FDA’s Regulatory Perspective on Individualized Neoantigen-specific Cancer Vaccines

S. Rafat Husain, Ph.D.
Division of Cellular and Gene Therapies
Office of Tissues and Advanced Therapies
CBER, FDA

June 11, 2019
Disclosure

No financial relationships to disclose
Overview

- Office of Tissues and Advanced Therapies (OTAT), CBER
 - Organization and regulated products
- Cancer vaccines and immunotherapy products
 - General regulatory considerations for products
- Therapeutic peptide-based vaccines
- Personalized peptide vaccine and challenges
- Summary
Office of Tissues and Advanced Therapies

OFFICE OF THE DIRECTOR

DIVISION OF CELLULAR AND GENE THERAPIES
- Cell Therapies Branch
- Gene Therapies Branch
- Gene Transfer and Immunogenicity Branch
- Cellular and Tissue Therapy Branch
- Tumor Vaccine and Biotechnology Branch

DIVISION OF PLASMA PROTEIN THERAPEUTICS
- Hemostasis Branch
- Plasma Derivatives Branch

DIVISION OF CLINICAL EVALUATION AND PHARMACOLOGY/TOXICOLOGY
- General Medicine Branch I
- Pharmacology/Toxicology Branch I
- Oncology Branch
- General Medicine Branch II
- Pharmacology/Toxicology Branch II
- Clinical Hematology Branch

DIVISION OF HUMAN TISSUES
- Human Tissue and Reproduction Branch

DIVISION OF REGULATORY PROJECT MANAGEMENT
- Regulatory Project Management Branch I
- Regulatory Project Management Branch II

www.fda.gov
Products Regulated by OTAT

- **Stem Cells/Stem Cell-derived**
 - Hematopoietic, neural, mesenchymal
 - Placental, umbilical cord blood
 - Fetal, embryonic
 - Induced pluripotent stem cells (iPSCs)

- **Somatic Cells**
 - Retinal pigment epithelial cells
 - Pancreatic islet cells
 - Chondrocytes

- **Gene Therapies**
 - Genetically-modified cells
 - Replication-competent vectors
 - Non-viral vectors
 - Viral vectors
 - Genetically modified organisms

- **Combination Products**
 - Tissue-engineered and regenerative medicine products

- **Cancer Vaccines/Cellular Immunotherapies**
 - Peptides
 - Protein-based products

- **Blood Products**
 - Coagulation factors
 - Fibrin sealants
 - Fibrinogen
 - Thrombin
 - Plasminogen
 - Immune globulin
 - Snake venom antisera

- **Devices**
 - IVD, apheresis, PRP, cord blood, cell delivery, scaffolds seeded with cells etc.

- **Tissues**
 - Bone, skin, corneas, ligaments, tendons, dura mater, heart valves etc.
FDA’s Regulation of Oncology Products

- **Office of Hematology and Oncology Drug Products, CDER**
 - Drugs (small molecules), Biologics including Monoclonal Antibodies, Therapeutic Proteins, Cytokines

- **Office of Tissues and Advanced Therapeutics, CBER**
 - Cell Therapies
 - Gene Therapies
 - Oncolytic Viruses
 - Therapeutic Vaccines and Cellular immunotherapies

- **Center for Devices and Radiological Health (CDRH)**
 - Devices
 - Companion Diagnostics
 - Surgical and Delivery devices

- **Oncology Center of Excellence**
 - Oversees *clinical* review for all drugs, biologics, and devices used in medical oncology, a joint effort to create unified review policy approach
Cancer Vaccines and Immunotherapy Products

- Cell-based vaccines
 - e.g., dendritic cells, activated T lymphocytes (TIL, LAK), B cells, monocytes, cancer cells chemically modified or unmodified, *Ex vivo* gene modified cells.

- Tumor cell lysates

- Proteins, peptides
 - Mixed with adjuvants and/or nanoparticles

- Plasmid-based vaccines

- Virus-based vaccines

- Idiotypic and anti-idiotypic antibodies
Therapeutic Vaccines in OTAT

- More than 150 active clinical trials using peptide-based vaccines
- Most IND sponsors are investigators from academic institutions
- Peptides procured from contract manufacturer
- Often no Master File submitted from contractors
 - CBER highly recommends to submit DMF
 - Limited manufacturing information given by manufacturer
 - Incomplete/inadequate Certificate of Analysis submitted
Therapeutic Peptide Vaccines

- Most being used as cancer vaccines
 - Others for Neurodegenerative Diseases, Autoimmune Diseases, etc.

