The use of small angle X-ray scattering for studying excipient modulated physical stability and viscosity of monoclonal antibody formulations

Amy Y. Xu, Maria M. Castellanos, Kevin Mattison, Susan Krueger, Joseph E. Curtis

NIST Center for Neutron Research, National Institute of Standards and Technology
Institute for Bioscience and Biotechnology Research, University of Maryland

HOS2019, San Mateo, California. April 8th 2019
Challenges of monoclonal antibody (mAb) formulation

• High concentration is required to achieve therapeutic dosage

• High concentration leads to increased non-specific protein-protein interactions (PPI) that could lead to self-association and solution viscosity

• Excipients are used to improve protein colloidal stability (tendency to remain monomeric form)

• Selection of excipients involves laborious empirical screening due to limited knowledge of the effects of excipients on PPI

Commonly used excipients

Image cited from: https://www.youtube.com/watch?v=LMG07v2wIvQ
Aims of this study

- To characterize the effects of excipients on a particular monoclonal antibody (NISTmAb)

- To evaluate different techniques for studying excipient modulated PPI in concentrated mAb formulations
 - Physical stability: Dynamic Light Scattering (DLS) vs Small Angle X-ray Scattering (SAXS)
 - Solution viscosity: DLS, SAXS (predicted) vs Viscosity measurements (experimental)

<table>
<thead>
<tr>
<th>Excipient Class</th>
<th>Excipients</th>
<th>Buffer</th>
<th>Ionic Concentration (mM)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars</td>
<td>300 mM Glucose</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>300 mM Sucrose</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>300 mM Trehalose</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>300 mM Mannitol</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td>Amino Acids</td>
<td>171 mM Arginine</td>
<td>25 mM Histidine</td>
<td>196</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>200 mM Proline</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>200 mM Glycine</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>200 mM Alanine</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td>Non-ionic Surfactants</td>
<td>0.06 mM Polysorbate 20</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.12 mM Polysorbate 80</td>
<td>25 mM Histidine</td>
<td>12.5</td>
<td>6</td>
</tr>
<tr>
<td>Salts</td>
<td>150 mM NH₄Cl</td>
<td>25 mM Histidine</td>
<td>162.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>150 mM Na₂SO₄</td>
<td>25 mM Histidine</td>
<td>312.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>150 mM NaCl</td>
<td>25 mM Histidine</td>
<td>162.5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>150 mM NaClO₄</td>
<td>25 mM Histidine</td>
<td>162.5</td>
<td>6</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>67 mM Phosphate</td>
<td>82.8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>67 mM Phosphate</td>
<td>148.3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>67 mM Phosphate</td>
<td>196</td>
<td>8</td>
</tr>
</tbody>
</table>

mAbs in 25mM histidine buffer (without excipient) is used as control sample
NIST monoclonal antibody reference material (NISTmAb)

- First mAb (IgG1) reference material, representative of the largest class of biological therapeutics

- Standard reference material for analytical characterization of biopharmaceutical products, facilitates the assessment of existing analytical methods and promotes faster adoption of new technologies

- Used as representative mAb for this study

Small Angle Scattering

The scattered intensity is expressed as:

\[I(q) = (\Delta \rho^2 \phi V) \ast P(q) \ast S(q) \]

Where \(\Delta \rho \) is the difference in scattering length density, \(\phi \) is the volume fraction, \(V \) is the volume of the scattered objects, \(P(q) \) is the form factor and \(S(q) \) is the structure factor.
Small Angle Scattering

Form Factor \(P(q) \)
- Measured from dilute solution, where intermolecular interactions are negligible
- Contains information on the size and shape of scattering objects

Structure Factor \(P(q) \)
- Arise due to intermolecular interactions with increasing concentration
- Contains information on the relative position/spatial correlation of scattering objects
Protein colloidal stability: DLS vs SAXS

- Dynamic light scattering (DLS)
 - Measured at low concentrations, (<10mg/ml), but used to predict properties of concentrated formulations
 - Interaction parameter k_D is obtained from DLS measurements:
 \[
 k_D = 2B_{22}M_W - (k_f + 2v)
 \]
 Where $B_{22}M_W$ is the thermodynamic component, $k_f + 2v$ is the hydrodynamic component
 - $k_D > -8 \text{ ml/g}^* : \text{Net Repulsive PPI}$
 - $k_D < -8 \text{ ml/g}^* : \text{Net Attractive PPI}$

$\text{Concentration (mg/ml)}$

$D_M = D_0 (1 + k_D C)$

Dynamic light scattering (DLS)

- Measured at low concentrations, (<10mg/ml), but used to predict properties of concentrated formulations
- 2nd virial coefficient \(B_{22}\) is obtained from DLS measurements:

\[
\frac{KC}{R_\theta} = \frac{1}{M_W} + 2B_{22}C
\]

