Efficient Analytical Development Strategies to support Accelerated CMC Development

Marc Verhagen, Sr Director Biologics Development
Sanofi
The need for acceleration of CMC development

- Better understanding of disease pathways have increased the number of potential targets
- Improved ability to generate specific mAbs against new targets has resulted in more compounds
- Translational science based on disease models is not fully predictive of efficacy in humans
- Increase the success rate by allowing more compounds to enter the clinic in a cost-effective way
- Streamline CMC activities to minimize the time from compound elevation to clinic
Outline

- Approaches for streamlining CMC development
 - CMC development and timelines
- Streamlined approach to analytical method development and qualification
 - Begin with the end in mind (Analytical Target Profile)
 - Prioritization of development activities (Risk assessments)
 - Method alignment
- Data integrity and Documentation
Organizing the CMC development process

- CMC Development is complex and involves stakeholders from various disciplines
- Transparent communication between stakeholders is critical for efficiency
- Use of standardized development paradigm
 - QTPP provides a definition of the requirements for the final product and guides the development activities
 - Prospectively agree on approaches for establishing testing paradigm, stability program, reference standard program etc. and consistently apply that across programs
 - Simplify document generation by using platform protocols or templates
To allow us to accelerate we need to understand what slows us down

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Technical challenges</td>
<td>• Use platform approaches for common modalities</td>
</tr>
<tr>
<td>• Methods not available or not sufficiently sensitive or precise</td>
<td>• Maintain transparency through robust knowledge management</td>
</tr>
<tr>
<td>• Duplication of work due to lack of information or knowledge</td>
<td>• Maintain visibility regarding activities and responsibilities between different groups</td>
</tr>
<tr>
<td>• information exists but is not readily available</td>
<td>• Establish common formats to capture decisions (QTPP, Testing paradigm, Analytical Target Profile)</td>
</tr>
<tr>
<td>• Rework due to miscommunication,</td>
<td>• Harmonize methods and maintain alignment across all groups involved in analytical testing</td>
</tr>
<tr>
<td>• Decisions are changed or not properly captured or understood</td>
<td>• Defined and efficient documentation and review processes</td>
</tr>
<tr>
<td>• Different interpretation of terms</td>
<td>• Establish well-defined review and approval matrix</td>
</tr>
<tr>
<td>• Analytical alignment across groups</td>
<td></td>
</tr>
<tr>
<td>• Documentation</td>
<td></td>
</tr>
<tr>
<td>• Transcription of information</td>
<td></td>
</tr>
<tr>
<td>• Redundancy in documents</td>
<td></td>
</tr>
<tr>
<td>• Multiple review cycles</td>
<td></td>
</tr>
</tbody>
</table>

SANOFI
Analytical Deliverables Must Align with Project Timeline

Early Dev
- Platform method POC
- Initiate analytical support for process and product development
- Research reference standard, product specific reagents

Preclin Tox
- Product-specific method development and qualification for GLP tox supply
- Release GLP tox supply
- Emphasis on safety

Phase 1
- Testing paradigm focused on safety. Release P1 supplies, file IND/IMPD
- Initiate development of product-specific cell-based potency assay
- Reference standard program. Characterize P1 supplies

Phase 2
- Implement product specific potency assay
- Update and refine analytical test methods (risk assessments)
- CQA refinement, Control strategy established, Method transfer to P3 site

Phase 3
- Finalize control strategy
- Method validation before PPQ or registration stability batches
- Perform structure function studies and forced degradation studies

Approval
- Submit BLA/MAA
- Product launch

SANOFI

12-18 months

3-4 years

4-5 years
During early development ensure alignment between high throughput in-process methods and QC methods is established/maintained.

- Analytical data is generated in many different parts of the organization and used to make development decisions.
- It is important to understand the connectivity of results obtained during initial screening experiments, process/product development activities and release testing.
- Harmonize methods where possible, maintain flexibility during development but understand impact of changes.
 - Comparative testing
 - Common controls or standards
- Document information so it can be shared across all interfaces.
- Methods need to be suitable for their intended use independent if it involves GMP or non-GMP testing.

