Troubleshooting your Modern Pretreatment System

Presented to MnTAP Paint & Powder Expo
March 15, 2018

David B. Chalk, Ph.D.
Principal Research Chemist
DuBois Chemicals
Troubleshooting Basics

- Occam’s Razor
 - “Pluralitas non est ponenda sine neccesitate“
 - “More things should not be used than are necessary.”
 - "Keep things simple!“
 - If you have two theories that explain the observed facts, then the more likely is the simplest
 - (until you have more evidence to the contrary)

- William of Ockham, Franciscan Monk, 1287-1347
Scientific Method

- Do Experiment
 - Keep good records, gather and organize all pertinent data.
- Observe Results
- Reflect & Discuss
- Plan Next Experiment
- Accountability
 - Who’s RESPONSIBLE
- Repeat as needed
Troubleshooting Strategy

- Define your problem
 - What does the issue look like?
 - Where does it appear?
 - When does it appear?
- Hurry, but be diligent
 - Work from back to front
 - Never change more than one thing at a time
 - Isolate parameters, so you know the effect of your change
Which part(s) have a problem?

- Where does it appear, on all parts?
 - Usually systemic – e.g., paint bake, application, pretreatment, cleaner, etc.

- Some parts?
 - Geometry, fixturing or hanging, spray patterns

- One particular part?
 - (Cleaning, metallurgy, passivation, cupping)
Unique Substrate Issues

- Chromate passivated galvanized and alloy coated steel (galvannealed, etc.)
 - Doesn’t white rust, but won’t adhere paint either
 - Is it oiled...probably OK. If dry and not rusted, probably passivated.
- Steels of foreign origin with unknown rust preventative oils
 - Cleanability in alkaline cleaners
- Sudden substrate changes...did we acquire some “secondary steel”?
- Hot rolled black (not Pickled & Oiled)
 - Not intended for powder paint
- Pickle cut edge corrosion carefully
Where is the problem?

- A particular or repeatable area
 - Nozzles or pattern
 - Dripping or pressure at top risers
 - Water quality or obstructions
 - Poor Rinsing
 - Vertical parts
 - Dripping from conveyor chain
How frequently does it occur?

- Frequency/timing of incidence gives us clues
 - Only the morning
 - Startup related parameter issues
 - Bath temperatures, paint bake oven zones, and so on
 - More common in the evening
 - Rinse quality, rinse temperatures, concentrations dropping, dry down, streaking
 - Happens throughout the day, inconsistency
 - This is when it gets tricky, and you need a strategy for isolating the root cause
 - Start with a defect diary and record everything extraordinary
Method for isolating sources

- Some issues can come from paint or pretreatment
 - So who do you call, pretreatment or paint vendor?
- Use a panel study first
 - Bare test panel (ACT or Q) isolates substrate-related issues if this pretreats and paints well.
 - Solvent Cleaned panel – isolates cleaning difficulties
 - Solvent Cleaned panel, prior to paint – isolates the coating application and cure systems.
 - Pre-treated panel, prior to paint – isolates pretreatment or perhaps seal rinse as probative to defects
- With your initial study in hand, call the right vendor
Which part(s) have a problem?

- You suspect a pretreatment issue
 - Use Solvent Cleaned panels
 - Between each stage
 - Isolates the impact of each stage
 - Use a pre-phosphated (or pretreated) panel, hung before paint, as a reference
 - You can also use a pre-phosphated panel in front of your final seal, if you suspect a seal issue
 - (make sure it is a DI rinsed panel!)
Corrosion Resistance Studies

- You can again use a Differential Panel Study
 - Isolate each stage
 - Find an optimum process (perhaps your vendor may even be able to process some of your parts there), and then compare yours with that process
 - Clean, Conversion Coating, and Seal

- Be aware of less obvious problems
 - Long drain zones, dry down
 - Quality of rinses
 - Incipient Corrosion (flash rust)
 - Metal oxides
 - (many are not removed under normal conditions)
“WATCH” what you clean!

- Water
 - Water quality is critical, particularly in your final rinses and pretreatment stages
- Action – physical impingement
 - The pressure and coverage of your nozzles are critical to good cleaning and rinsing
- Time
 - Each process takes time
 - Speeding your line reduces the time in each process
- Chemical
 - Maintaining correct chemical concentrations and pH insure proper performance
- Heat
 - Temperature improves cleaning, speeds pretreatment
 - Excess heat can dry parts between stages, “overcoat” parts
Common Problems

- Monday morning issues
 - Temperatures, Parts that sit over the weekend
- Operating Parameters
 - Rinse quality, concentrations
- Routine Maintenance
 - Blocked nozzles, spray patterns
Suspect Cleaning

- Mechanical
 - Low Spray Pressure
 - Clogged or Misaligned Nozzles
 - Poor rack design or implementation
- Chemical
 - Low Concentration or pH
 - Low Temperatures
 - Spent cleaning solution
 - New/Different soils
Examples - Water Beading before/after drying
Pretreatment Difficulties

- Exposure Time
- Cleaning
- Nozzles Clogged, Misaligned
- Incorrect pH, other application parameters
- Low Temperature
- Substrate Quality
- Solids or sludge
 - In Pretreatment
 - In Rinse
Examples

Line Stop in Pretreatment

Cleaner Loaded with Oil
Poor Pretreatment - Powdering

- pH in bath too high or low
- Poor rinse quality
 - Carry-in
 - Insoluble phosphate redeposition
- Extreme Dry-Off temperatures (using paint bake oven for dry-off)
- Long exposure times (line stops)
Poor Pretreatment - Uniformity

- Cleaning
- Nozzles clogged or misaligned
- Drying between stages
 - Can include excess heat in process
- Phosphate pH too high or low
- Variations in substrate
- Excessive dry-off temperatures
Examples

Flash Rust

Streaking
Wrapping up your Strategy

- Define the problem
 - Isolate the cause
 - Prepare a corrective action
- Implement the correction
- Check to make sure its effective
- Act or Adjust to our measures
Troubleshooting Tools

- Reagents/Titrants
- Test Kits
- Raw Panels
- Standard Panels
- Q-Tips and Solvents
 - Acetone, MEK, Toluene, Hexane
- Scribe or Crosshatch tools and tapes
- PH Meter
- Mil-Thickness Gauge
- Impact Tester (or Ball Peen Hammer)
- IR Temperature Probe
- Spot Light
- Datapack
- Conductivity Meter
- USB Microscope
Additional Resources – You aren’t in this alone.

- “Pretreatment for Industrial Finishing Applications”
 - Published by the CCAI
 - Edited by a panel of industry experts
- ASM Handbook of Surface Engineering
- Other Technical Society handbooks and publications
- Your specialty chemical, coatings, and washer engineering vendors and their experts.
Thank you!

David B. Chalk, Ph.D.
Principal Research Chemist
DuBois Chemicals