ICBS 2023 Trainee Symposium
Sunday, October 8, 2023

Sarah Canarelli Identifying Covalent Peptide Inhibitors Using Phage Display
Yi Liao Facilitating novel target and drug discovery in drug-refractory lung cancer by harnessing integrated photoactivatable fragment probes and chemical proteomics.
Alyssa Winkler Small-molecule GAS41 YEATS domain inhibitors in non-small cell lung cancer.
Jose Reyes Franceschi A Chemotranscriptomic Pipeline for RNA-Targeted Ligand Discovery.
Frederik Simonsen Bro Identification of Inhibitors of Sterol Transport Proteins Through the Synthesis of a Cholic Acid-Inspired Compound Collection
Maylynn Hu Targeting p38/MK2 protein-protein interaction for therapeutic discovery in human diseases.
Zhengyuan Pang Volumetric click reaction for organ level in situ small molecule drug visualization.
David Y. Nie The discovery and characterization of potent and selective chemical degraders of the histone methyltransferase NSD2.

ICBS 2023 Annual Conference
Sunday, October 8, 2023

Stefan Knapp Development and validation of PROTACs as selective chemical tools. Keynote lecture.

Monday, October 9, 2023

Ingrid Wertz Co-opting the Ubiquitin System for Therapeutic Benefit. Keynote lecture.
Amit Choudhary Protein editing using small molecules.
Jobette Santos Discovery of a PTPN2 degrader in vivo tool compound for the study of cancer immunotherapy.
Billy Wai-Lung Ng Targeted Protein O-GlcNAcylation Using Bifunctional Small Molecules.
David Lombard High throughput screening reveals a role for BRD4 in potentiating cadmium cytotoxicity via nuclear-mitochondrial crosstalk.
Toren Finkel Small Molecule Therapies That Can Modulate Aging.
Antonio Pineda-Lucena Develop potent and isoform selective PRMT inhibitors.
Tuesday, October 10, 2023

Shaomeng Wang
Our journey in the discovery of clinical-quality PROTAC degraders for the treatment of human diseases. **Keynote lecture.**

John Cranfill
Title TBD.

Britto Sandanaraj
Directed Chemical Evolution of Self-Assembling Artificial Proteins.

Joomyung (Vicky) Jun

James W. Checco
Unraveling the signaling mechanisms of endogenous cell-cell signaling peptides.

Minkui Luo
Exploring Cofactor Analogue Inhibitors of Protein Methyltransferases.

Tomek Cierpicki
SET domain dynamics facilitates targeting histone methyltransferases.

Jun Qi
Targeting multi-domain proteins for pediatric cancer therapy.

William C. K. Pomerantz
New Chemical Probes for the Nucleosome Remodeling Factor, NURF, an Emerging Therapeutic Target in Adult and Pediatric cancers.

Cheryl Arrowsmith
Mapping the druggability of WD40 Repeat (WDR) proteins.

Timothy Cernak
Chemical Synthesis Enabled by Information.

Matthieu Schapira
Computational hit finding: a long way to go.

Serah Kimani
Discovery and rational development of novel DCAF1 WD40 domain ligands.

Sam Giannakoulas
Representation Learning with Quantum Chemistry.

Pat Walters
Artificial Intelligence in Drug Discovery – Revolution, Evolution, or Complete Nonsense

James Petersson
Identification of Ligands for PET Imaging of Alpha-Synuclein in Parkinson’s Disease.

Carter Mitchell
Leveraging Bioinformatics and Machine Learning in Biologics Drug Discovery Workflows.

Wednesday, October 11, 2023

Raphaël Rodriguez
Chemical Control of Cell Plasticity. **2023 ICBS Global Lectureship Award Lecture**

Brian Liau
Leveraging CRISPR genome editing for chemical genetic approaches at scale.

Alexis Komor
Understanding and Engineering Precision Genome Editing Tools.

Abhijit Parolia
NSD2 is a requisite subunit of the AR neoe-enhanceosome in promoting prostate tumorigenesis.

Amanda Garner
Enabling Technologies for Revealing the Druggability of RNA-Protein Interactions.

Lara Mahal
Rethinking the Paradigm: New roles for miRNA in controlling the proteome and glycome.

Peng Wu
Targeting RNA-binding proteins and RNA modification with small-molecule inhibitors.

Enver Cagri Izgu
Investigating Biological Targets Using Functional Small Molecules and Biomimetic Systems.

Shuibing Chen
Human Pluripotent Stem Cell, Organoids and Drug Screening.

Xiling Shen
Patient-Derived Micro-Organospheres Enable Precision Oncology.

Elena S. Reckzeh
Identifying drugs effective to target head and neck squamous cell cancer using a drug repurposing library on organoids.

