CE in biopharma science: it’s more than GCE and cIEF
Unexploited applications from the sewing box

CEPharm 2018,
PD Dr. Maria A. Schwarz and Dr. Samuel Bader

12.09.2018
Introduction It’s more than GCE and cIEF

Feasibility 1
Characterization of PEGylated protein by CZE.

Feasibility 2 Site specific identification of deamidation site using deamidation specific digest and CZE.

Feasibility 3 Separation of glycated from non-glycated proteins by affinity CE.

Rough estimate of projects at Solvias
PEGylation

Introduction

- Disappearing/decreasing signals (in peptide map of PEGylated protein) indicate that the respective peptides are PEGylated completely/partially
- The number of new signals correlates with the number of PEGylation sites
- **Problem:** New signals not observed in HPLC peptide mapping

Lys-C peptide map (HPLC) of a PEGylated (top trace) and non-PEGylated protein (bottom trace)
PEGylation Peptide map of a PEGylated protein by CZE

PEGylated peptides

1000 – 5000 Da

> 30000 Da

p6, p7 = glycosylated, non-glycosylated
PEGylation Study heterogeneity on PEGylated peptides

Feasibility 1

Native PEGylated

desialylated

deglycosylated
PEGylation Summary

Summary
• The separation of both PEGylated and non-PEGylated peptides can be achieved within one CE run ranging from 1’000 to >30’000 Da.
• PEGylation site localization possible.
• Detection of PEGylated peptide allows additional characterization of glycans and sialylation on those peptides.
• Estimation of the overall PEGylation based on the A% of PEGylated signals to non-PEGylated signals.

Outlook
• Distinguish between PEGylation site on the same peptide.
• Further investigation will be needed in order to precise the individual PEGylation sites/degree.
Deamidation Current methods

Why does deamidation occur:
- One of the degradation pathway of biopharmaceuticals.
- Occurs under thermal and pH stress.
- Changes mass only minimally and charge by 1, but unspecifically.
- Can significantly affect structure and function of the protein.

Analytical problem:
- Determine the deamidation degree site specifically?

Current methods:
- ISOQUANT detection kit: Quantification of isoaspartate on protein level.
 - isoAsp specific.
- Peptide mapping: relative and site specific quantification of deamidation
 - Prone to sample preparation artifacts due to digestion at neutral or basic pH.
- Charge based methods: quantification of deamidation on protein level.
 - Charge variants not related to deamidation might interfere.
Deamidation Specific digest approach (Asp-N)

- Asp-N cleave before Asp and sometimes before Glu.
- Deamidation on an Asn generates an new cleavage site -> two new peptides
- Asp-N does not cleave at isoAsp sites so the deamidated peptide is still present.
- Asp-N also cleaves under acidic conditions allowing to minimize sample preparation artifacts due to digestion at neutral or basic pH.
Deamidation Specific digest (Asp-N)

- Significant degradation of p1 and p2.
- Detection of peptides expected to occur after Asn deamidation.
- Minor deamidation under high pH or low pH conditions at RT within 6d.
Deamidation Outlook

Summary
- Asp-N can be used as a deamidation specific digest.
- Peptides specific for each deamidation site are created.
- Can distinguish between closely positioned deamidation sites.
- Deamidation specific peptides increase when stressed.
- Based on the deamidation specific signals either an overall or a site-specific deamidation degree can be calculated.

Outlook
- Study more complex analytes.
- Develop a combined method to study Asn deamidation and Asp isomerization.
- Establish workflow with Glu-C to monitor glutamine deamidation.
What is glycation:
- Non-enzymatic glycosylation on protein amine groups. Occurs when protein is incubated with reducing sugars (e.g. glucose, galactose, fructose).
- Can further degrade to advanced glycation end product (AGE), which are highly reactive and toxic to some cell types.
- Consequently, glycation is a critical quality attribute.
- It may also happen during storage when reducing sugars are present in the formulation buffer.

Boronate affinity chromatography (BAC):
- Non-specific interaction have to be minimized by a shielding reagent.
- Problem:
 - Method has to be fine tune for each new analyte.
 - Retained peak is not pure
- The retained peak purity has to be assessed by an orthogonal method.
- Alternatively methods: charge based separation and LC-MS.
Glycation CE Approach-Principle

Boric acid interactions with vicinal diols of sugar: BGE pH > 8 (strong interaction, if pH > pI protein, negatively charged proteins)
Glycation Results

Impact on CE profile:
- Width of the peak correlates with the width of the glycation distribution.
- Reactivity (reaction enthalpy) and glycation rate
- Number of potential glycation sites not sterically hindered
Glycation Results

- Changed μ_{eff} and profile of protein signal upon glycation stress
- Different behavior between glucose and fructose due to different dissociation constant.
- Up to 14 hexoses per mAB molecule detected by LC-MS upon stress.
Glycation Conclusion

Summary:
• Transferred BAC from a HPLC setup to a CE setup.
• Separation of glycated peak proportionally to the degree of stress.
• Separated two different molecules with the same method.
• Separated the same molecule with glycated with two different sugars.

Outlook:
• Focus on separation on only minimally glycated biopharmaceuticals.
• Assess the separation of different sugars.
• Boronate CE on a digested sample be it subunits or peptides.
Conclusion

It doesn’t always have to be gel CE or cIEF.

CZE allows to monitor very **small and very large peptides** simultaneously.

AspN is an interesting approach identify site **specific deamidation** sites.

Boronate affinity chromatography can adapted to CE settings.
Thank you

Thanks to the Solvias CE Team especially Maria Schwarz, Dora Boylan, Claudia Michael, Cristina Montealegre and Angelina Rafai.

Thanks to Christian Neusüss and Oliver Höcker for the CE-MS measurements.

Specials thanks to head of Biopharma
Dr. Alex Beck

Thank you for your attention!