	0.0	1.0
To Godiamoi	(Pre-spot with	Linarior	0.0	0.0	1.0
	ethanol; do not				
	allow spot to				
00m	dry)				
^{99m} Tc-Tetrofosmin	ITLC-SG	Acetone-	0.0	1.0	0.5
	(Spot must be	dichloromethane			
00m	dry)	(35:65)			
^{99m} Tc-MAG3	ITLC-SG	Ethyl acetate-	0.0	1.0	0.0
		butanone (3:2)			
	No 1	Chloroform-	0.0	1.0	0.0
		acetone-THF			
	I=1 0 00	(1:1:2)			
99m— — .	ITLC-SG	50% Acetonitrile	0.0	1.0	1.0
^{99m} Tc-Exametazime	ITLC-SG	Butanone	0.0	1.0	1.0
(HMPAO)	ITLC-SG	Saline	0.0	1.0	0.0
	No 1	50% Acetonitrile	0.0	1.0	1.0
Protein					
^{99m} Tc-HSA	ITLC-SG or	Acetone	0.0	1.0	0.0
	3MM				
	ITLC-SG	Ethanol-ammonia-	0.0	1.0	1.0
	(Strip is pre-	water (2:1:5)			
	saturated with				
	human serum				
	albumin and dried)				
^{99m} Tc-Sulesomab	ITLC-SG or	Acetone, saline, or	0.0	1.0	0.0
(Leukoscan)	3MM	0.1 M citrate	0.0	1.0	0.0
99mTc-Besilesomab	ITLC-SG	Butanone	0.0	1.0	0.0
(Scintimun)	1.120 00	Datariono	0.0	1.0	0.0
(55):::::::::::::::::::::::::::::::::::	1	I	<u>I</u>	1	

Substitutions:

- In most cases, 2-butanone (methyl ethyl ketone, MEK) can be substituted for acetone
- In most cases, water can be substituted for saline
- In most cases, Whatman No 1 can be substituted for Whatman 3MM paper
- ACD can be substituted for 0.1 M citrate

1.4 Thin-layer chromatography of technetium radiopharmaceuticals: Simplified strategy

System A 1	
System A-1 Impurity	Free pertechnetate
Radiopharmaceuticals	MDP/HDP, DTPA, MAA, DMSA, DMSA(V), Nanocolloid, Tin
nadiopharmaceuticals	colloid, Sulesomab, Besilesomab, HSA, Pertechnetate
Stationary phase	TLC-SG
Mobile phase	2-Butanone (MEK)
Interpretation	Origin – bound
Interpretation	Front – free pertechnetate
System A-2	
Impurity	Reduced hydrolysed technetium
Radiopharmaceuticals	MDP/HDP, DTPA
Stationary phase	ITLC-SG
Mobile phase	Saline
Interpretation	Origin – reduced hydrolysed
·	Front – bound
System B	
Radiopharmaceuticals	Sestamibi
Stationary phase	Aluminium oxide (Bakerflex)
Mobile phase	Ethanol (95% or greater)
Precautions	Prespot with ethanol. Spot sample while still wet. Then allow
	to dry before developing
Interpretation	Origin – impurities
	Front – bound
System C	
Radiopharmaceuticals	Tetrofosmin
Stationary phase	ITLC-SG
Mobile phase	Acetone-dichloromethane (35:65)
Precautions	Spot must be allowed to dry before developing
Interpretation	Origin – reduced hydrolysed
	Middle - bound
	Front – free pertechnetate
System D-1	
Impurity	Free pertechnetate
Radiopharmaceutical	MAG3
Stationary phase	Whatman No 1 paper
Mobile phase	Chloroform-acetone-THF (1:1:2)
Interpretation	Origin – bound
	Front – free pertechnetate
System D-2	
Impurity	Reduced hydrolysed technetium
Radiopharmaceutical	MAG3, Mebrofenin
Stationary phase	ITLC-SG
Mobile phase	50% Acetonitrile
Interpretation	Origin – reduced hydrolysed
	Front – bound