Haian Fu

Pamela Chang
Title TBD.
<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evan Moria</td>
<td>Using CDD Vault for Data Management as Part of Interdisciplinary Research Projects</td>
</tr>
<tr>
<td>2</td>
<td>Soham Maity</td>
<td>Light Controlled Reversible Michael Addition of Cysteine: A New Tool for Dynamic Site-Specific Labeling of Proteins</td>
</tr>
<tr>
<td>3</td>
<td>Mariia Zmyslia</td>
<td>Harnessing Encapsulins for Intracellular Organometallic and Enzymatic Catalysis</td>
</tr>
<tr>
<td>4</td>
<td>Sahil Sharma</td>
<td>Epichaperome imaging probes for precision medicine in Alzheimer's disease</td>
</tr>
<tr>
<td>5</td>
<td>Jiho Song</td>
<td>An activity-based covalent photoacoustic imaging probe targeting NCEH1 for in vivo tumor imaging</td>
</tr>
<tr>
<td>6</td>
<td>Pooja Kumari</td>
<td>Chemical biology approaches to target the “undruggable” SMAD4 protein</td>
</tr>
<tr>
<td>7</td>
<td>Eita Sasaki</td>
<td>Creation of Novel Proteinaceous Shell Structures through Molecular Evolution of Bacterial Microcompartment (BMC) Shell Proteins</td>
</tr>
<tr>
<td>8</td>
<td>Ying Meng</td>
<td>α-N-methylation of Protein Arginine Deiminase 1 (PAD1) Affects its Stability and Protein-protein Interactions</td>
</tr>
<tr>
<td>9</td>
<td>Kenjiro Hanaoka</td>
<td>Design strategy to control the emission of fluorophores via a twisted intramolecular charge transfer (TICT) process</td>
</tr>
<tr>
<td>10</td>
<td>Aylin Binici</td>
<td>Identification of small molecule-enhancers of natural killer cell cytotoxicity</td>
</tr>
<tr>
<td>11</td>
<td>Casandra Sandoval</td>
<td>Designing an Engineered Biosynthetic Pathway to Access Complex Diketopiperazines</td>
</tr>
<tr>
<td>12</td>
<td>Hongyue(Nicole) Chen</td>
<td>Unearthing druggable vulnerabilities in cancer with Averon Notebook: Leveraging mutant-directed protein-protein interactions</td>
</tr>
<tr>
<td>13</td>
<td>Grace McIntyre</td>
<td>Development of miRNA Targeted Therapies for High Grade Serous Cancer</td>
</tr>
<tr>
<td>14</td>
<td>Tehreem Anwar</td>
<td>In silico modeling and analysis of small molecules binding to the PHLPP1 protein by molecular dynamics simulation</td>
</tr>
<tr>
<td>15</td>
<td>Toru Komatsu</td>
<td>Synthesis-based on affinity separation (SAS) strategy for preparation of fluorogenic substrate library for single-molecule enzyme activity analysis</td>
</tr>
<tr>
<td>16</td>
<td>Wukun Ouyang</td>
<td>A versatile multiplexed TR-FRET assay for detection of SMAD4-SMAD3-DNA complex and high-throughput chemical probe discovery</td>
</tr>
<tr>
<td>17</td>
<td>Stephen DeAngelo</td>
<td>Revisiting the Se-ntral role of GPx4 in Ferroptosis: the Selenoprotein TXNRD1 emerges as a primary target of RSL3</td>
</tr>
<tr>
<td>18</td>
<td>Kota Koike</td>
<td>Simple purification of small-molecule-labelled peptides via palladium enolate formation from β-ketoamide tags</td>
</tr>
<tr>
<td>19</td>
<td>Maylynn Hu</td>
<td>Targeting p38/MK2 protein-protein interaction for therapeutic discovery in human diseases</td>
</tr>
<tr>
<td>20</td>
<td>Bradley Clegg</td>
<td>Development and Evaluation of Covalent NSD3 Inhibitors</td>
</tr>
<tr>
<td>21</td>
<td>Brandon Dutuin</td>
<td>Development of Enantiomerically Pure 1,4-thiazepanes and Their Evaluation as Domain-Selective BET Bromodomain Inhibitors</td>
</tr>
<tr>
<td>22</td>
<td>David Fairlie</td>
<td>Class Ila Histone Deacetylases And Their Inhibitors</td>
</tr>
<tr>
<td>23</td>
<td>Guang Huang</td>
<td>Structure-guided Design of New ASH1L Inhibitors As Potential Anti-leukemic Agents</td>
</tr>
<tr>
<td>24</td>
<td>Haru Kudo</td>
<td>Decitabine inhibits DNA methyltransferases activity and suppresses vasculogenic mimicry formation in tumor cells</td>
</tr>
<tr>
<td>25</td>
<td>Sydney Musser</td>
<td>Polycomb repressive complex 1 inhibitors demonstrate potent activity in acute leukemia models</td>
</tr>
<tr>
<td>26</td>
<td>Joshua Ray</td>
<td>Characterizing MLL-binding affinity of clinically resistant Menin mutations</td>
</tr>
<tr>
<td>Poster presentations</td>
<td>Tuesday, October 10th 2023</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>27 Emma Seipp</td>
<td>The biological evaluation of NatD bisubstrate inhibitors in lung cancer</td>
<td></td>
</tr>
<tr>
<td>28 Miranda Simes</td>
<td>Structure-guided development of potent small-molecule inhibitors of PRC1</td>
<td></td>
</tr>
<tr>
<td>29 Yuting Yang</td>
<td>Structural studies of intrinsically disordered MLL-fusion protein AF9 in complex with peptidomimetic inhibitors</td>
<td></td>
</tr>
<tr>
<td>30 Franchesca Fonseca-Lanza</td>
<td>The ENL YEATS epigenetic reader domain critically links MLL-ENL to leukemic stem cell frequency in t(11;19) Leukemia</td>
<td></td>
</tr>
<tr>
<td>31 Sophia West</td>
<td>Targeting triple-negative breast cancer through the MYC-MKK3 complex</td>
<td></td>
</tr>
<tr>
<td>32 Joyeeta Roy</td>
<td>Design and Synthesis of Orally Active Quinolyl Pyrazinamides as Sigma 2 Receptor Ligands for the Treatment of Pancreatic Cancer</td>
<td></td>
</tr>
<tr>
<td>33 Ryan Hippman</td>
<td>Synthetic optimization of a small-molecule ATG14L-Beclin 1 protein-protein interaction inhibitor for selective autophagy inhibition.</td>
<td></td>
</tr>
<tr>
<td>34 Dong Chen</td>
<td>Development of the menin-MLL1 inhibitors targeting menin patient mutations</td>
<td></td>
</tr>
<tr>
<td>35 Thomas Whitmarsh-Everiss</td>
<td>Synthesis of Small Molecule Autophagy Modulators as Potential Therapeutics for Alzheimer’s Disease</td>
<td></td>
</tr>
<tr>
<td>36 Forrest FitzGerald</td>
<td>Benzoxaborolone: An Oxidatively Stable Arylboronic Acid Pharmacophore</td>
<td></td>
</tr>
<tr>
<td>37 Kotaro Ochiai</td>
<td>Ferrocene as a Three-Dimensional Platform for Molecular Building: Development of Ferrocene-Based Nuclear Receptor Ligands</td>
<td></td>
</tr>
<tr>
<td>38 Tom Schulz</td>
<td>Unveiling a Novel Gα-Pocket in PDGFRα and KIT: Avapritinib-Based SAR Studies Provide Unique Structural Insights into Kinase Inhibition and Acquired Drug Resistance</td>
<td></td>
</tr>
<tr>
<td>39 Jennifer Nguyen</td>
<td>Farming more than Fishes: Bioactive Potential of Pseudomonas spp. Isolated from an Aquaculture Facility</td>
<td></td>
</tr>
<tr>
<td>40 Xiling Shen</td>
<td>Patient-Derived Micro-Organospheres Enable Precision Oncology</td>
<td></td>
</tr>
<tr>
<td>41 Zhixiang Chen</td>
<td>Discovery of ERD-3111 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader with Strong Antitumor Activity</td>
<td></td>
</tr>
<tr>
<td>42 Zhixiang Chen</td>
<td>Discovery of CBPD-409 as a Highly Potent, Selective, and Orally Efficacious CBP/p300 PROTAC Degrader for the Treatment of Advanced Prostate Cancer</td>
<td></td>
</tr>
<tr>
<td>43 Atsunori Kaneshige</td>
<td>Discovery of a potent and selective small-molecule degrader of STAT6 as a new class of Immuno-Oncology Therapy</td>
<td></td>
</tr>
<tr>
<td>44 Joyce Kariuki</td>
<td>Development of a TR-FRET assay to screen for neo-protein-protein interaction inhibitors</td>
<td></td>
</tr>
<tr>
<td>45 Maria Kutera</td>
<td>The Structural Characterization of a Potently Selective NSD2 Degrader in Ternary Complex with a Putative E3 Ligase</td>
<td></td>
</tr>
<tr>
<td>46 Ally Su</td>
<td>Ultrahigh-Throughput Screening Assays to Identify 14-3-3 Isoform-Selective Modulators</td>
<td></td>
</tr>
<tr>
<td>47 Georg Goebel</td>
<td>Discovery of Aminothiazolones as Small-molecule Inhibitors of the RNA–modifying protein METTL16</td>
<td></td>
</tr>
<tr>
<td>48 Kira Holton</td>
<td>Cellular Context For mRNA Substrate Selection By Pseudouridine Synthase 7 (PUS7)</td>
<td></td>
</tr>
<tr>
<td>49 Rachel O'Rourke</td>
<td>Biological characterization of small molecule eIF4E inhibitors to assess their therapeutic potential in cancer</td>
<td></td>
</tr>
<tr>
<td>50 Dailia Soueid</td>
<td>Cell-Based Assay Development Strategies for the Detection and Validation of Aberrant mRNA-Protein Interactions</td>
<td></td>
</tr>
<tr>
<td>51 Gabriela Vega-Hernandez</td>
<td>A Live-Cell Assay to Detect eIF4E-mRNA Interactions</td>
<td></td>
</tr>
<tr>
<td>52 Noah Puleo</td>
<td>Unraveling the function of TRAF2 and NCK interacting kinase (TNIK) in high-grade serous ovarian cancer</td>
<td></td>
</tr>
</tbody>
</table>
Identifying Covalent Peptide Inhibitors Using Phage Display
Sarah Canarelli and Eranthie Weerapana
1Boston College, 2609 Beacon St., Chestnut Hill, MA, United States
Email: canarell@bc.edu, eranthie@bc.edu
Activity-based protein profiling (ABPP), which has traditionally relied on small molecule chemical probes, is a powerful proteomic platform to interrogate enzyme activity. As many proteins lack small molecule binding pockets, peptide-based probes, which can better bind a larger/flat area on the protein surface, can be employed to target previously “undruggable” proteins. The recent application of peptide scaffolds in probe design has been made possible by the inclusion of electrophilic warheads to covalently bind nucleophilic residues on proteins. When incorporated into the peptide scaffold, these warheads allow for a covalent mechanism of action. Compared to conventional non-covalent peptides, covalent peptides offer enhanced potency, in vivo efficacy, selectivity, and versatility. Using cysteine-targeting electrophilic warheads, we are working on developing covalent peptide probes to study thioredoxin-domain containing proteins and protein-arginine deiminases (PADIs) with incomplete functional annotation and clinical relevance. In our latest efforts, we are using phage display to access large peptide libraries, rather than using a chemically synthesized library. The development and use of covalent peptide-based ABPP probes will facilitate our understanding of protein activity and function in various (patho)physiological systems.
Acknowledgments:
We would like to thank the National Institutes of Health, the Ono Pharma Foundation and Boston College for their support.
Facilitating novel target and drug discovery in drug-refractory lung cancer by harnessing integrated photoactivatable fragment probes and chemical proteomics