- Peptide or proteins that are tumor associated antigens (TAA)
 - Self-antigens, mutated self antigens (neoantigens), and tumor specific antigens

- Can be complex
 - Multiple peptides
 - Fused or mixed with adjuvants (e.g. KLH, Montanide etc.)
 - Combined with checkpoint modulators (e.g. anti-CTLA4, anti-PD1 antibodies etc.)
 - Other components (e.g. liposomes, polymers etc.)

www.fda.gov
Peptide Vaccine Characterization

In general, CMC expectations for therapeutic peptide vaccine quality are similar to other therapeutic products of the same type and class of the products, e.g.

- Cell-based vaccines can mostly follow quality attributes of other cell-based products
- Peptide vaccines can use regulatory guidelines of other peptide/protein products
Peptide Vaccine Product Quality

- Identify appropriate targets of therapies
- **Safety, identity, purity** and **potency** testing should provide meaningful information about the product prior to its release/use
- Appropriate tests and standards are critical
- Greater product knowledge (mechanism of action, characterization, etc.) will aid in developing meaningful assays and/or novel approaches for product characterization
Vaccine Product Safety Testing

- **Endotoxin** (LAL or equivalent)

- **Sterility** (21CFR 610.12: test must be appropriate for the test material and validated for the specific product). Revised as of April 1, 2018

- **Mycoplasma** (21CFR 610.30, PTC 1993 or cell substrate guidance), only for cell-based products (e.g. dendritic cells pulsed with peptides)
Personalized Peptide Vaccines

- Tumors being immunogenic elicit adaptive immune response, and peptide-based cancer vaccines can harness that immune response.

- Encouraging results from the first generation short peptide-based (9-10 amino acids) vaccines prompted exploration of next generation vaccines using longer peptides 20-35 aa.

- Lately, personalized vaccines tailored to match a patient’s cancer mutations are developed for clinical translation.

- These tumor-specific neoantigens are antigens generated by somatic mutations that can be recognized by the host immune system for personalized cancer vaccines.
Advantages of Targeting Neoantigens

<table>
<thead>
<tr>
<th>Tumor-Associated Antigen</th>
<th>Neoantigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self antigen</td>
<td>Non-self antigen</td>
</tr>
<tr>
<td>Expressed in multiple tumors</td>
<td>Unique to individual tumor</td>
</tr>
<tr>
<td>Higher risk of self-tolerance</td>
<td>Lower risk of self-tolerance</td>
</tr>
<tr>
<td>Susceptible to immune-selection</td>
<td>Resistant to immune-selection</td>
</tr>
<tr>
<td>Antigen loss variants common</td>
<td>Antigen loss variants less common</td>
</tr>
<tr>
<td>Higher risk of autoimmunity</td>
<td>Lower risk of autoimmunity</td>
</tr>
</tbody>
</table>

Zhang et. al. Vaccine, 2017
Personalized Neoantigen Vaccine

Individual peptides are manufactured matching the patient’s cancer mutations

Manufacturing Steps

- Tumor tissue source
- Sequencing – which technique
- Bioinformatics
 - Identification of mutations of interest
 - Several thousand mutations/tumor
 - Prioritize for immune targeting using computer-based prediction algorithms for HLA binding
 - Candidate epitope selection and peptide design
Personalized Neoantigen Vaccine

Manufacturing Steps – cont’d….

- Cross-reactivity with endogenous proteins
- Rationale for neoantigen selection for peptide synthesis
 - Predicted binding can be validated and ranked by *in vitro* binding of neoantigen with HLA allele of interest
- Peptide synthesis
- Pooling & fill/finish
- Release
Challenges in Personalized Peptide Vaccine

- Every patient product is different
- Manufacturing steps are lengthy and time-sensitive
 - Purity and yields could be production issues
 - de novo DS production feasible but challenging
- Conventional Pharm/Tox studies may not be feasible
- Accuracy of prediction algorithm needs to be improved
- Neoantigen identification, and prediction that these molecules will induce protective immune response
- Autoimmunity remains a concern (vaccine cross-reactivity with endogenous protein)
Typical CoA of Peptide Drug Product