System E	
Impurity	Free pertechnetate
Radiopharmaceutical	Mebrofenin (HIDA)
Stationary phase	ITLC-SA
Mobile phase	20% Sodium chloride
Interpretation	Origin – bound
	Front – free pertechnetate
System F-1	
Impurity	Free pertechnetate
Radiopharmaceutical	HMPAO
Stationary phase	ITLC-SG
Mobile phase	Saline
Interpretation	Origin – bound
	Front – free pertechnetate
System F-2	
Impurities	Reduced hydrolysed technetium + secondary complex
Radiopharmaceutical	HMPAO
Stationary phase	ITLC-SG
Mobile phase	2-Butanone (MEK)
Interpretation	Origin – reduced hydrolysed and secondary complex
Interpretation	Front – bound and free pertechnetate
	From - bound and free perfectifietate
Cyctom E 2	
System F-3	
Impurity	Reduced hydrolysed
Radiopharmaceutical	HMPAO
Stationary phase	Whatman No 1 paper
Mobile phase	50% Acetonitrile
Interpretation	Origin – colloid
	Front – bound, free pertechnetate and secondary complex
System G	
Radiopharmaceutical	Tc(V)-DMSA (pentavalent)
Stationary phase	Silica gel (not ITLC)
Mobile phase	Butanol-acetic acid-water (3:2:3)
Interpretation	Origin – reduced hydrolysed; Tc(III)-DMSA
	Middle - Tc(V)-DMSA
	Front – free pertechnetate
System H-1	
Impurity	Free ¹¹¹ In, ⁹⁰ Y, ¹⁷⁷ Lu, ⁶⁸ Ga
Radiopharmaceutical	Octreotide, DOTATATE
Stationary phase	ITLC-SG
Mobile phase	0.1 M citrate
Interpretation	Origin – bound Front - free
	Tront 1100
System H-2	
Impurity	Colloidal 111 In, 90 Y, 177 Lu, 68 Ga
Radiopharmaceutical	Octreotide, DOTATATE
Stationary phase	ITLC-SG
Mobile phase	1 M ammonium acetate-methanol (1:1)
Interpretation	Origin – colloid
orprotation	Front - bound
	From Dound

System J	
Impurity	Free fluoride
Radiopharmaceutical	FDG
Stationary phase	Silica gel
Mobile phase	Acetonitrile-water (95:5)
Interpretation	Origin – free fluoride
-	Middle - bound

1.5 Thin-layer chromatography of other radiopharmaceuticals

Radiopharm- aceutical	Stationary phase	Mobile phase	Rf free	Rf bound
^{123/131} I-MIBG	Silica gel	Ethyl acetate-ethanol (1:1)	0.6	0.0
¹¹¹ In-DTPA	ITLC-SG	10% Ammonium acetate- methanol (1:1)	0.1	1.0
111 In-Octreotide	ITLC-SG	0.1 M Citrate buffer pH 5	1.0	0.0
⁹⁰ Y/ ¹⁷⁷ Lu/ ⁶⁸ Ga-	ITLC-SG	1 M Ammonium acetate-	0.0	1.0
DOTATATE		methanol (1:1)	(colloid)	
¹⁸ F-FDG	Silica gel	Acetonitrile-water (95:5)	0.0	0.6
¹⁸ F-Fluoroethylcholine	Silica gel	Acetonitrile-saline (1:1)	0.0	0.6
123 I-loflupane (Datscan)	ITLC-SG (Spot must be dry)	Chloroform-methanol (9:1)	0.0	1.0
¹²³ I-lomazenil	Silica gel	Ethyl acetate-ammonium hydroxide (200:1)	0.0	0.7
	Silica gel	Chloroform-acetic acid- water (65:35:5)	0.0	0.3
131 I-lodocholesterol	Silica gel	Chloroform-ethanol (1:1)	0.0	0.7

1.6 Solid-phase extraction cartridge methods

1.6.1 Consumables

Solid phase extraction cartridges are available from various suppliers. The original brand was Sep-Pak by Waters Associates. Cartridges can be re-used several times after decay of radioactivity.

1.6.2 General procedure:

- 1. Pre-wet ("activate") cartridge with 2-5 mL ethanol or methanol.
- 2. Prepare cartridge with 2-10 mL of preparation solvent.
- 3. Place a drop of the radiopharmaceutical in the inlet of the cartridge.
- 4. Elute sequentially with 2-10 mL quantities of eluates A, B, C and collect each in a separate tube; after the last eluate, force air through the cartridge to dry it.
- 5. Place the cartridge in another tube for measurement of residual activity.
- 6. Measure the activity in each tube in an ionisation chamber.
- 7. Calculate radiochemical purity as per table.