Yi Liao1,*, Sean Chin Chan1, Eric A. Welsh1, Bin Fang1, Luxin Sun1, Ernst Schönbrunn1, John M. Koomen1, Derek R. Duckett1, Eric B. Haura1, Andrii Monastyrskyi1,*, Uwe Rix1*

1H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, USA
*E-mail: Yi.Liao@moffitt.org

Background: Photoreactive fragment-like probes can facilitate the identification of proteins that constitute novel cellular vulnerabilities, and their fragment scaffolds can also provide the chemical basis for targeted drug discovery1. However, probe library design and target identification/prioritization by mass spectrometry (MS) remain challenges.

Methods: 20 BioCore2 or BioCore-like fragments featuring natural product and lead-like structural elements were selected and fully functionalized with orthogonal diazirine and alkyne moieties. These probes were used for protein crosslinking in live cells, target enrichment via “click chemistry”, and subsequent target identification through label-free quantitative LC-MS/MS analysis. Target profile comparison was enabled by performing experiments using a panel of 20 probes, as well as a negative control probe. High-confidence targets of each probe were queried against a pharmacogenomic database (DepMap) and prioritized through cross-comparison with other probes. The top-ranked probe-binding target was validated using a competitive affinity assay and RNA interference. Protein tyrosine reactivity was profiled by using the sulfur-triazole exchange chemistry (SuTEx) probe, HHS-4823. The tyrosine phosphorylation of proteins was investigated using pY-100 antibody and western blotting.

Results: MS analysis identified >4,000 proteins, of which ~1,500 qualified as target candidates based on pair-wise comparison with a blunted negative control. However, stringent prioritization via cross-comparisons against the entire probe panel identified 31 high confidence target candidates, such as glutathione S-transferase zeta 1 (GSTZ1), with selective affinity for individual probes. Knocking down GSTZ1 significantly sensitized non-small cell lung cancer (NSCLC) cells to oncogenic inhibition by targeted clinic drugs. Proteome-wide tyrosine reactivity profiling suggested GSTZ1 modulated amino acid metabolism and several signaling pathways mediated by KRAS, MAPK and Receptor Tyrosine Kinases, which are known to cause resistance to the clinical KRAS G12C inhibitor sotorasib4. Consistently, GSTZ1 knockdown remarkably decreased the tyrosine phosphorylation of FGFR1 in H520 cells and the phosphorylation of AKT and ERK in KRAS G12C-mutant, but sotorasib-refractory H1792 cells. In addition, re-activation of AKT upon treatment with sotorasib was inhibited by GSTZ1 knockdown. Furthermore, the identified BioCore probe inhibited the enzymatic activity of GSTZ1 and may serve as a chemical base for developing pharmacological inhibitors of GSTZ1.

Conclusion: By applying integrated phenotypic fragment screening, chemical proteomics, and systems biology approaches, we have established a fragment-based chemical biology platform for discovering novel targetable proteins and their binding molecules. GSTZ1 was found to cooperate with oncogenic alterations in supporting refractory NSCLC cell survival signaling, which may form the biological basis for developing novel GSTZ1 inhibitors to improve the therapeutic efficacy of oncogene-directed targeted drugs.

References

Acknowledgments
This work has been supported by Moffitt’s Lung Cancer Center of Excellence, the Proteomics & Metabolomics Core Facility, the Chemical Biology Core Facility, and the Biostatistics and Bioinformatics Shared Resource at the H. Lee Moffitt Cancer Center & Research Institute, an NCI-designated Comprehensive Cancer Center (P30-CA076292).
Small-molecule GAS41 YEATS domain inhibitors in non-small cell lung cancer
Alyssa Winkler1,2, Dymytrii Listunov1, Brian Linhares3, Eungi Kim3, Miranda Simes1,2, Joshua Ray1, Sidney Weaver1, Sergey Zolov3, Venkat Keshamouni3, Jolanta Grembecka1, Tomasz Cierpicki1
1Department of Pathology, University of Michigan Medical School, Ann Arbor, MI USA
2Program in Chemical Biology, University of Michigan, Ann Arbor, MI USA
3Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI USA
alywinkl@med.umich.edu

Glioma-amplified sequence 41 (GAS41) is an oncogene overexpressed in multiple cancers including brain, colorectal, and non-small cell lung cancers (NSCLC). GAS41 protein contains a YEATS domain, a subtype of epigenetic reader domains that recognize lysine residues on histone proteins that have been post-translationally modified with acetyl groups. Acetylation reader activity is associated with gene expression in cancer. GAS41 preferentially recognizes acetylated histone H3 lysine 27; this mechanism recruits GAS41 to the promoters of actively transcribed genes. The GAS41 YEATS domain acetylation binding activity has been shown to be necessary for the proliferation of NSCLC cellular and tumors in mouse xenograft models. Disrupting GAS41 YEATS domain chromatin recognition represents an attractive target for small molecule inhibitors. Using protein NMR-based fragment screening of an in-house fragment-like small molecule library, we have identified and optimized a series of GAS41 YEATS domain histone acetylation reader inhibitors. Extensive medicinal chemistry efforts improved the activity of inhibitors by 30-fold in biochemical assays. Binding experiments with other YEATS domain family proteins show that these inhibitors are highly selective for GAS41. Leading compounds have been tested in NSCLC cell lines and have been shown to inhibit NSCLC cell proliferation with sub-micromolar affinity, with limited activity in normal lung fibroblasts. These inhibitors have also been shown to disrupt the GAS41-H3 interaction in mammalian cells. This class of compounds has novel therapeutic potential for the treatment of NSCLC.
A Chemotranscriptomic Pipeline for RNA-Targeted Ligand Discovery
José A. Reyes Franceschi1, Emilio L. Cárdenas PhD. 2, Brandon Klein2, Chase A. Weidmann PhD.3, Amanda L. Garner PhD.1,2*
1Program in Chemical Biology, Life science institute, University of Michigan, Ann Arbor. 2Interdepartmental program in Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor. 3Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor.
*E-mail: algarner@med.umich.edu

Dysregulation of RNA functions has been implicated in multiple human pathologies, such as bacterial and viral infections as well as playing a role in other diseases including cancers.1,2 Because of RNAs’ involvement in diseases, the transcriptome has become an area of interest in the field of drug discovery.3,4 Current efforts for targeting RNA with small molecules have yielded therapeutics that treat bacterial infections and cancer; however, these target a small number of RNA molecules meaning that this field is still vastly underexplored.5 One big reason for the lack of RNA-targeting therapeutics is the lack of technologies for accurately screening RNA-binding small molecules in cells. This is a major issue since RNA is a very dynamic molecule whose structure depends upon its surrounding environment.6 Therefore, it is important to develop new approaches that allow us to screen for RNA-binding small molecules in living cells. In this proposal, we explore the synthesis and biological characterization of novel chemical probes that can help elucidate small molecule-RNA interactions in cells. This probe will consist of a small molecule fragment of interest linked to an RNA-selective covalent warhead that will react with the RNA to enable its covalent modification and subsequent identification via affinity purification and sequencing. To address the efficiency of these probes they will be tested in model systems with known RNA binders such as the PreQ1-Riboswitch and possible off target binding partners. We will also leverage this platform to test putative RNA binding small molecules inside of cellular environments. Small molecule-RNA interactions identified by this project will help shed new light into new motifs that can bind to RNA sequences and structures in cellular environments, as well as give us a new tool to screen for molecules that can be further developed into RNA targeting small molecule therapeutics.

