CONSEQUENCES OF SAMPLE AGE ON BIOOTHERAPEUTIC HIGHER ORDER STRUCTURE: INSIGHTS FROM NATIVE ION MOBILITY-MASS SPECTROMETRY METHODS

Richard Kerr
ORISE Post-Doctoral Fellow
US FDA, Division of Pharmaceutical Analysis (DPA)
St. Louis, MO
This presentation reflects the views of the author and should not be construed to represent the FDA’s views or policies.
Identifying the Consequences of Biotherapeutic Age on Higher Order Structure

• Monoclonal Antibodies (mAb’s) are inherently complex.
• Raises concerns regarding the effect of lot-to-lot variations on their long term thermal stability.
Identifying the Consequences of Biotherapeutic Age on Higher Order Structure

- Monoclonal Antibodies (mAb’s) are inherently complex.
- Raises concerns regarding the effect of lot-to-lot variations on their long term thermal stability.
- ICH Q1A, 2.1.7: Assessment of product thermal stability, to aid determination of shelf-life.
- Conditions used to evaluate product shelf life (ICH Q1A), and patterns of degradation (ICH Q5C).
- ICH Accelerated aging conditions:
 - 25±2°C, 60±5% Relative Humidity.
 - 6 month minimum incubation.
- Controls: 0 and 6 months at 4°C.
Accelerated Aging: Sample Selection

• Three commercially available IgG1 mAbs:
 – mAb 1a, 10 mg/ml, Exp: Aug 2017.
 – mAb 1b, 10 mg/ml, Exp: Jun 2014.
 – NIST RM8671, 10 mg/ml, Exp: Apr 2021.

• **Question:** how do we plan on analyzing these samples to identify their age dependent products of degradation?

• **Answer:** Native Ion Mobility-Mass Spectrometry (IM-MS) methods.
Native Ion Mobility-Mass Spectrometry

- Mass analysis of structurally separated native-like, gas phase, biological structures and complexes.
- Native-like buffers preserve the solution-phase structures, and covalent interactions.
- Energy minimized instrumental parameters prevent gas phase unfolding, and dissociation.
Ion-Mobility Spectrometry

- Gas phase electrophoresis method.
Ion-Mobility Spectrometry

- Gas phase electrophoresis method.
- Drift time can be used to calculate collision cross sections (CCS), providing an accurate estimate of an ions rotationally averaged size.
- Allows conformational, and oligomeric families with overlapping m/z to be structurally separated.
Native Ion Mobility-Mass Spectrometry
Native Ion Mobility-Mass Spectrometry

- Three dimensions of data: mass, size and intensity.
- Native IM-MS permits the mass analysis of structurally separated biological structures and complexes.
Native IM-MS Analysis: mAbs

- Classical MS: native structure and non-covalent interactions lost, with broad charge state distribution at low m/z values.
- Native MS: native structure and non-covalent interactions preserved, with narrow charge state distribution at high m/z values.
Native IM-MS Analysis: mAbs

• Classical MS: native structure and non-covalent interactions lost, with broad charge state distribution at low m/z values.

• Native MS: native structure and non-covalent interactions preserved, with narrow charge state distribution at high m/z values.

• Native IM-MS: Extracted drift times (tD) used to calculate biological CCS values.

• **Question**: Can we identify age dependent products of degradation based on shifts in CCS?
• No difference in CCS between controls.
• No observed change in CCS after incubation.
• **Question**: What do these data tell us?
• A) No change in structure occurs after 6 months.
• B) Changes in structure may be too subtle to detect.

CCS values for +22 charge State Shown.
• mAbs are relatively big biotherapeutic complexes:
 – ~ 145-180 kDa.
 – ~ 7600 Å².
• Proteins are not rigid structures, they’re flexible.
• mAbs are relatively big biotherapeutic complexes:
 – ~ 145-180 kDa.
 – ~ 7600 Å².
• Proteins are not rigid structures, they’re flexible.
• **Answer**: B) Changes in structure may be too subtle to detect.
• **Question**: How else can we use native IM-MS to identify these subtle differences?
• **Answer**: Test the effect of these modifications on mAb structural stability.
Collision Induced Unfolding (CIU)

- Gas phase unfolding strategy to assess the unfolding pathway of an analyte by collisionally activating its precursor ions prior to IM-MS.
Collision Induced Unfolding (CIU)

- Gas phase unfolding strategy to assess the unfolding pathway of an analyte by collisionally activating its precursor ions prior to IM-MS.
- Analyte ions subjected to sequentially higher collisional activation.
- Spectra combined to produce a heatmap known as a CIU fingerprint.
Collision Induced Unfolding (CIU)

\[SDS_i = \sum_{j=0}^{j=m} \frac{(X_{ij} - A_{ij}) \cdot A_{ij}}{S_{ij}} \]

\(X = \) Experimental data
\(A = \) Reference data
\(S = \) standard deviation
\(i = \) given collision voltage (\(\Delta E \))
\(j = \) given drift time
\(m = \) sum of all drift times
Monoclonal Antibody CIU: Controls