1.6.3 Preparation of regents

Reagent	Preparation
1 mM HCl	1 mL conc HCl per litre of distilled water
(0.001 M HCI)	
PB for MAG3	0.01 M (10 mM) sodium phosphate buffer pH 6
	Prepare 100 mL 0.01 M monosodium phosphate solution (NaH ₂ PO ₄).
	Prepare 20 mL 0.01 M disodium phosphate solution (Na ₂ HPO ₄). Add
	10 mL disodium phosephate solution to 100 mL monosodium
	phosphate solution. pH should still be below 6. Add disodium
	phosphate solution dropwise until pH of 6 is obtained.
PB for MIBG	0.1 M (100 mM) monosodium phosphate (NaH ₂ PO ₄)
THF	tetrahydrofuran
10 mM NaOH (0.01	0.4 g dissolved in 1 litre of distilled water
M NaOH)	or dilute 1 mL 1 M NaOH with 99 mL distilled water

1.6.4 Table of systems

Radiopharma-	Type of	Prepar- ation	Α	В	С	D	Purity
ceutical	cartridge	solvent					- -
^{99m} Tc-sestamibi	Alumina N	0.5 mL ethanol	10 mL ethanol	cartridge residue			A/total
	C-18	2 mL saline	2 mL saline	5 mL ethanol	cartridge residue		B/total
^{99m} Tc-tetrofosmin	C-18	2 mL saline	2 mL saline	5 mL ethanol	cartridge residue		B/total
	Silica	5 mL saline then 1 mL air	10 mL methanol- water (70:30) over 2 minutes	cartridge residue			B/total
	Silica	5 mL saline then 1 mL air	10 mL methanol- water (70:30) over 2 minutes	10 mL methanol- saline (80:20)	cartridge residue		B/total
^{99m} Tc-MAG3	C-18	10 mL 1 mM HCl	10 mL 1 mM HCl	10 mL 50% ethanol	cartridge residue		B/total
	C-18	10 mL 1 mM HCI	5 mL 1 mM HCI	5 mL 0.5% ethanol in PB	10 mL 7% ethanol in PB	cartridge residue	C/total
^{99m} Tc- exametazime	C-18	5 mL saline	5 mL saline	cartridge residue			B/total
	C-18	5 mL saline	5 mL saline	5 mL ethanol	cartridge residue		B/total
^{99m} Tc-IDAs	C-18	10 mL 1 mM HCl	10 mL 1 mM HCl	10 mL 95% ethanol	cartridge residue		B/total
111In-octreotide	C-18	10 mL water	5 mL water	5 mL methanol	cartridge residue		B/total
90Y/ ¹⁷⁷ Lu- DOTATATE	C-18	20 mL 0.3 M ascorbic acid	3 mL 0.3 M ascorbic acid	5 mL ethanol	cartridge residue		B/total
¹²³ I-ioflupane	C-18	5 mL water	5 mL water	5 mL ethanol	cartridge residue		B/total
^{123/131} I-MIBG	C-18	5 mL water	5 mL water	10 mL PB-THF (3:1)	cartridge residue		B/total
	C-18	5 mL water	5 mL 10 mM NaOH	cartridge residue			B/total

1.7 99mTc-Exametazime extraction method

- 1. Prepare a 10 mL test tube containing 3 mL of ethyl acetate and 3 mL of saline
- 2. Add several drops of ^{99m}Tc-exametazime (immediately after reconstitution)
- 3. Cap the tube and mix on a vortex mixer for 1 min
- 4. Let the tube stand for 1 min to allow the two phases to separate
- 5. Remove the top layer using a pipette into another test tube
- 6. Measure the activities in each layer in an ionization chamber
- 7. Calculate the % lipophilic complex as follows:

% primary complex = <u>activity in ethyl acetate layer</u> x 100 total activity in both layers

8. Minimum acceptable value: 80%

Reference: Ballinger JR, Reid RH, Gulenchyn KY. Radiochemical purity of [^{99m}Tc]HM-PAO. *J Nucl Med* 1988; 29: 572-573.

1.8 High-pressure liquid chromatography (HPLC)

1.8.1 General procedure

RCP testing of SPECT and PET radiopharmaceuticals can be carried out using high-pressure liquid chromatography (HPLC) on systems equipped with a radio-detector and UV detector, though there are exceptions such as ¹⁸F-fluorodeoxyglucose (FDG) where UV detection is not possible and a pulsed amperometric detector is used.

One of the limitations of HPLC is that only compounds which elute from the column are measured. Measurement of recovery of injected activity should be performed for all new compounds and on an occasional basis to check that negligible quantities are being lost, for example due to retention on the guard column.