References

Acknowledgments
Thanks to the support of Dr. Garner and the members of the Garner lab as well as thank you to the NIH for funding my work (R01 GM135252-S1)
Identification of Inhibitors of Sterol Transport Proteins Through the Synthesis of a Cholic Acid-Inspired Compound Collection

Frederik Simonsen Bro1*, Thomas Whitmarsh-Everiss1, Hogan Bryce-Rogers1, Kaia Fiil Præstegaard1, Tino Petersson1, Laura Depta1, Mariusz Kubus1, Luca Laraia1*

1DTU Chemistry, Department of Chemistry, Technical University of Denmark (DTU), Kemitorvet 207, 2800 Kongens Lyngby, Denmark.
*E-mail: frebro@kemi.dtu.dk; luclar@kemi.dtu.dk

Sterol transport proteins (STPs) all bind and transport sterols, and have high structural similarities, particularly in their sterol-binding domain (SBD).1 Despite these similarities, STPs possess distinct tissue distributions as well as intracellular localisation and functions. Furthermore, STPs not only mediate intracellular sterol transport, but also organelle contacts and lipid metabolism more generally. Their mis-regulation has been associated with lipid storage disorders, atherosclerosis, and a wide range of cancers.2 Therefore, the development of selective small molecule STP inhibitors is of great significance for both basic and translational lipid biology. Crucially, very few STP inhibitors have been reported, often with little or no selectivity annotations, and the majority of these target a small fraction of STPs, highlighting a significant gap in the field.

The pseudo-natural product (PNP) strategy has proven efficient in identification of active molecules including inhibitors of STPs.3-6 Thus, this strategy was applied to design and synthesise a compound collection of small molecules inspired by cholic acid in order to identify new STP inhibitors. The cis-decalin scaffold as found in cholic acid was used as the primary sterol scaffold to act as a “bait” for STPs. The primary scaffold was fused with natural product fragments (the secondary scaffolds) resulting in heterocyclic edge- and spiro-fused analogues. Additional analogues were accessed from the resulting pseudo-natural products using a “complexity-to-diversity” approach to give ring-distorted analogues.7 The analogues have been thoroughly characterised including several crystal structures. The biological activity of the analogues has been tested against a panel of different STPs by fluorescence polarisation (FP) and differential scanning fluorimetry (DSF). An interesting scaffold obtained by an oxidative ring contraction followed by a spontaneous intramolecular condensation was identified as a selective and potent new chemotype Aster-A inhibitor (Figure 1).

Structure-activity relationship (SAR) studies and molecular docking has been employed to rationalise compound binding modes.

Figure 1: The identification of Aster-A inhibitors through the synthesis of a cholic acid-inspired compound collection.

References

Acknowledgments:
We thank Novo Nordisk Fonden for financing.
Targeting p38/MK2 protein-protein interaction for therapeutic discovery in human diseases
Maylynn Hu1, Yuhong Du1,2, Haian Fu1,2, Andrey A. Ivanov1,2,*
1Department of Pharmacology and Chemical Biology, Emory University School of Medicine. 2Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30032, USA
*E-mail: andrey.ivanov@emory.edu

P38 kinases are essential components of signal transduction. Four known p38 isoforms (p38α, p38β, p38g, and p38d) serve non-redundant functions by binding various substrates, including transcription, signal transduction, protein folding, and cytoskeleton maintenance1,2. The inhibition of p38 activity has emerged as a highly appealing therapeutic strategy in multiple human diseases, including cancer, Alzheimer’s disease (AD), and different metabolic conditions. Although many p38 inhibitors have been developed, none of them have been approved as a drug due to a limited selectivity against p38 isoforms and other kinases. The failure of p38 inhibitors in clinical trials highlights the urgent need for new therapeutic approaches to p38 regulation. To address this unmet medical need, we develop a novel approach to control p38 activity by selectively targeting p38 protein-protein interaction (PPI) with its major substrate the MAPK-activated protein kinase 2 (MK2), coded by MAPKAPK2. MK2 is one of the most clinically important p38-regulated proteins which play a key role in AD-associated neuroinflammation and neurotoxicity, as well as tumor growth and DNA damage response in cancer metastasis and proliferation3. The discovery of potent p38/MK2 PPI inhibitors may open new avenues for p38-based therapeutic development. Our Time-Resolved Fluorescence Energy Transfer (TR-FRET) and affinity pulldown assays revealed that MK2 has a significantly higher binding affinity to p38a and p38b compared to p38g and p38d isoforms. Using computational structural analysis, we identified multiple contact sites on the p38/MK2 PPI interface that are critical for p38/MK2 interaction. The calculated druggability scores and contribution of p38 and MK2 residues to the MK2/p38 free binding energy allowed us to prioritize two pockets suitable for small molecule p38/MK2 disruptor binding. Based on the analysis, we experimentally confirmed the p38/MK2 interface, and designed short inhibitory peptides to disrupt the p38/MK2 PPI. Through a computational screening, we have uncovered and validated the first small molecule p38/MK2 PPI inhibitors. We have further optimized and miniaturized the TR-FRET assay for the high-throughput screening (HTS) 384- and ultra-HTS 1,536-well plate formats. We have shown that both p38a/MK2 and p38b/MK2 PPIs demonstrated strong TR-FRET signal with >20 signal/background ratio, which was stable for more than 48 hours and tolerated >10 % DMSO. Together, our data indicate the p38/MK2 complex druggability, provides the first chemical tools to regulate this clinically significant complex, and establish a new robust assay to discover small molecule MK3/p38 PPI inhibitors to facilitate therapeutic discovery towards cancer, neurological, and metabolic diseases.

References

Acknowledgments
This work was supported in part by NCI’s Informatics Technology for Cancer Research (ITCR) Program (R21CA274620, A.A.I.), Mary Kay Foundation Grant for Cancer Research (A.A.I), NCI Emory Lung Cancer SPORE (P50CA217691, H.F.), NCI P01CA257906 (H.F.), Career Enhancement Program (A.A.I., P50CA217691), Winship Cancer Institute (NIH 5P30CA138292).
Volumetric click reaction for organ level in situ small molecule drug visualization

Zhengyuan Pang1, Cailynn Wang1, Melaina Yender1, Logan Sigua1, Benjamin F. Cravatt2, Li Ye1,3*
1Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA. 2Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA. 3Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
*E-mail: liye@scripps.edu

Precise mapping of drug actions across cell types can be highly desirable due to the complex cellular compositions across tissue compartments. However, direct visualization of small molecule drug binding in mammalian tissue has long been challenging due to insufficient imaging resolution. By strategically integrating tissue clearing and click reaction, we developed a strategy termed clearing-assisted tissue click chemistry (CATCH) for highly specific on-target covalent drug binding mapping with cellular resolution1. Building upon the initial CATCH work primarily associated with 2D characterizations, we explored the principles to enable click reaction in large tissue samples. We identified maintaining sufficient catalytic loading as the key factor for efficient deep tissue click labeling. Furthermore, we found that cleared tissue is compatible with multiple rounds of click reactions without generating excessive surface background labeling, highlighting the high specificity of click reactions. Utilizing an in-house tissue clearing pipeline HYBRiD that is well suited for complex tissue compositions2, we systematically optimized click reaction procedures and achieved high-resolution drug mapping in whole mouse organs, paving the way for unbiased drug binding registration across regions/cell types.

