CMC Strategy During the Accelerated Development of Brineura (cerliponase alfa)

SUCCESSES AND CHALLENGES OF DRUG DEVELOPMENT WHEN SPEED IS CRITICAL FOR THE PATIENT

David Jacoby, M.D., Ph.D., Clinical Science Fellow
Linda Wilbur, Director Regulatory Affairs

WCBP
29 January 2019
Outline

- Disease Background
- Clinical Trial Design and Results
- CMC Keys to Success
- Regulatory Pathways
- Key Take-aways
CLN2 is associated with a predictable and rapid decline in motor and language function

CLN2 Disease Natural History – Symptom Onset

- CLN2 Battens disease is very rare (approximately 2,000 patients worldwide)
- Rapidly progressive degenerative disease, leading to vegetative state and death
- Diagnostic latency is significant, frequently > 18 months from symptom onset
- Care is palliative

Rapid development is necessary and possible based on well-characterized natural history

Nickel M et al., Lancet Child Adolesc 2018

- Relevant clinical scale
- Disease progression is consistent across geographies in independent cohorts

![Graph showing sum of motor and language score over age with relevant clinical scale and disease progression data.](image)
TPP1-null Dachshunds recapitulate human CLN2 disease and demonstrate treatment effect

- Brineura® (cerliponase alfa) is a recombinant human form of tripeptidyl peptidase 1 enzyme (rhTPP1)

- Administration of rhTPP1 via infusion into the CSF every other week resulted in:
 - Significant delays in disease progression
 - Improved performance on a cognitive function test
 - Reduced brain atrophy by brain MRI
 - Increased life span

Katz et al. / Journal of Neuroscience Research 92 (2014) 1591-8
Vuillemenot et al. / Molecular Genetics and Metabolism 114 (2015) 281–293
Brineura® Administration

- Brineura® (cerliponase alfa) does not cross the blood-brain barrier (66 kDa)
- Administration targeted to the lateral cerebral ventricles
 - Intraventricular / Intracerebroventricular (ICV)
- 300 mg dose every 14 days via infusion over ~ 4 hours

Novel delivery:
- Surgical implantation of access device required (Rickham or Ommaya type)
- Chronic administration
- Implant usage for up to 4 years
Brineura® (cerliponase alfa)
Single Pivotal Clinical Trial
Open Label Design
Comparison to Historical Controls
Brineura® Case Study: A Success Story with Numerous ‘Firsts’ for BioMarin

U.S. Breakthrough Therapy Approval
April 27, 2017

E.U. Accelerated Assessment Approval
May 30, 2017
Development Timeline Comparison

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
<th>Year 6</th>
<th>Year 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st MA Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Brineura® Single Pivotal Trial

Brineura® Timeline: 3 yrs 7m from First patient to MA approval

Typical Timeline ~ 6.8 yrs\(^1\) from Phase 1 to first MA approval

\(^1\) Profiles of New Approaches to Improving the Efficiency and Performance of Pharmaceutical Drug Development, A Tufts Center for the Study of Drug Development White Paper, MAY 2015. Mary Jo Lamberti, PhD, Senior Research Fellow; Kenneth Getz, MBA, Director of Sponsored Research Programs and Research Associate Professor
Key Factors Enabling Clinical and CMC Success

• Strong clinical efficacy data drove internal commitment to aggressive timeline
• Patient-centric development influenced risk-based strategies and speed
• Able to leverage prior manufacturing process and product knowledge
• Concurrent development of clinical and commercial manufacturing strategy enabled us to file initial applications from GMP facilities at clinical scale
• Health authority interactions were essential to gain alignment on strategy
• Available regulatory pathways enabled rapid review and approvals
On the path of rapid development we encountered some hurdles…

The novel route of administration to the brain for a biologic presented two major challenges

Formulation Development

- Formulation designed to mimic CSF because of limited data available on brain-delivered excipients
- Complex frozen labeling and supply chain distribution resulted from the need to protect the product during manufacturing, storage, and shipping
- Established product-specific analytical acceptance criteria to address challenges with particle formation

Drug Delivery

- The intraventricular/intracerebroventricular route not commonly used for chronic administration
- Limited number of devices available for ICV administration (syringes, infusion tubes/filters, etc.)
- Compatibility data for long term implantation and use
Brineura® is a Combination Product (U.S. 21 CFR Part 4)

- Device strategy developed late in clinical development
- Reached agreement with FDA on CP requirements ~7 months prior to BLA
 - Administration Kit contained product-contacting devices not specifically cleared for intraventricular/intracerebroventricular use → combination product!
 - Device development activities were extremely accelerated!

Co-Packaged Administration Kit
Typical Development Timeline for Combination Products

Phase 1
- Device Concept
- User requirements
- Design development plan
- Technical investigations
- Design inputs
- Device prototype

Phase 2
- Design Output
- Initiate QMS
- Vendor selection
- Initiate DHF
- Manuf. process dev.