All methods used throughout development must be suitable and fit for use.
Lifecycle approach to analytical method development and qualification/validation

Elevation
- CQA V1
 - Method qualification/confirmation
 - Control Strategy (Platform)

P1
- CQA V2
 - Establish/Update ATP
 - Method establishment/update (platform/custom)

P2
- CQA V3
 - Finalize Control Strategy
 - Update ATP
 - Method optimization, Robustness, Method control strategy
 - Method validation

P3
- Approval
 - Continued Performance Verification

CQA: Critical Quality Attribute
ATP: Analytical Target Profile
Method development with the end in mind: Analytical strategy and requirements captured in the analytical target profile (ATP)

<table>
<thead>
<tr>
<th>Product attribute (CQA)</th>
<th>Platform Method</th>
<th>Target Accuracy (%)</th>
<th>Intermediate Precision (%)</th>
<th>Range</th>
<th>QL/DL</th>
<th>Proposed criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein Content</td>
<td>A280</td>
<td>95 – 105</td>
<td>≤ 5</td>
<td>70% -130% of Target conc.</td>
<td>N/A</td>
<td>+/- 10% of Target</td>
</tr>
<tr>
<td>Aggregation</td>
<td>SE-HPLC</td>
<td>80 – 120</td>
<td>≤ 20</td>
<td>LOQ to 6%</td>
<td>≤ 0.5 %</td>
<td></td>
</tr>
<tr>
<td>Charge Variants</td>
<td>cIEF</td>
<td>70 – 130</td>
<td>≤ 20</td>
<td>70 – 130 % of Target conc.</td>
<td>≤ 5 %</td>
<td></td>
</tr>
<tr>
<td>Glycosylation</td>
<td>HPLC-FLD</td>
<td>70 – 130</td>
<td>≤ 20</td>
<td>N/A</td>
<td>≤ 1 %</td>
<td></td>
</tr>
<tr>
<td>Identity</td>
<td>Peptide Map</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>CQA 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CQA x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATP can also capture business needs, operational needs, and technique preferences or constraints
1. Design platform and product specific methods that can be used end to end (i.e. Pre-candidate selection to commercial)

2. Make robustness central to platform and early development (Risk assessments, Job Aids)

3. Use risk-based approaches to assess work required to perform method development and method qualification/validation
Challenges
- Development experience and approaches vary significantly between people involved in method development.
- Job aids work well with platform methods but may not be as effective for new development.
- Development reports often capture what was evaluated but typically do not capture why certain factors were not evaluated.
- Input from other SMEs occurs when problems are encountered (reactive).

Solutions
- Establish a systematic approach to evaluate methods with input from multiple SMEs (proactive).
- Establish a consistent and transparent way to capture the decision making process regarding which factors to evaluate and why (method assessment).
- Include method assessments in the development reports.
An analytical method consists of multiple distinct unit operations

Input
- Buffer salts / solvents
- Reduction/derivatization reagents
- Critical reagents (antibodies/ cell lines)
- Retrieve/thaw sample
- Reduce/ Derivatize/ Digest
- Sample cleanup/ filtration
- Reference standards
- Assay controls
- Autosampler temperature
- Equipment type, Column age
- Flow rate, focusing time, separation conditions
- Integration
- Suitability controls
- Standard and sample comparison

Unit Operation
- Reagent preparation
- Sample preparation
- Standards and controls
- Instrument Set Up
- Sample analysis
- Data Analysis

Output
- Mobile phase
- Critical phase solutions
- Sample preparation solutions
- Sample ready for analysis
- Standards and controls ready for analysis
- Robust conditions for sample analysis
- Analysis results obtained for samples, standards, and controls
- Accurate and precise result
Risk assessment template evaluates the steps within each unit operation

- Complete proof of concept experiments
- Establish outline of proposed procedure
- Transfer each activity performed in the method (method step) and the associated “unit operation” to the risk assessment
- Identify potential failure modes (one step can have multiple failure modes)
- Identify the analytical quality attribute impacted by the failure mode

List Method Steps Sequentially

<table>
<thead>
<tr>
<th>Method Unit Operation (Parent)</th>
<th>Method step (Child)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample preparation</td>
<td>Predilution of samples and control to 3 mg/mL in HPLC water</td>
</tr>
<tr>
<td>Sample preparation</td>
<td>Samples and control further diluted to 0.3 mg/mL in final prep</td>
</tr>
<tr>
<td>Standards and controls</td>
<td></td>
</tr>
<tr>
<td>Instrument set up</td>
<td></td>
</tr>
</tbody>
</table>

List Potential Failure Modes and Analytical Quality Attributes

<table>
<thead>
<tr>
<th>Potential failure mode</th>
<th>Analytical Quality Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample concentration after predilution incorrect</td>
<td>Ab concentration</td>
</tr>
<tr>
<td>sample concentration incorrect in final prep</td>
<td>Ab concentration</td>
</tr>
</tbody>
</table>
Definition of potential failure mode and analytical quality attribute

- Potential failure mode describes differences from the intended state when this step is performed
 - Temperature set points, incubation times volumes transferred, impact of different lot, buffer concentration differences
- Analytical quality attribute is the parameter or action associated with the failure mode
 - Temperature, incubation time, reagent lot (input in robustness studies)
 - Pipetting, mixing (method control and training)