References
1. Pang et al., Cell, 2022, 185, 1793-1805 e17
2. Nudell et al., Nature Methods, 2022, 19, 479-485

Acknowledgments
We thank all members of the Ye lab and the Dorris Neuroscience Center for their support and feedback. Z.P. thanks the financial support from Dorris Neuroscience Scholarship. B.F.C thanks support from NIH (DA033760). L.Y. thanks the support from NIH Director’s New Innovator Award (DP2DK128800).
The discovery and characterization of potent and selective chemical degraders of the histone methyltransferase NSD2

David Y. Nie1,2,*, John R. Tabor3,*, Ronan P. Hanley1, Jonathan St-Germain2, Brian Raught2, Lindsey I. James3,4,*, Cheryl H. Arrowsmith1,2,*

1Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada. 2Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. 3Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 4Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. *These authors contributed equally: John R. Tabor, David Y. Nie.

Email: ingerman@email.unc.edu; cheryl.arrowsmith@uhnresearch.ca

Nuclear receptor-binding SET domain-containing 2 (NSD2) is a methyltransferase responsible for the formation of dimethylated lysine 36 of histone 3 (H3K36me2), an epigenetic mark associated with chromatin regions of active transcription1. For that, NSD2 plays a significant role in gene regulation, and NSD2 dysregulation has been reported to be the oncogenic driver in many cancers1-3.

Recently, we reported the development of an NSD2 selective degrader, UNC8153, with sub-micromolar potency that can reduce the cellular levels of NSD2 protein and the associated H3K36me2 chromatin mark4. UNC8153 is based on a novel E3 recruiting warhead that contains a simple primary alkylamine serendipitously discovered to confer neddylation-, ubiquitination-, and proteosome-dependent degradation of NSD24. The degradation of NSD2 by UNC8153 results in the down-regulation of pathological phenotypes in multiple myeloma cells, including mild anti-proliferative effects in MM1.S cells containing an activating point mutation in NSD2 and anti-adhesive effects in KMS11 cells harboring the t(4;14)-translocation which up-regulates NSD2 expression4. Despite these promising effects, the mechanism of action of UNC8153 was not known. In recent efforts, we used proximity-dependent biotin identification (BioID) to characterize the degrader-mediated protein-protein interactions of NSD2. This resulted in candidate E3s being studied for target engagement and mechanism of action validation. We further made optimizations to UNC8153 to yield UNC8732 and achieved nanomolar potency. We anticipate that these new chemical degraders will be valuable tools for the epigenetics community to investigate the therapeutic potential of NSD2 and that the novel E3-recruiting warhead could open doors to new strategies in targeted protein degradation.

References

2, Chen, R. et al., 2020, OncoTargets and therapy, 6837-6846.
3, Sengupta, D. et al., 2021, Molecular cell 81, 4481-4492.e4489.

Acknowledgments

We thank members of the James laboratory, Arrowsmith laboratory, Raught laboratory, as well as Dalia Barsyte-Lovejoy, Magdalena Szewczyk, Stephen Frye, and Jon Collins for helpful discussions and input throughout the project. This work is supported by grants from the NIH to LIJ (R01CA242305), the Canadian Institutes of Health Research to CHA (FDN154328) and DYN (494204), Fonds de recherche du Québec – Santé to DYN (320128), and the Structural Genomics Consortium, a registered charity (no: 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario Genomics Institute [OGI-196], EU / EFPIA / OICR / McGill / KTH / Diamond Innovative Medicines Initiative 2 Joint Undertaking [EUOPEN grant 875510], Janssen, Merck KGaA (aka EMD in Canada and US), Pfizer and Takeda. This research is based in part upon work conducted using the UNC Proteomics Core Facility, which is supported in part by P30 CA016086 Cancer Center Core Support Grant to the UNC Lineberger Comprehensive Cancer Center. This material is based in part upon work supported by the National Science Foundation under Grant No. (CHE-1726291). We thank the University of North Carolina’s Department of Chemistry Mass Spectrometry Core Laboratory for their assistance with mass spectrometry analysis.
Keynote Lecture

Why I Love Being a Scientist

Ingrid Wertz
Lyterian Therapeutics
(no abstract)
Keynote Lecture

Development and validation of PROTACs as selective chemical tools

Stefan Knapp1,2

1Johann Wolfgang Goethe-University, Institute for Pharmaceutical Chemistry, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; 2Johann Wolfgang Goethe-University, Structural Genomics Consortium, Buchmann Institute for Life Sciences; Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany.

Small molecule degraders such as PROTACs (PROtein Targeting Chimeras) have emerged as new promising pharmacological modalities but currently their development is limited by the small number of ligands targeting E3 ligases. We developed a workflow developing PROTACs interacting with new E3 ligases and established assay systems for their validation as highly selective degrader chemical tools.
Keynote Lecture

Co-opting the Ubiquitin System for Therapeutic Benefit

Ingrid Wertz
Lyterian Therapeutics

The ubiquitin system is a primary conduit for the regulated degradation of cellular proteins. Ubiquitination describes the covalent modification of protein substrates with ubiquitin, a small protein that binds the proteasome and directs substrate degradation. Our goal is to co-opt the ubiquitin system, and more broadly protein homeostasis, to irreversibly regulate challenging therapeutic targets for enhanced clinical efficacy. Our efforts are focused on targets for which there is a clear rationale for homeostatic regulation over target inhibition. We will discuss strategies to co-opt protein homeostasis, highlight mechanisms for how selective targeting can be achieved, and review the cellular and physiological consequences of target regulation, with an emphasis on maximizing safety and therapeutic benefit for patients.
Enabling Platforms for the Development of Degraders

Weiping Tang

School of Pharmacy, University of Wisconsin-Madison, Madison, WI
*E-mail: weipng.tang@wisc.edu

I will present our recent progresses for the development of proteolysis targeting chimeras (PROTACs), molecular glues, and lysosome-targeting chimeras (LYTACs) for the degradation of intracellular and extracellular proteins.1-3 In the area of PROTACs and molecular glues, I will focus on the development of two platforms: rapid synthesis of PROTACs (Rapid-TAC) and rapid synthesis of molecular glues (Rapid-Glue), and their applications for the degradation of intracellular proteins. In the area of LYTACs, I will focus on the development of tissue-selective degraders with in-vitro and in-vivo activities.

References

Acknowledgments
We thank NIH R35 GM148266 for financial support.
Protein editing using small molecules.

Amit Choudhary

Broad Institute, Cambridge, MA, USA

CRISPR-based technologies have made editing of modifications of DNA/RNA facile. However, technologies to “write” or “erase” posttranslational modifications (PTMs) on proteins, which dramatically alter protein structure and function, are non-existent. Our long-term goal is to develop CRISPR-equivalent platform technologies for robust PTM editing. Towards that goal, we recently reported PHosphorylation-Inducing Chimeric Small molecules (PHICS) that selectively induce phosphorylation of a protein-of-interest by bringing the kinase and target protein in proximity.

