20/20 Vision: the future of ICH Q12 in practice

Kim Wolfram, Regulatory CMC

CMC Strategy Forum
July 2016
Predicting the future:

Opportunities:
- Be proactive (anticipate potential change) and build robustness/antifragility

Challenges:
- Predicted harms can also have unanticipated benefits
- Failing to account for exponential change
- Black swan events

You cannot predict the future.

— Stephen Hawking —
Future manufacturing processes will utilize:

- Enhanced process controls - much greater level of process understanding and control
- Scientific models and process signatures will support product quality prediction
- Adaptive control will be a critical element of process consistency

What does this mean for ICH Q12 and Established Conditions?
Established Conditions for Enhanced Process Control Manufacturing

Reduced CCPs; critical outputs are the only proposed ECs for many steps

More knowledge/Less Uncertainty/Fewer ECs

- Robust Risk Assessments/Criticality
- Knowledge Space
- Adaptive Process Control/Robust Predictive Models
Futuremab

- Disease modifying therapy for unmet medical need
- Patient population size in the millions
- Unprecedented manufacturing capacity needs
- Enhanced manufacturing process controls and analytics
- Patient centered drug development

<table>
<thead>
<tr>
<th>Post-approval change to be introduced</th>
<th>Q12 Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>New drug substance/ drug product manufacturing sites</td>
<td>PACMP/ECP</td>
</tr>
<tr>
<td>Application of advanced technologies as alternate for traditional analytical technology</td>
<td>If non-EC, PQS If EC, PACMP or eCP</td>
</tr>
<tr>
<td>Replacement of traditional/parameter based EC with enhanced ECs (including advanced process controls)</td>
<td>PACM/eCP</td>
</tr>
<tr>
<td>Addition of analytical method with an equivalent method</td>
<td>Frequent changes and EC</td>
</tr>
<tr>
<td>Change to primary or secondary packaging</td>
<td>Frequent changes and EC</td>
</tr>
</tbody>
</table>
Futuremab: Enhanced Process Controls
Goal: Eliminate batch failures due to RM & process variability

Multivariate analysis for process monitoring and disposition decisions, Predictive model for RTRT or FF control

Foundations:
- Extensive RM, process, product characterization and understanding
- Right technologies at right places – value added, reasonable cost
- A fully-integrated, implementable, reliable and sustainable control system
Raw Material Established Conditions

<table>
<thead>
<tr>
<th>Traditional ECs</th>
<th>Enhanced ECs</th>
<th>Enablers</th>
</tr>
</thead>
</table>
| Specifications/vendors for all non-compendial raw material attributes | Specifications for only **critical** raw material attributes. Feedforward controls to account for variability in critical raw material attributes | Requires:
 • an established raw material understanding rooted in criticality and risk assessment and predictive models.
 • an understanding of the functional relationship between critical raw material attributes and critical product quality attributes
 • Example: heavy metals that may impact glycosylation |
Cell Culture
Established Conditions

<table>
<thead>
<tr>
<th>Traditional ECs</th>
<th>EC for Enhanced Process Controls</th>
<th>Enablers</th>
</tr>
</thead>
</table>
| Critical input parameters:
• Online pH, temp, DO
• Culture duration
• Nutrient feed daily amounts | Fewer critical input parameters, outputs - multivariate process signature (linked to CQA), and feedback control loop. | Requires an established knowledge space of input parameter impact to titer and culture viability
• Inter-relationship between pH, temp, DO and cell growth |
| Critical output controls/tests:
• Micro and viral contamination
• Culture viability
• Titer | | |
| Noncritical descriptions | | |

Enablers

- Requires an established knowledge space of input parameter impact to titer and culture viability
 - Inter-relationship between pH, temp, DO and cell growth
Purification Example

Impurity control = established condition

Bioreactor Harvest

Purification

Capture
Intermedi
Polish

Column load ratio

DS

On-line sampling

Multi-attribute method

At Line Rapidly Measure % Impurity in Column Load

≤2.5%
2.6-3.4%
≥3.5%

Established Condition Impurity controlled to ≤ 2.5%

No FF Load ≤ [x] (n cycles)
FF Load ≤ [x – y] (n + 1 cycles)
FF Load ≤ [x – 2y] (n + 2 cycles)
Analytical Methods Established Conditions

• “Do and Tell’ provided the general type of analytical technique remains unchanged (chromatographic, or spectroscopic, or electrophoretic etc) AND the validation results are in accordance with the agreed validation criteria.’

• PQS documents continuous verification of method performance and risk assessments.

• Established conditions= only performance characteristics for control strategy methods

• Validation would include variables that affect the performance characteristics.

<table>
<thead>
<tr>
<th>Example</th>
<th>ECs</th>
<th>Non-ECs</th>
<th>Change Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size Exclusion Chromatography</td>
<td>• Basis of separation and detection</td>
<td>• Column used</td>
<td>Change from HPLC to UPLC would not need to be reported.</td>
</tr>
<tr>
<td></td>
<td>• System suitability criteria (theoretical plates, resolution, tailing factor)</td>
<td>• Solutions used</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assay and sample acceptance criteria</td>
<td>• Quantities used</td>
<td></td>
</tr>
</tbody>
</table>

Example ECs and Non-ECs for Size Exclusion Chromatography:

- **ECs**
 - Basis of separation and detection
 - System suitability criteria (theoretical plates, resolution, tailing factor)
 - Assay and sample acceptance criteria

- **Non-ECs**
 - Column used
 - Solutions used
 - Quantities used

Change Example: Change from HPLC to UPLC would not need to be reported.
Development
Least robust
(1 DS/DP site, few batches, single sourced vendors, limited data sets)

Submission
LCM Flexibility built in
(Dual sourcing, LCM Plan (comparability protocols, use of PQS, and Established Conditions)

Post-approval
Increasing robustness (resilient to disorder)
Reliant on PQS & expanded knowledge space, utilization of LCM flexibility.

Flexible and harmonized life cycle management (ICH Q12) is a commitment to increasing product supply robustness.

Lack of harmonization and flexibility for LCM is impedes robustness and increases supply risk.
LCM Plan: Pulling it all together

Operating in a state of control

- PQS (and justification for EC)
 - Example: high level description of how automation controls are qualified and maintained
- Process monitoring/trends
 - Example: description of how predictive models are maintained and kept current with increasing product quality knowledge
- Continuous Process Verification
- Excursion/deviation monitoring
- Post-market surveillance

Change Control

- Risk Assessments/Quality risk management
- Outline for “do and tell” changes
 - Example: Notification or “tell and do” categories for changing potency assay from a manual process to an automated process
- PACMP/eCP link
 - Examples: new facility, increased scale, change in potency assay that impacts performance characteristics
- Reporting categories for Established Conditions
What can we do to improve the lives of patients now and in the future?
Acknowledgements

Shannon Holmes, Regulatory Affairs
Canping Jiang, Manufacturing Sciences
Patrick Swann, Regulatory Affairs
Julia Edwards, Regulatory Affairs
Rohin Mhatre, Regulatory Affairs
Valerie Tsang, Technical Development
Brad Stanley, Technical Development
I predict that I will give the first VR presentation to a CASSS audience.