<table>
<thead>
<tr>
<th>Potential failure mode</th>
<th>Analytical Quality Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample concentration incorrect</td>
<td>Ab concentration</td>
</tr>
<tr>
<td>sample concentration incorrect in final prep</td>
<td>Ab concentration</td>
</tr>
<tr>
<td>incorrect concentration of ampholyte</td>
<td>Ampholyte concentration</td>
</tr>
<tr>
<td>Different ampholyte lots</td>
<td>Ampholyte lot</td>
</tr>
<tr>
<td>incorrect pl marker</td>
<td>Calibration standard</td>
</tr>
<tr>
<td>wrong peak assigned as pl marker</td>
<td>Calibration standard</td>
</tr>
</tbody>
</table>

SANOFI
Risk assessment scoring and ranking

<table>
<thead>
<tr>
<th>Impact of changes in the attribute on accuracy or LOQ (H=5, M=3, L=1)</th>
<th>Impact of changes in the attribute on intermediate precision (H=5, M=3, L=1)</th>
<th>Probability H, L</th>
<th>RPN</th>
<th>Tier</th>
<th>Current experience (setpoints/range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
<td>linear range established, example of calculation included in SOP</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
<td>volumes to use shown in SOP</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>H</td>
<td>125</td>
<td>Tier 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
<td></td>
</tr>
</tbody>
</table>

- Does the failure mode have an impact on accuracy (i.e. bias) or LOQ
 - Carry-over in HPLC methods
 - Incorrect baseline correction in a UV measurement

- Does the failure mode have an impact on variability
 - Non-robust incubation conditions (time, temperature)
 - Sample stability
Example of a risk assessment for an analytical method

<table>
<thead>
<tr>
<th>Method Unit Operation (Parent)</th>
<th>Method step (Child)</th>
<th>Potential failure mode</th>
<th>Attribute</th>
<th>Impact of changes in the attribute on accuracy or LOQ (H=5, M=3, L=1)</th>
<th>Impact of changes in the attribute on intermediate precision (H=5, M=3, L=1)</th>
<th>Probability H, L</th>
<th>RPN</th>
<th>Tier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent preparation</td>
<td>Add 1% MC to mastermix</td>
<td>incorrect concentration of methyl cellulose</td>
<td>MC concentration</td>
<td>5</td>
<td>5</td>
<td>L</td>
<td>63</td>
<td>Tier 2</td>
</tr>
<tr>
<td>Reagent preparation</td>
<td>Add 1% MC to mastermix</td>
<td>MC lot to lot variability</td>
<td>lot to lot variability</td>
<td>5</td>
<td>5</td>
<td>L</td>
<td>63</td>
<td>Tier 2</td>
</tr>
<tr>
<td>Sample preparation</td>
<td>add 180 uL mastermix to tube</td>
<td>wrong volume added</td>
<td>pipetting</td>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
</tr>
<tr>
<td>Sample preparation</td>
<td>add 20 uL sample, control or water (blank) to tube</td>
<td>wrong volume added</td>
<td>pipetting</td>
<td>1</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>Tier 3</td>
</tr>
<tr>
<td>Instrument setup</td>
<td>Add anolyte, catholyte to tanks</td>
<td>Insufficient amount of anolyte and catolyte present</td>
<td>NA/Setup</td>
<td>3</td>
<td>3</td>
<td>L</td>
<td>14</td>
<td>Tier 3</td>
</tr>
<tr>
<td>Reagent preparation</td>
<td>Add Pharmolyte to mastermix</td>
<td>Different ampholyte lots</td>
<td>Ampholyte lot</td>
<td>5</td>
<td>5</td>
<td>H</td>
<td>125</td>
<td>Tier 1</td>
</tr>
</tbody>
</table>
Risk assessment presented as a fishbone diagram

Tier levels listed for illustration only
Benefits of using a risk assessment approach during method development

- Creates a forum where SMEs can provide input and share expertise and where junior personnel can learn about the criticality of key method steps
- A risk assessment ensures a systematic evaluation of all factors influencing the method is performed
- Helps elucidate whether factors are expected to interact and should be included in an experimental design or if factors can be studied “one at a time”
- Transparently captures thought process and prioritization decisions
- Connects available information (literature, prior reports) to optimization and development activities (traceability matrix)
- Ensure development activities are focused on areas of greatest concern

SANOFI
Data integrity and Documentation

Traceability of samples and information is essential for knowledge management, compliance and dossier compilation.
Conclusions

Accelerated CMC development requires

- Teamwork and transparent communication
- Well established and transparently communicated development paradigms
- Close alignment of testing activities across different functions or groups (characterization, process/product development support, release)
- A systematic approach to method development
- Robust systems and processes for documentation and knowledge management
Acknowledgements

- Members of Sanofi Biologics Development
- Claire Davies
- Rebecca Sendak
- Organizing committee
Questions?