Platform development: The 1st-generation PHICS brought Ser/Thr kinases (AMPK or PKC) or Tyr kinase (ABL) in proximity to a target protein, inducing target phosphorylation even for non-substrates (i.e., neo-substrates) of the kinase (platform 1). However, these PHICS linked the target binder to an *allosteric, non-inhibitory* kinase binder, which is scarce. To expand the applications of PHICS, we developed linker chemistries to generate PHICS from kinase inhibitors (abundantly available), allowing rapid development of PHICS for >30 kinases (platform 2).

Novel bioactivities of PHICS: PHICS induced known phosphorylations with diverse bioactivities, including signal transduction, phase separation, and 14-3-3 mediated sequestrations. Furthermore, PHICS-induced neo-phosphorylations (unobserved naturally) adversely affected the target protein’s ability to interact with negatively charged biomolecules (e.g., ATP, GTP, phospholipids). For example, PHICS-mediated phosphorylation disrupted the ability of membrane-translocating KRAS to interact with GTP/phospholipids. “Homo-PHICS” (i.e., a dimer of kinase binder) inhibited the kinase by inducing phosphorylations in the ATP-binding pocket. This novel mechanism of action allowed PHICS to efficaciously kill cancer cells resistant to known drugs (e.g., imatinib/asciminib for CML, ibrutinib for CLL).

In summary, we have developed PTM editors for phosphorylation that exhibit novel bioactivities and linker technologies that will enable the rapid development of editors of other PTMs.
Discovery of a PTPN2 degrader *in vivo* tool compound for the study of cancer immunotherapy

Jobette T. Santos¹*, Gesine K. Veits¹, Christopher G. Nasveschuk¹, Eunice Park¹, Mark Fitzgerald¹, Alexander W. Hird¹, Clay Beauregard², Keith Hamel³, Minya Bulic³, Tina Baumgartner³, Kelly Klinge³, Prasanthi Geda³, Michael Kort³

¹C4 Therapeutics, 490 Arsenal Way, Watertown, USA. ²Calico, 1130 Veterans Blvd, South San Fransico, USA. ³AbbVie, 1 North Waukegan Road, North Chicago, USA.

E-mail: jsantos@c4therapeutics.com

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) is involved in the intracellular oncogenic signaling JAK-STAT pathway¹. Furthermore, PTPN2 was identified from an *in vivo* tumor CRISPR screen to synergize with anti PD-1 treatment, which led to an enhanced anti-tumor effect via further immune activation². Modulating PTPN2 activity is of high therapeutic interest as an oncoprotein and potential immunomodulator. However, the phosphatase class of proteins only recently have begun to discharge the mantle of undruggability with inhibitors within the class entering clinical studies³. The phosphate binding site is highly polar⁴, which has led to substrate-competitive inhibitors that can exhibit compromised physicochemical property space and developability⁵. We hypothesized that a heterobifunctional degrader has an advantage over inhibitors as it possesses a catalytic mode-of-action, since PTPN2 degradation would suppress the target signaling through the JAK-STAT pathway signaling for an extended period thereby separating PK from PD effects. The potential for enhanced PD at lower exposures opens a pathway to a developable drug for this target. Herein, we describe our efforts to advance a thiadiazolidinone (TZD)-derived chemical series to identify a PTPN2 degrader *in vivo* tool compound. Structure- and property-based drug design enabled the identification of productive ternary complexes for degradation, control of physicochemical properties, and *in vivo* anti-tumor activity. Our studies culminated in the discovery of compound 17, a highly potent, selective, efficacious PTPN2 degrader.

References

3. Köhn et al., ACS Central Science, 2020, 6(4), 467-477

Acknowledgments

C4 Therapeutics and Calico/AbbVie collaboration team
Targeted Protein O-GlcNAcylation Using Bifunctional Small Molecules
Bowen Maa, Khadija Shahed Khana,b, Tongyang Xua, Josefina Xeque Amadaa, Zhihao Guoa, Yu Yana, Alfred Sze-Lok Chengb, Billy Wai-Lung Nga,c,*

aSchool of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
bSchool of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
cLi Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong

*E-mail: billyng@cuhk.edu.hk

Protein O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) plays a crucial role in regulating essential cellular processes. The disruption of O-GlcNAcylation homeostasis has been linked to various human diseases, including cancer, diabetes, and neurodegeneration. However, there are limited chemical tools for protein- and site-specific O-GlcNAc modification, rendering the precise study of O-GlcNAcylation challenging. To address this, we have developed first-in-class heterobifunctional small molecules, named O-GlcNAcylation targeting chimeras (OGTACs), which enable protein-specific O-GlcNAcylation in cells. OGTACs promote O-GlcNAcylation of proteins such as BRD4, CK2α, and EZH2 \textit{in cellulo} by recruiting O-GlcNAc transferase (OGT), with temporal and magnitude control. Proteomics analysis revealed that OGTACs induced site-selective O-GlcNAcylation of BRD4. Overall, OGTACs represent a promising approach for inducing protein-specific O-GlcNAcylation, thus enabling functional dissection and offering new directions for O-GlcNAc-targeting therapeutic development.

References

Acknowledgments
The authors acknowledge Ms. Sarah Ng from Department of Chemistry, CUHK for their NMR facilities. We thank Prof. Timothy Mitchison (Harvard Medical School) and Prof. John Karanicolas (Fox Chase Cancer Center), Prof. Jiang Xia (CUHK) for their scientific discussions. B.W.-L.N. acknowledges funding support from CUHK (CU Medicine Faculty Innovation Award; FIA2020/A/03) and Croucher Foundation (Start-up Grant).
HIGH THROUGHPUT SCREENING REVEALS A ROLE FOR BRD4 IN POTENTIATING CADMIUM CYTOTOXICITY VIA NUCLEAR-MITOCHONDRIAL CROSSTALK

Surinder Kumar1, Durga Prasad Gannamedi Hinder1, Angela Guo2, William Kohler2, Melissa Han2, Peter Kim3, Nupur Das3, Costas Lyssiotis3, Yatrik Shah4, Yiqin Zuo1, Evan Farkash2, Gregory R. Dressler2, Richard A. Miller2,4, David B. Lombard1
1Department of Pathology & Laboratory Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL. 2Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. 3Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI. 4Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI

We previously performed high throughput screening to identify small molecules that enhance cellular resistance to multiple stressors, including cadmium (Cd) (Lombard et al., Sci Adv 2020). Cd is a widespread environmental pollutant that affects millions of individuals worldwide. Cd exposure in humans most often occurs through Cd’s many industrial applications, smoking, or consumption of contaminated food. Due to its extremely long biological half-life, Cd persists for decades in tissues. Cd exerts numerous deleterious effects, including bone, reproductive, neurodevelopmental, and pulmonary toxicities, and carcinogenesis. The kidneys are the major target of Cd toxicity, particularly the proximal tubular epithelial cells, injury to which hampers tubular reabsorption. Despite the many sequelae associated with Cd exposure in humans, molecular mechanisms of Cd toxicity are poorly understood, and no specific therapies exist to mitigate the effects of Cd exposure.

