Lifecycle Management: Challenges and Lessons Learned from Kymriah™ (CD19 CAR T)

Anthony Thatcher, Site Head MS&T
Novartis Pharmaceuticals Cell and Gene Technical Development and Manufacturing
July, 2018
Disclosure Statement

The information contained in this document belongs to Novartis and/or its affiliates. Novartis does not make and expressly disclaims: (a) any representation or warranty (express or implied) with respect to the information shown in this presentation; and (b) any liability relating to the accuracy or completeness of the information.

The views and opinions expressed in this presentation are those of the author and do not necessarily reflect the official policy or position of Novartis or any of its officers.
Agenda

Kymriah™ (CD19 CAR T) Overview
Early Development and Transfer
Characterization and Process Development
Process Validation and Launch
Challenges / Lessons Learned
The Next Chapter of Kymriah™
Novartis CTL019 CAR-T Cell Therapy

1. Patient relapse or refractory to prior therapy
2. Patient identified as CTL019 candidate
3. Patient’s T cells harvested at apheresis center
4. T cells activated and transduced with lentiviral vector
5. CTL019 infused into patient and CRS* monitoring
6. Patient disease state evaluated +28 days after infusion

*Cytokine Release Syndrome: common CART therapies’ side effect, may require hospitalization

Morris Plains (Novartis)

- CTL019 controlled before quality release
- CTL019 packaged and cryopreserved (reprogrammed T cells)
- Modified T cells expanded and harvested
- T cells activated and transduced with lentiviral vector

Hospital / Infusion / Apheresis Centers

- Patient’s T cells transferred to Morris Plains
- CTL019 cells transferred to infusion center
- CTL019 packaged and cryopreserved (reprogrammed T cells)
Early Development and Transfer
Early Clinical Development

Historical Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Learning</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>CD3/CD28-bead costimulation for CD4+ T cells</td>
<td>Levine et al. JI 159:592</td>
</tr>
<tr>
<td>1998</td>
<td>Large scale production of CD3/CD28 costimulated CD4+ T cells</td>
<td>Levine et al. J Hematotherapy 7:437</td>
</tr>
<tr>
<td>2011</td>
<td>Autologous CAR+ T cells for anti-leukemic memory</td>
<td>Kalos et al. Sci Transl. Med 3:1</td>
</tr>
<tr>
<td>2011</td>
<td>CAR+ T cells in CLL</td>
<td>Porter et al. NEJM 265:725.</td>
</tr>
<tr>
<td>2012-2014</td>
<td>Tech transfer from UPenn to Novartis</td>
<td>Novartis documents</td>
</tr>
</tbody>
</table>
Key Considerations in Kymriah™ During Transfer

• Transfer + Process Improvements

• Open systems to closed where feasible
 – Water bath to Plasmatherm
 – Open Product Transfers to Luer Connections
 – Open bead wash step to closed process
 – Replace Luer Connections wherever possible with tube welding

• Manual to automatic
 – Manual Ficoll to automated Sepax
Process Transfer

Evaluation
- Feasibility (Process A)
- Quality Risk Assessment
- Alternatives
- Selection of Receiving Site

Planning
- Team formation and kickoff
- Regulatory assessment
- Manufacturing process transfer protocol

Preparation
- Documentation packages
- Training
- Incorporation of Process Improvements
Process Transfer (cont)

Execution
- Feasibility Runs (test)
- Engineering Runs (confirm)
- Comparability Runs (regulatory)

Assessment
- Analysis of results
- Submission of comparability data
- Manufacturing process transfer report

Post-transfer
- Lessons learned
- Initiate monitoring
- Phase 2 clinical trial at Morris Plains
- Begin process characterization (Process B)
Characterization and Process Development
Process Characterization Approach

- Historical UPenn clinical data (used to set initial ranges)
- Clinical data from Morris Plains
- PC data with healthy donors (normal process and atypical process conditions)

Historical data (UPenn and MP Runs)

- Control Space

Process Characterization Test Range

- CPP, KPP, NKPP definition and ranges
- CQA definition and ranges
- Data evaluation from clinical lots

- Feasibility Studies
- Data Summaries
- PC Protocols
- Confirmation Studies PC Protocols
- Confirmation Studies PC Reports
- PC Summary Report

- FMEA
- PC Master Plan
PC Implementation
Process Validation and Launch
Initial Development Thru Qualification

<table>
<thead>
<tr>
<th>Activity</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech Transfer</td>
<td>UPenn -> Novartis</td>
<td></td>
<td>Novartis -> CMO 1</td>
</tr>
<tr>
<td>Clinical Manufacturing</td>
<td></td>
<td>Training and Readiness</td>
<td>CMO 1 Clin Mfg</td>
</tr>
<tr>
<td>PD</td>
<td>Proc. A->B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Validation</td>
<td></td>
<td>Proc. B->C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Process Characterization Phase I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Process Qualification Process C</td>
</tr>
</tbody>
</table>
Initial Process Validation Approach