Phase 3
- Design Controls
- Develop risk management plan
- Develop IFU
- Conduct FMEA + HFS
- Manuf. process val.
- Design V&V

Prep CTD
- Implement risk mitigations
- Implement QMS
- Finalize IFU
- Final design V&V

Review
- Implement risk management plan
- Ensure complete QMS
- Reg. package
- Design transfer

Manufacturing
- Post-marketing surveillance
- Annual design reviews

BLA Approval
Submit BLA

Approximately 6.8 years\(^1\) from Phase 1 to first MA approval

\(^1\) Profiles of New Approaches to Improving the Efficiency and Performance of Pharmaceutical Drug Development, A Tufts Center for the Study of Drug Development White Paper, MAY 2015. Mary Jo Lamberti, PhD, Senior Research Fellow; Kenneth Getz, MBA, Director of Sponsored Research Programs and Research Associate Professor

January 22, 2019
Brineura® US Administration Kit – Product Timeline

Phase 1/2

- User requirements
- Technical investigations
- Device planning
- Design inputs
- Kit prototype
- Design outputs
- Initiate QMS
- Vendor selection
- Initiate DHF
- Manuf. process dev.
- Design controls
- Develop risk management plan
- Conduct FMEA
- Manuf. process val.
- Implement risk mitigations
- Implement QMS
- Design val. and verif.
- Develop IFU
- Reg. package

Data from device suppliers was essential to meet FDA requirements:
- Legal agreements
- Rate - limiting

• Confirm Brineura will be a combination product in US

Prep MA

Review

Submit BLA

BLA Approval

Approximately 2 years from CP agreement to BLA approval

January 22, 2019
Concurrent Development of Clinical And Commercial Manufacturing Scales & Facilities

<table>
<thead>
<tr>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Manufacturing Drug Substance</td>
<td>Clinical Manufacturing Drug Product</td>
<td>Commercial Manufacturing Drug Substance</td>
<td>Commercial Manufacturing Drug Product</td>
<td>Combo Product</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **FPI**: Brineura® Single Pivotal Trial
- **BLA Approval (DRUG SUBSTANCE)**
- **PAS Approval (DRUG SUBSTANCE)**
- **PAS Approval (DRUG PRODUCT)**
- **MAA Approval (DRUG SUBSTANCE)**
- **TYPE II Approval (DRUG SUBSTANCE)**

Rapid approval in two jurisdictions for multiple major changes
Brineura® Global Approval Pathways

<table>
<thead>
<tr>
<th>Health Authority: Accelerated Pathway</th>
<th>Number of HA Meetings</th>
<th>Months to Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA: Breakthrough Therapy Designation, Priority Review</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>EU: Accelerated Assessment</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Ukraine: Fast-track Procedure for Orphan Drug Products</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Brazil: RDC 205 - Special Procedure for treatment of rare diseases</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Australia: Priority Designation</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Canada: Priority Review</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Mexico: Orphan Drug Designation; Approval in 8 months

New accelerated regulatory pathways enabled rapid approvals due to the devastating nature and rarity of the disease
Key Take-Away Messages

- Multiple, multi-year clinical studies for rare disease patient populations may not be feasible or necessary if natural history of disease is known.
- Strong clinical data used for risk/benefit assessments.
- Prior product and process knowledge is essential under acceleration.
- Risk assessment / risk mitigation helps to focus development and CMC lifecycle management strategy.
- When things are new for you, they may also be new for Health Authorities.
- Health Authorities have identified pathways to address urgent needs of small patient populations.
Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
Dr. Nicola Specchio, PI
Dr. Susanna Livadiotti, SI
Dr. Marina Trivisano, SI
Giorgia Copponi, SC

University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Dr. Angela Schulz, PI
Dr. Kurt Ullrich co-PI
Dr. Miriam Nickel, SI
Dr. Christoph Schwering, SI
Anne Ruprecht, Study Nurse
Lilli Hossner, Study Nurse

Great Ormond Street Hospital for Children, London, UK
Dr. Paul Gissen, PI
Dr. Barbara Csanyi, SI
Alice Roberts, Study Nurse

Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
Dr. Emily De Los Reyes, PI
Dr. Lenora Lehwald, SI
Shelli Farley, Study Coordinator
Julie Leary, Jill Blind and Investigational Pharmacy Staff
PICU Nursing Staff

Guy’s and St Thomas’ NHS Foundation Trust, London, UK
Dr. Ruth Williams, PI
Dr. Ming Lim, SI
Rachael Pennington, Study Nurse

Independent Central Evaluators
Dr. Alfried Kohlschütter
Dr. Jonathan Dyke
Dr. Doug Ballon

PI= Principle Investigator, SI=Sub-Investigator; SC= Study Coordinator

Acknowledgements

• Children and families with CLN2 disease
• Batten disease patient advocacy groups
• DEM-CHILD registry
• Weill Cornell Medical College
• Investigators and study teams
• Study Sponsor: BioMarin Pharmaceutical Inc.
• Authors: Schulz A, Specchio N, Gissen P, de los Reyes E, Williams R, Cahan H, Slasor P and Jacoby D
• Ayesha Khan, Ph.D.
• Catherine Campbell, Ph.D.
• Temitayo Ajai, MD
• Brineura CMC Team
THANK YOU