1.8.2 HPLC systems for SPECT radiopharmaceuticals

		Isocratic		
Radiopharma-	Column	or	Solvent(s)	Reference
ceutical		gradient		
^{99m} Tc-sestamibi	C-8	gradient	A: 50 mM ammonium sulphate B: methanol 0%B to 95%B over 5 minutes	Carvalho 1992 [1]
	C-18	isocratic	A: methanol B: 50 mM ammonium sulphate C: acetonitrile A:B:C 45:35:20	Hung 1991 [2]
^{99m} Tc-tetrofosmin	PRP-1	gradient	A: 10 mM phosphate buffer pH 7.5 B: tetrahydrofuran 0%B to 100%B over 17 minutes	Kelly 1993 [3]
	PRP-1	isocratic	A: acetonitrile B: 10 mM ammonium carbonate A:B 70:30	Millar 1999 [15]
	PRP-1	isocratic	A: 5 mM monopotassium phosphate B: acetonitrile A:B 50:50	Cagnolini 1998 [16]
^{99m} Tc-MAG3	C-18	isocratic with wash	A: ethanol B: 10 mM phosphate buffer pH 6 A:B 5:95 after peak, wash with methanol-water 90:10	Millar 1990 [4]
	C-18	gradient	A: 10 mM potassium phosphate with 1% triethylamine pH 5 B: tetrahydrofuran 0%B to 8%B over 30 minutes	Shattuck 1994 [5]
^{99m} Tc- exametazime	PRP-1	gradient	A: 20 mM phosphate buffer pH 7.4 B: tetrahydrofuran 0%B to 25%B over 6 minutes	Neirinckx 1987 [6]
	PRP-1	gradient	A: 10 mM potassium phosphate pH 7 or water containing 1% methanol B: acetonitrile 0%B to 50%B over 5 minutes	Hung 1988 [7]
	PRP-1	gradient	A: 50 mM sodium acetate pH 5.6 B: tetrahydrofuran 0%B to 100%B over 17 minutes	Weisner 1993 [8]

^{123/131} I-MIBG	C-18	isocratic	A: 100 mM sodium phosphate B: tetrahydrofuran A:B 88:12	Wieland 1980 [10]
¹²³ l-ioflupane	C-18	isocratic	A: methanol B water C: triethylamine A:B:C 85:15:0.2	Baldwin 1995 [11]
¹²³ I-iomazenil	C-18	isocratic	A: methanol B: water A:B 55:45	Zoghbi 1992 [12]
¹²⁵ l-albumin	C-4	gradient	A: 0.1% TFA in water B: 0.1% TFA in acetonitrile 35%B to 90%B in 10 minutes	Liverpool
¹¹¹ In-octreotide	C-18	gradient	A: saline B: methanol 40%B to 80%B in 20 minutes	Krenning 1992 [13]
111 In/90 Y/177 Lu/ 68 Ga-DOTATATE	C-18	gradient	A: 0.1% TFA in water B: 0.1% TFA in acetonitrile 0-2 min 100%A, 2-20 min 100%A to 100%B	Wehrmann 2007 [17]
¹⁸ F-FDG	amino	isocratic	A: acetonitrile B: water A:B 95:5	Hamacher 1986 [14]

1.8.3 HPLC systems for PET radiopharmaceuticals

Radiopharma- ceutical	Column	Isocratic or gradient	Solvent(s)	Reference
¹⁸ F-FDG	Anion exchange	Isocratic	0.1 M aqueous NaOH	EP monograph 1325
	Amino	Isocratic	Acetonitrile / water (70/30)	
¹⁸ F-NaF	Anion exchange	Isocratic	0.1 M aqueous NaOH	EP monograph 2100
¹¹ C-Acetate	Anion exchange	Isocratic	0.1 M aqueous NaOH	EP monograph 1920
¹¹ C-Methionine	C-18	Isocratic	10mM aqueous sodium phosphate	EP monograph 1617
¹⁸ F-FLT	C-18	Gradient	Acetonitrile / water (10/90)	EP monograph 2460*
¹⁸ F-FMISO	C-18	Gradient	Acetonitrile / water (10/90)	EP monograph 2459*