CTL019 Process Performance Qualification Strategy

<table>
<thead>
<tr>
<th>Clinical Phase</th>
<th>Commercial Manufacturing Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1: Process Design</td>
<td></td>
</tr>
<tr>
<td>Healthy Donor Starting Material</td>
<td>Patient Starting Material</td>
</tr>
<tr>
<td>- Process Transfer</td>
<td>- Clinical Manufacturing batches demonstrating patient manufacturing conditions</td>
</tr>
<tr>
<td>- Develop unit operations</td>
<td></td>
</tr>
<tr>
<td>- Process Characterization and process parameters and ranges</td>
<td></td>
</tr>
<tr>
<td>Finalization of process parameters and ranges (CPPs, etc.)</td>
<td>Justification of Specifications Report (CQAs)</td>
</tr>
<tr>
<td>Process Characterization Report</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Process Performance Qualification		
Patient Starting Material		
PPQ Protocol Pathway 1	PPQ Final Report Pathway 1	
PPQ Protocol Pathway 2	PPQ Final Report Pathway 2	
PPQ Protocol Pathway 3	PPQ Final Report Pathway 3	
Manufacture Batches	Manufacture Batches	

| **Stage 3: Continued Process Verification** | | |
| Patient Apheresis Processing | Routine monitoring of validated process pathways |

Justification of Specifications Report (CQAs)
Finalization of process parameters and ranges (CPPs, etc.)
Continued Development and Launch

<table>
<thead>
<tr>
<th>Activity</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech Transfer</td>
<td></td>
<td>Novartis -> CMO 2</td>
</tr>
<tr>
<td>Clinical Manufacturing</td>
<td>CMO 1 Clin Mfg</td>
<td>Morris Plains Clin Mfg</td>
</tr>
<tr>
<td>Commercial Manufacturing</td>
<td>Morris Plains pALL (Process C)</td>
<td>Morris Plains pALL/DLBCL (Process D)</td>
</tr>
<tr>
<td>PD</td>
<td>Proc. C->D</td>
<td>Proc. D->E (planned)</td>
</tr>
<tr>
<td>Process Validation</td>
<td>Process Characterization Phase II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Qualification (Process D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Qualification (Process E Planned)</td>
</tr>
</tbody>
</table>
Current Process Validation Approach

CTL019 Process Performance Qualification Strategy

<table>
<thead>
<tr>
<th>Clinical Phase</th>
<th>Commercial Manufacturing Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1: Process Design</td>
<td></td>
</tr>
<tr>
<td>Healthy Donor Starting Material</td>
<td>Patient Starting Material</td>
</tr>
<tr>
<td>- Process Transfer</td>
<td>- Clinical Manufacturing batches demonstrating patient manufacturing conditions</td>
</tr>
<tr>
<td>- Develop unit operations</td>
<td></td>
</tr>
<tr>
<td>- Process Characterization and process parameters and ranges</td>
<td></td>
</tr>
<tr>
<td>Finalization of process parameters and ranges (CPPs, etc.)</td>
<td>Justification of Specifications Report (CQAs)</td>
</tr>
<tr>
<td>Process Characterization Report</td>
<td></td>
</tr>
</tbody>
</table>

Stage 2: Process Performance Qualification	
Patient Apheresis Processing	
Routine monitoring of validated process	

| **Stage 3: Continued Process Verification** | |
| | Process Monitoring Using CQAs |
Challenges / Lessons Learned
Consistent CTL019 T-cell product from individual patient material

Incoming leukapheresis material

Transduced viable T cell product (CTL019) ~97% T cells
Continual Learnings on Cell Growth
The Next Chapter of Kymriah™
Near Term Process Improvements

• Additional steps moved from luer to tube weld connections
• More pre-assembled components
• Earlier introduction of cells to the WBR
• More robust cell selection
• Move to automation, particularly around de-beading, harvest and formulation
• Switch to vector produced via more robust/scalable methods
• Additions of secondary sources for key raw materials
Next Gen Manufacturing

• Automated, closed system, minimized footprint

![Diagram of manufacturing process]

PATIENT CELLS → APHERESIS → ENRICHMENT → SFM → VESSEL → VECTOR → HARVEST-FILL-FINISH

Manufacturing Devices (6) → Manufacturing Devices (4)
Acknowledgements

CGT-MS&T
John Tomtishen
Emmanuel Duran
Neel Manvar
Emily Gu
Robin Gubkin
Saurin Patel
Doris Elewosi

CGT-Analytical & Process Sciences
Tom Spencer
Ko Nee
Bjoern Giner
Stacey Taylor
Vienna Lo
Eric Drew
Dattesh Suthar
Tatiana Golovina
Jennifer Leung-Chu
Liz Pratico
Marvin Lin
Paul Weissensee
Brian Gismonde
Jason Hamilton
Therese Choquette
Margit Jeschke

CGT-Operations
Jonathan Smith
Chris Acker
Jim Salmon

CGT-RegCMC
Selma Fatnassi
Cindy Riggins
Florence Salmon

UPenn
Jos Melenhorst
Simon Lacey
Felipe Bedoya
Bruce Levine
Megan Davis
Carl June

CGT-QA
Rizwan Awan

CGT-PMO
Brian Majors
Arvind Natarajan
Seshu Tyagarajan

Analytical and Product Stewardship
Simone Steiner
Amanda Skulte
Simon Briggs
Akos Simsik
Remi Labatut
Benoit Bossuge
Marthi Pretorius
Thank you