Where \(K\) is an optical constant, \(R_\theta\) is the Rayleigh ratio of scattered to incident light intensity, \(M_W\) is the weight average molecular weight

- \(B_{22} > 0 \text{ mol ml/g}^2\): Net Repulsive PPI
- \(B_{22} < 0 \text{ mol ml/g}^2\): Net Attractive PPI
Protein colloidal stability: DLS vs SAXS

SAXS spectra and $S(q)$ measured from NISTmAb in Alanine solution as a function of protein concentration

- Small Angle X-ray Scattering (SAXS)
 - Measured at both low and high concentrations

$$I(q) \propto P(q)S(q)$$

$P(q)$ is measured from dilute solutions
$S(q)$ is measured from concentrated solutions
Protein colloidal stability: DLS vs SAXS

- Small Angle X-ray Scattering (SAXS)

- $S(q)$ at $q \rightarrow 0$, i.e. $S(0)$ is obtained from fitting $S(q)$ profile, it is used to study nature of PPI

$S(0) < 1$: Net Repulsive PPI
$S(0) > 1$: Net Attractive PPI

SAXS spectra and $S(q)$ measured from NISTmAb in Alanine solution as a function of protein concentration
Comparison between k_D / B_{22} and $S(0)$

- $S(0)$ value less than 1 was measured from all excipient conditions, suggesting the net PPI was of repulsive nature
- Close agreement was found between $S(0)$ and k_D values
Analysis of $S(q)$ reveals various energetic components towards the net PPI

- **Compared to DLS, more information on PPI is revealed by SAXS**

 - **Excluded Volume Effect** (hard sphere model)
 - **Additional Repulsive Interactions** (More stable)
 - **Additional Attractive Interactions** (Less stable)

Different contributors toward net PPI can be resolved by fitting $S(q)$ profile to different models
Analysis of $S(q)$ reveals various energetic components towards the net PPI

- Compared to DLS, more information on PPI is revealed by SAXS

Excluded Volume Effect (hard sphere model)

Additional repulsive forces lead to smaller $S(0)$

Different contributors toward net PPI can be resolved by fitting $S(q)$ profile to different models

Hayter-Penfold model
Analysis of $S(q)$ reveals various energetic components towards the net PPI

- **Compared to DLS, more information on PPI is revealed by SAXS**

Excluded Volume Effect (hard sphere model)

Different contributors toward net PPI can be resolved by fitting $S(q)$ profile to different models

Hayter-Penfold model

Two Yukawa model

Additional attractive forces lead to larger $S(0)$

NISTmAb in D2O salt solution
- $C = 130$ mg/ml
Analysis of $S(q)$ reveals various energetic components towards the net PPI

• $S(0)_{\text{exp}}/S(0)_{\text{HS}}$

 $\text{< 1: improved colloidal stability}$

 $\text{>1: reduced colloidal stability}$

• Further analysis of $S(q)$ reveals the presence of attractive intermolecular interactions even though the net PPI is repulsive

Summary of $S(0)_{\text{exp}}/S(0)_{\text{HS}}$. Each point represents the ratio obtained for a particular protein concentration in given excipient condition.
Measurements were made to obtain the viscosity (η) of concentrated NISTmAb formulations (170mg/ml), whereas k_D, B_{22} and $S(0)$ were used to predict the viscosity (η) of concentrated NISTmAb formulations.

Shaded area highlights samples from which a decrease in k_D/B_{22} or an increase in $S(0)$ is correlated with an increase in η, and vice versa.
Conclusions

- NISTmAb is colloidally stable in all of the examined excipient conditions. Although the net PPI is repulsive, elevated solution viscosity was measured with the presence of excipients.

- The close agreement between k_D and $S(0)$ results suggests DLS could be used to provide reliable information on the colloidal stability of mAbs in concentrated formulations.

- Detailed analysis of $S(q)$ reveals various energetic components towards the net PPI, hence provides valuable insights in guiding the excipient selections.

- B_{22} and $S(0)$ appeared to be better viscosity predictors than k_D. Disagreement between predicted and measured results suggests other factors apart from PPI contribute to the bulk rheological properties of concentrated protein solutions.
Acknowledgements

NIST Center for Neutron Research
- Dr Joseph Curtis
- Dr Susan Krueger

GlaxoSmithKline
- Dr Maria Castellanos

University of Maryland
Institute for Bioscience and Biotechnology Research
- Dr John Schiel
- Dr Robert Brinson
- Dr Alexander Grishaev
- Dr Mihaela Mihaiescu
- Dr John Marino

Malvern-Panalytical
- Dr Kevin Mattison