^{*}in draft 2012

References

- 1. Carvalho PA, Chiu ML, Kronauge JF, Kawamura M, Jones AG, Holman BL, Piwnica-Worms D. Subcellular distribution and analysis of technetium-99m-MIBI in isolated perfused rat hearts. *J Nucl Med* 1992; 33: 1516-1522.
- 2. Hung JC, Wilson ME, Brown ML, Gibbons RJ. Rapid preparation and quality control method for technetium-99m-2-methoxy isobutyl isonitrile (technetium-99m-sestamibi). *J Nucl Med* 1991; 32: 2162-2168.
- 3. Kelly JD, Forster AM, Higley B, Archer CM, Booker FS, Canning LR, Chiu KW, Edwards B, Gill HK, McPartlin M. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. *J Nucl Med* 1993; 34: 222-227.
- 4. Millar AM, Wilkinson AG, McAteer E, Best JJK. ⁹⁹Tc^m-MAG3: *in vitro* stability and *in vivo* behaviour at different times after preparation. *Nucl Med Commun* 1990; 11: 405-412.
- 5. Shattuck LA, Eshima D, Taylor AT, Anderson TL, Graham DL, Latino FA, Payne SE. Evaluation of the hepatobiliary excretion of technetium-99m-MAG3 and reconstitution factors affecting radiochemical purity. *J Nucl Med* 1994; 35: 349-355.
- 6. Neirinckx RD, Canning LR, Piper IM, Nowotnik DP, Pickett RD, Holmes RA, Volkert WA, Forster AM, Weisner PS, Marriott JA, Chaplin SB. Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. *J Nucl Med* 1987; 28: 191-202.
- 7. Hung JC, Corlija M, Volkert WA, Holmes RA. Kinetic analysis of technetium-99m d,I-HMPAO decomposition in aqueous media. *J Nucl Med* 1988; 29: 1568-1576.
- 8. Weisner PS, Bower GR, Dollimore LA, Forster AM, Higley B, Storey AE. A method for stabilising technetium-99m exametazime prepared from a commercial kit. *Eur J Nucl Med* 1993; 20: 661-666.
- Zinn KR, Buchsbaum DJ, Chaudhuri TR, Mountz JM, Grizzle WE, Rogers BE. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with ^{99m}Tc or ¹⁸⁸Re. *J Nucl Med* 2000; 41: 887-895.
- 10. Wieland DM, Wu JI, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WH. Radiolabeled adrenergic neuron-blocking agents: Adrenomedullary imaging with [131] Iliodobenzylguanidine. *J Nucl Med* 1980; 21: 349-353.
- Baldwin RM, Zea-Ponce Y, al-Tikriti MS, Zoghbi SS, Seibyl JP, Charney DS, Hoffer PB, Wang S, Milius RA, Neumeyer JL, Innis RB. Regional brain uptake and pharmacokinetics of [¹²³I]N-ω-fluoroalkyl-2β-carboxy-3β-(4-iodophenyl)nortropane esters in baboons. *Nucl Med Biol* 1995; 22: 211-219.
- 12. Zoghbi SS, Baldwin RM, Seibyl JP, al-Tikriti MS, Zea-Ponce Y, Laruelle M, Sybirska EH, Woods SW, Goddard AW, Malison RT, Zimmerman R, Charney DS, Smith EO, Hoffer PB, Innis RB. Pharmacokinetics of the SPECT benzodiazepine receptor radioligand [123 l]iomazenil in human and non-human primates. *Nucl Med Biol* 1992; 19: 881-888.
- 13. Krenning EP, Bakker WH, Kooij PPM, Breeman WAP, Oei HY, de Jong M, Reubi JC, Visser TJ, Bruns C, Kwekkeboom DJ, Reijs AEM, van Hagen PM, Koper JW, Lamberts SWJ. Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. *J Nucl Med* 1992; 33: 652-658.

- 14. Hamacher K, Coenen HH, Stocklin G. Efficient stereospecitic synthesis of no-carrier-added 2-[¹⁸F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. *J Nucl Med* 1986; 27: 235-238.
- 15. Graham D, Millar AM. Artefacts in the thin-layer chromatographic analysis of ⁹⁹Tc^m-tetrofosmin injections. *Nucl Med Commun* 1999; 20: 439-444.
- 16. Cagnolini A, Whitener D, Jurisson S. Comparison of the kit performance of three ^{99m}Tc myocardial perfusion agents. *Nucl Med Biol* 1998; 25: 435-439 (also used same system for sestamibi)
- 17. Wehrmann C, Senftleben S, Zachert C, Müller D, Baum RP. Results of individual patient dosimetry in peptide receptor radionuclide therapy with ¹⁷⁷Lu DOTA-TATE and ¹⁷⁷Lu DOTA-NOC. *Cancer Biother Radiopharm* 2007; 22: 406-416.

All issues of *J Nucl Med* more than one year old are available free of charge on the journal website.