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
<th>Specifications</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot #</td>
<td>XXX-12-017</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Date of manufacture</td>
<td>November 17, 2017</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Appearance (cake)</td>
<td>Visual</td>
<td>White solid</td>
<td>White solid</td>
</tr>
<tr>
<td>Moisture</td>
<td>Karl Fisher</td>
<td><3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Appearance (liquid)</td>
<td>Visual</td>
<td>Clear, colorless solution</td>
<td>Clear, colorless solution</td>
</tr>
<tr>
<td>pH</td>
<td>pH Meter, USP<791</td>
<td>3.5 to 5.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Identity</td>
<td>RP-HPLC, MS</td>
<td>Conforms to standard</td>
<td>conforms</td>
</tr>
<tr>
<td>Peptide concentration</td>
<td>RP-HPLC</td>
<td>0.61 – 0.82 mg/ml (for each peptide)</td>
<td>Peptide 1: 0.48 mg/ml Peptide 2: 0.97 mg/ml Peptide 3: 0.87 mg/ml Peptide 4: 0.77 mg/ml</td>
</tr>
<tr>
<td>Purity</td>
<td>RP-HPLC</td>
<td>90%</td>
<td>97.0%</td>
</tr>
<tr>
<td>Osmolality</td>
<td>USP<785</td>
<td>244-364 mOsm/kg</td>
<td>300 mOsm/kg</td>
</tr>
<tr>
<td>Sub-visible particles</td>
<td>HIAC – liquid particle counting system</td>
<td>10 mm counts: ≤8000 per container 25 mm counts: ≤600 per container</td>
<td>10 particles per container 1 particles per container</td>
</tr>
<tr>
<td>Endotoxin</td>
<td>USP<85</td>
<td>≤500 EU/mL</td>
<td><6.0 EU/mL</td>
</tr>
<tr>
<td>Sterility</td>
<td>USP<71</td>
<td>No growth</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Common Deficiencies at the End-of-Phase 2 Studies

- Stability protocols not fully developed
- Stability data missing
- Potency assay qualification and validation
 - The word potency is interpreted to mean the specific ability or capacity of the product...to effect a given result. (21 CFR 600.3(s))
 - Tests for potency shall consist of either in vitro or in vivo tests, or both, which have been specifically designed for each product so as to indicate its potency (21 CFR 610.10)
- Comparability studies, if applicable
Lot Release Specifications are Interrelated

We recommend you to choose them carefully and apply them where needed.

www.fda.gov
Phases of Clinical Investigation

The stage of product development guides the review concerns, with **safety** always being the primary concern at all stages.

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>BLA</th>
<th>Phase 4</th>
<th>Supplements</th>
</tr>
</thead>
</table>

- **SAFETY**
 - Product characterization occurs throughout the lifecycle but critical details should be determined early
 - Some qualification studies are required for phase 1 to ensure safety, but most qualification/validation studies typically do not occur until late in the lifecycle
 - Some properties (e.g. stability, purity, identity, etc.) overlap both safety and potency

www.fda.gov
Summary

- Vaccine development is a complex and challenging process
- Personalized vaccine provides advantages over conventional peptide vaccines, but needs improvement
- Feasibility is demonstrated, clinical effects encouraging but small sample size
- Recommends sponsors to perform right level of product characterization to ensure product quality
- Lot release specifications should be carefully considered
- Encourage sponsors to communicate early with the FDA/OTAT
Useful FDA Information

- References for the Regulatory Process for the Office of Tissues and Advanced Therapies (OTAT)

- OCTGT Learn Webinar Series

- Guidance for Industry Clinical Considerations for Therapeutic Cancer Vaccines

- Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products

- Draft Guidance for Industry: ANDAs for Certain Highly Purified Synthetic Peptides Drug Products that Refer to Listed Drugs of rDNA Origin
Acknowledgements

Raj Puri, M.D., Ph.D.
Steven Oh, Ph.D.
Denise Gavin, Ph.D.
Elena Gubina, Ph.D.
Kimberly Benton, Ph.D.
&
Above all, all the sponsors
Contact Information

- **Syed R. Husain, Ph.D.**
 Email: syed.husain@fda.hhs.gov

- **Regulatory Questions:**
 OTAT Main Line – 240 402 8190
 Email: OTATRPMS@fda.hhs.gov and Lori.Tull@fda.hhs.gov

- **OTAT Learn Webinar Series:**
 http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm

- **CBER website:** www.fda.gov/BiologicsBloodVaccines/default.htm

- **Phone:** 1-800-835-4709 or 240-402-8010

- **Consumer Affairs Branch:** ocod@fda.hhs.gov

- **Manufacturers Assistance and Technical Training Branch:** industry.biologics@fda.gov

- **Follow us on Twitter:** https://www.twitter.com/fdacber
Thank you for your attention