Based on our initial screens, we find that multiple chemically distinct Bromodomain and Extra-Terminal motif inhibitors (BETi) can suppress cytotoxicity occurring in response to Cd treatment, as well as Cd-associated perturbations in cellular metabolite levels, mitochondrial function, and gene expression. BETi inhibit the interaction of BET family proteins with chromatin, and are in clinical trials for a variety of neoplastic and inflammatory diseases. The best-characterized BET protein is BRD4. We have identified the Succinate Dehydrogenase (SDH) enzyme complex, aka mitochondrial complex II, as one key target of Cd. In genome-wide as well as locus-specific ChIP studies, BRD4 occupancy increases in response to Cd exposure upstream of metabolically important genes, including genes encoding SDH subunits. Crucially, our in vivo studies reveal that the BETi JQ1 can mitigate acute Cd-induced kidney injury in vivo. Based on these findings, we propose that the interplay between the epigenome and mitochondrial function represents an important target of Cd toxicity, with potential translational significance.
I plan to discuss our group’s approach to defining tractable targets in aging biology and how we have begun to develop small molecules that influence these targets. In particular, I will discuss our attempt to modulate the autophagy-lysosomal pathway by targeting the transcription factor TFEB. In addition, I will review our attempts to reverse the age-dependent decline in NAD+ levels by developing a small molecule that augments the activity of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Finally, I will review our strategy to developing novel, rational-based senolytic drugs. This approach leverages a whole genome CRISPR screen we have executed in order to identify a set of potential specific senolytic targets. Together, these three programs identify an approach to develop small molecules that might positively influence human healthspan.
Reactive oxygen species (ROS) are by-products of aerobic metabolism. Among them, hydrogen peroxide (H₂O₂) plays a crucial role in a wide range of physiological processes.¹ However, when our cells are subjected to oxidative stress, its overproduction is directly or indirectly responsible for numerous damages at the molecular level. This process is associated with aging, as well as cancer and several neuro-degenerative diseases such as Alzheimer’s or Parkinson’s.² The development of selective and sensitive tools allowing H₂O₂ detection in a biological context represents a great challenge for a better understanding of H₂O₂-mediated signaling in physiological and pathological processes.

To date, several “off-on” small fluorescent probes triggered by H₂O₂ have been developed for its detection. Among them, probes based on boronate oxidation are amongst the most effective for the detection of H₂O₂ in cellula.³ But these probes suffer from lack of reactivity, which is not fully satisfactory for biological applications. To address this issue, we envisioned the use of borinic acids which due to electronic effects could be more prone to oxidation compared to their boronic acid counterparts.

Recently, we reported the design, synthesis, and kinetic properties of the first borinic sensor for the fast detection of hydrogen peroxide.⁴ Furthermore, a comparative study with its boronic acid counterpart was presented in vitro and in a cellular context. We are currently further optimizing this strategy for biological applications and will present our latest results in this field.⁵

Fig. 1 Schematic representation of our strategy using borinic probes, versus established boronic probes.

References
5. Gatin-Fraudet, B; Pucher, M; Le Saux, T; Doisneau, G; Bourdreux, Y; Jullien, L; Vauzeilles, B; Guianvarc’h, D; Urban, D. Chemistry – A European Journal 2022, 28, e202201543.
Develop potent and isoform-selective PRMT inhibitors

Rong Huang*, Youchao Deng, Iredia D. Iyamu
Purdue University Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, USA
*E-mail: huang-r@purdue.edu

Abstract Protein arginine methyltransferases (PRMTs) are an emerging drug target class. However, the lack of selective chemical probes hampers pharmacological interrogation of PRMT biology. One challenge is the conserved active site among all PRMTs. Here, we report a versatile strategy to build a SAH analog library embracing a diverse set of 100 compounds in a 5-step reaction sequence through a one-compound one purification manner. By identifying promising hits for each tested PRMT, we observed a clear chemical preference for each test PRMT, supporting subtle differences in the active site of highly conserved PRMTs. Specifically, we identified a selective and potent inhibitor for PRMT1 and PRMT4 with an IC$_{50}$ < 5 nM. Collectively, the preliminary structure-activity relationships generated from this work would provide general guidance to design inhibitors with improved potency and isoform selectivity to each PRMT. In addition, we anticipate that this focused library can be adaptable to glimpse the active site of other methyltransferases to direct and accelerate the discovery of inhibitors.

References
2. Iyamu et al. Biomolecules 2021, 11, 854

Acknowledgments
The authors acknowledge the support from Purdue University Department of Medicinal Chemistry and Molecular Pharmacology (RH) and Ralph W. and Grace M. Showalter Research Trust (R.H.)
Development of Sigma 2 Receptor Ligands for Cancer and Neurodegenerative Disorders

Essam Eldin A. Osman1,2, Joyeeta Roy1, and Nouri Neamati1,*

1Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan, 48109, United States.
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
*E-mail: neamati@umich.edu

GPCR-related σ receptors (σRs) were originally considered as a subtype of opioid receptors (µ, κ, and σ). Subsequent studies showed their distinction and classified these receptors into σ1 and σ2 subtypes. σRs interfere with ion channels and GPCR receptors activity modulating several physiological pathways. σRs are implicated in various CNS disorders, neurodegenerative diseases, traumatic brain injury, drug abuse, COVID-19, and cancer. Until now, only a few σR ligands have entered clinical trials to treat different conditions, including neurodegenerative diseases, mental disorders, and pain. However, no σR ligands for the treatment of cancer have reached the clinic, probably due to inadequate understanding of the signaling pathways and inconsistent preclinical data. Nevertheless, a growing body of evidence supports the use of small molecule σRs ligands as therapeutic agents to treat select cancers. Elevated levels of σ1R protein and apoptosis-inducing effects of select σ1R antagonists suggest that functional σ1R is required for tumorigenesis and tumor progression. σ2R is overexpressed in a broad range of cancers including breast and pancreatic cancers. σ2R has been used as a biomarker of proliferation and σ2R radioligands can be used for tumor imaging. Importantly, several σ2R ligands have shown in vivo efficacy in mouse xenograft models of pancreatic cancer. While the exact mechanism of action of σR ligands in cancer is still elusive, the cytotoxic effects of σ2R ligands are attributed to multiple oncogenic signaling including ROS, p53 and caspase-independent/dependent apoptotic pathways. Additionally, the recently solved cocrystal structures of σRs with several ligands and the discovery of diverse chemical structures that bind to σRs with various affinities and degrees of selectivity will inform the development of more selective σRs ligands for cancer therapy. We will present our efforts on the design and synthesis of a novel series of quinolyl pyrazinamides as selective and potent σ2R ligands with nanomolar potency in pancreatic cancer cell lines. Our optimized compound JR1-157 is water soluble, metabolically stable, orally active, cytotoxic across a panel of pancreatic cancer cell lines, and increases the levels of autophagy marker LC3B and the ER stress marker GRP78. JR1-157 shows single agent efficacy in a syngeneic mouse model of pancreatic cancer without significant toxicity. Our findings warrant development of JR1-157 as an effective treatment for pancreatic cancer.

References

Acknowledgments
This work was supported by the NIH grant R01 CA272641. The compounds were tested for σ2R binding through the NIMH Psychoactive Drug Screening Program (PDSP).
Natural product biosynthesis has been focused on biosynthetic pathways that have anchoring core enzymes, such as polyketide synthase, nonribosomal peptide synthetase and terpene cyclase. This approach is conceptually simple and bioinformatically straightforward to execute. However, nature encodes many biosynthetic pathways that do not use core enzymes, which makes these difficult to identify and challenging to predict metabolite structure and enzyme functions. In recent years, our lab has focused on the mining and engineering of biosynthetic pathways that are referred to as “Unknown-unknowns”, which represents unknown biosynthetic logic and unknown products.\(^1\) In this presentation, we will discuss the mining of unknown unknowns in fungi to identify a short pathway to a potent protease inhibitor natural product. Previous annotated hypothetic proteins were discovered to catalyze biosynthetically and synthetically interesting reactions. With enzyme catalyzed, we performed large scale combinatorial biosynthesis of the pathway, taking advantage of the broad substrate promiscuity of the enzymes. This approach led to biosynthesis of hundreds of analogs and identification of more potent analogs that inhibit proteases of interest.