- **mAb 1a** (Exp: Aug ‘17)
 - RMSD: 3.67%

- **mAb 1b** (Exp: Jun ‘14)
 - RMSD: 3.82%

- **mAb 2** (Exp: May ‘17)
 - RMSD: 4.57%

- **NIST** (Exp: Apr ‘21)
 - RMSD: 3.66%
6 Months: 25±2°C, 60±5% RH

mAb 1a
(Exp: Aug '17)
RMSD: 5.48%

mAb 1b
(Exp: Jun '14)
RMSD: 4.76%

mAb 2
(Exp: May '17)
RMSD: 5.05%

NIST
(Exp: Apr '21)
RMSD: 4.54%

Control (0 Months)
6 Months: 25±2°C, 60±5% RH

mAb 1a
(Exp: Aug ‘17)

mAb 1b
(Exp: Jun ‘14)

mAb 2
(Exp: May ‘17)

NIST
(Exp: Apr ‘21)

Scaled Deviation Score

Drift Time (ms)

Collision Voltage (V)

RMSD: 7.20%

RMSD: 3.06%

RMSD: 10.17%

RMSD: 6.34%

6 Months at 25°C/60% RH
Control (0 Months)
6 Months: 25±2°C, 60±5% RH

mAb 1a
(Exp: Aug ‘17)

mAb 1b
(Exp: Jun ‘14)

mAb 2
(Exp: May ‘17)

NIST
(Exp: Apr ‘21)
mAb 2: 25±2°C, 60±5% RH
6 Months: 25±2°C, 60±5% RH

mAb 1a
(Exp: Aug ‘17)

mAb 1b
(Exp: Jun ‘14)

mAb 2
(Exp: May ‘17)

NIST
(Exp: Apr ‘21)
Question: While ‘x’ appears indicative of sample aging, how do we account for the observed differences between mAbs?

<table>
<thead>
<tr>
<th>mAb 1a</th>
<th>mAb 1b</th>
<th>mAb 2</th>
<th>NIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp: Aug 2017</td>
</tr>
<tr>
<td>Exp: Jun 2014</td>
</tr>
<tr>
<td>Exp: May 2017</td>
</tr>
<tr>
<td>Exp: Apr 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation: Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg/ml</td>
</tr>
<tr>
<td>10 mg/ml</td>
</tr>
<tr>
<td>25 mg/ml</td>
</tr>
<tr>
<td>10 mg/ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formulation: Excipients</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7 mg/ml Polysorbate 80</td>
</tr>
<tr>
<td>0.7 mg/ml Polysorbate 80</td>
</tr>
<tr>
<td>0.4 mg/ml Polysorbate 20</td>
</tr>
<tr>
<td>No Polysorbate</td>
</tr>
</tbody>
</table>
Question: While ‘x’ appears indicative of sample aging, how do we account for the observed differences between mAbs?

<table>
<thead>
<tr>
<th></th>
<th>Heavy Chain</th>
<th></th>
<th>Light Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mAb 1</td>
<td>mAb 2</td>
<td>NIST</td>
</tr>
<tr>
<td>mAb 1</td>
<td>x</td>
<td>87%</td>
<td>81%</td>
</tr>
<tr>
<td>mAb 2</td>
<td>87%</td>
<td>x</td>
<td>84%</td>
</tr>
<tr>
<td>NIST</td>
<td>81%</td>
<td>84%</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>mAb 1</td>
<td>mAb 2</td>
<td>NIST</td>
</tr>
<tr>
<td>mAb 1</td>
<td>x</td>
<td>81%</td>
<td>83%</td>
</tr>
<tr>
<td>mAb 2</td>
<td>81%</td>
<td>x</td>
<td>91%</td>
</tr>
<tr>
<td>NIST</td>
<td>83%</td>
<td>91%</td>
<td>x</td>
</tr>
</tbody>
</table>
• **Question**: Can we correlate these age dependent stability differences with further changes in higher order structure?

• Hydrogen-Deuterium Exchange IM-MS (HDX-IM-MS):
 – Non-covalent labelling approach that identifies differences in structure based on mass shifts associated with solvent accessible labile Hydrogen-Deuterium exchange events.
HDX: Controls vs 6 Months (25°C)
Most significant changes in Deuterium uptake are clustered near the disulfide bond rich hinge region and C₁/C₅ domains.
Speculated that these differences may be correlated with changes in CIU.
So what do these data teach us?

• IM-MS CCS: high degree of structural freedom exhibited by larger biotherapeutics may mask subtle CCS changes.

• IM-MS CIU: consequences of product aging identified as a function of their effect on structural stability.

• HDX-IM-MS: most pronounced changes in mAb structure are clustered within the hinge and C₁/C₂ domains.

• These complementary data reveal the impact of sample age on the higher order structure and stability of a chosen biotherapeutic, which may impact its safety and/or efficacy.

• Several sample variables are likely contribute to the observed differences between the mAb products studied, including:
 – Primary amino acid sequence.
 – Formulation: concentration and/or excipients.
Future Directions

• Assess the application of other mass spectrometric methods to identify further changes in mAb stability and higher order structure, consistent with the observed differences:

 – Disulfide bond mapping: assess the impact of sample age on bond scrambling/rearrangement events.

 – Size Exclusion Chromatography (SEC): assess the impact of sample age on the distribution of all measurable low order oligomers.

• Identify sample and formulation dependent variables that contribute to the observed differences in stability and higher order structure when comparing biotherapeutic products.
Acknowledgements

FDA Division of Pharmaceutical Analysis:
 • Hongping Ye
 • David Keire

Brandon Ruotolo Research Group
(University of Michigan)

This presentation reflects the views of the author and should not be construed to represent the FDA’s views or policies.