References

Acknowledgments
We thank NIGMS for generous funding for research related to this area.
Illuminating RNA biology with metabolically incorporated ribonucleoside probes
Ralph Kleiner
Princeton University
RNA plays a central role in biological processes and characterizing the regulatory mechanisms governing its behavior can reveal fundamental insights into gene expression programs in normal and disease contexts. Towards this end, our lab has developed general approaches based upon RNA metabolic labeling with artificial nucleoside probes in order to study RNA-associated processes transcriptome-wide in live cells and organisms. In the first part, we present RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy using mechanism-based nucleosides that enables characterization of RNA modifying enzymes and their associated post-transcriptional RNA modifications. We apply RNABPP with diverse C5-modified pyrimidine nucleosides in order to identify RNA methyltransferase, dihydrouridine synthase, and dioxygenase enzymes. Further, we combine quantitative RNA mass spectrometry and modification-specific sequencing technologies in order to characterize the abundance and distribution of individual RNA modifications and understand their function in cellular processes. In the second part, we combine protein engineering of the nucleotide salvage pathway with bioorthogonal and fluorescent nucleoside chemistry to develop an approach for live-cell imaging of global RNA dynamics. We apply our method to study RNA trafficking and metabolism upon oxidative stress. Taken together, our work provides powerful and general strategies for interrogating RNA regulation and reveals the presence of novel mechanisms controlling RNA function in biological systems.
Activation and Incorporation of Rare Sugars into Bacterial Surfaces

Tania Lupoli
New York University

Our planet is inhabited by trillions of bacteria that live inside and outside of humans. The “skin”, or surface, of bacteria is called the cell envelope, which mediates infection of the host and protects bacteria from host immune defense tactics. While Gram-negative bacteria contain a protective outer membrane layer absent in most Gram-positives, almost all bacteria contain polymers composed of unique monosaccharides that extend from the cell surface. Gram-negative bacteria typically contain lipopolysaccharide (LPS) in the outer leaflet of the outer membrane with attached polysaccharides called O-antigens that help mediate interactions with the environment. O-antigens are composed of repeating oligosaccharides that define particular bacterial serotypes, which distinguishes bacterial strains within a single species. Foundational chemical biology work has contributed to our understanding of eukaryotic cell surface composition. However, we still lack a clear understanding of assembly of bacterial surface glycan polymers that contain prokaryote-specific or “rare” sugars. Here, we describe synthetic and chemoenzymatic methods to construct rare nucleotide sugars to study substrate recognition by bacterial glycosyltransferases that build O-antigens. We identify key regions in sugar substrates that are required for substrate binding and activity, and we use this knowledge to design chemical probes that will be used for the construction of synthetic O-antigens and small molecule inhibitors that will stall O-antigen synthesis. This work will expand our understanding of cellular mechanisms underlying bacterial polysaccharide synthesis, and will teach us about the roles that rare sugars play in bacterial cellular interactions.
RNA G-quadruplex structures are responsible for insoluble aggregates characteristic of the neurodegenerative disease ALS.

Marco Di Antonio

Imperial College London, Chemistry Department, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, UK. The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK

E-mail: m.di-antonio@imperial.ac.uk

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are just two of the neurodegenerative diseases characterised by the presence of pathological aggregates. 40% of familiar cases in ALS and FTD have been correlated to expansion of the hexanucleotide repeat (GGGGCC)_n, which has been previously shown to assemble into G-quadruplexes (G4s) structures. In this talk, I will discuss our recent work, where we investigated the role of nucleic acids and secondary structure formation in the generation of ALS/FTD aggregates, something that has often been relegated as a peripheral effect in the protein-led aggregation. We showed a correlation between the emergence of multimolecular G4s (mG4s) formed by the DNA (GGGGCC)_n repeats and the formation of protein-free insoluble aggregates. Aggregation is dependent on K^+ concentration and repeat-length, indicating that G4-formation is essential to observe aggregates. G4-structures were detected in the aggregates by staining with the G4-specific fluorescent dye NMM. G4-unfolding promoted by NMM-mediated guanine photo-oxidation led to prompt disassembly of the insoluble aggregates, further confirming a G4-based aggregation mechanism. To reinforce the physiological relevance of our observations, we characterised the aggregation of RNA (GGGGCC)_n, which is thought to contribute to pathological aggregation in ALS/FTD. We observed that RNA repeats can aggregate at significant lower concentrations compared to DNA, suggesting that under physiological conditions RNA repeats can aggregate in the absence of any protein. Using patient-derived ALS cell lines, we validated our model by observing the same G4-based RNA aggregates in the pathological RNA foci that are characteristic of this disease, suggesting that nucleic acids targeting could be the key to treat neurodegenerative diseases in the future. Our findings constitute the first evidence supporting the formation of multimolecular G4-structures to drive protein-free aggregation in neurodegenerative diseases, challenging the current dogmas on the mechanisms responsible of neurodegeneration and associate protein led aggregate formation.

Our journey in the discovery of clinical-quality PROTAC degraders for the treatment of human diseases

Shaomeng Wang, Ph.D.
Warner-Lambert/Parke-Davis Professor in Medicine
Professor of Internal Medicine, Pharmacology and Medicinal Chemistry
University of Michigan

Abstract: In recent years, induced protein degradation using the PROTAC technology has become a very attractive strategy for the discovery and development of novel therapeutics for the treatment of human diseases. While PROTAC degraders have been reported for a large number of protein targets, over 99% of such compounds lack the desirable potency, selectivity, physiochemical properties, pharmacokinetic properties, pharmacodynamic effect, efficacy and toxicity for potential clinical development. In this lecture, I will present our journey in the discovery of clinical-quality PROTAC degraders for the treatment of human diseases and the large number of barriers we had to overcome for clinical development of PROTAC molecules for the treatment of human diseases.
The vast diversity of proteins with spectacular structure and function is the result of natural evolution with a time scale of millions of years. With the invention of DNA recombinant technology, biologists exploited directed evolution principles to create a vast number of self-assembling artificial proteins (SAPs) in a very short time. However, most of the SAPs made through genetic methods lack functions due to reasons they are restricted to the standard set of twenty amino acids. In this talk, I will discuss our laboratory efforts to design and synthesize SAPs with rich chemical/structural diversity through a directed chemical evolution method powered by a micelle-assisted protein labeling technology (MAPLabTech). The designer proteins self-assemble to form protein assemblies of defined size and shape and also exhibit exotic functions.
Gene Therapy Without the Genes: Intracellular Delivery of Therapeutic Proteins via Traceless Bioreversible Esterification Strategy

Joomyung V. Jun1, Justin A. Kaskow2, Akash Gupta3, Kevin Quan1, Yana D. Petri1, Lucas W. Erickson1, Marissa L. Abbott1, Evans C. Wralstad1, Ronald T. Raines1*

1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 2Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 3David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.

*E-mail: rtraines@mit.edu

Following the inception of the first recombinant protein therapeutic—human insulin—into the clinic in 1982, the use of protein-based drugs has flourished, often with greater target specificity and lower toxicity compared to small molecules. Yet, despite several blockbuster therapies, these protein-based drugs have been restricted to extracellular targets due to the intrinsic cell impermeability of proteins, leaving approximately 80% of intracellular protein-related diseases undruggable. Conventional delivery techniques fail to address this fundamental problem in that protein cargo is predominantly delivered into cells via endocytosis, leading to degradation pathways. Thus, the ability to modulate protein surface to interrogate factors important for cell permeability is highly desired in both biological research and protein therapeutics.

Addressing the fundamental limitation, we developed a bioreversible esterification strategy to endow proteins with the ability to enter the cytosol of human cells. Specifically, we developed a tricomponent molecule, α-aryl-α-diazoacetamide, synthesized in three steps, that incorporates a diazo moiety for chemoselective esterification of carboxyl groups, a pyridyl disulfide group for late-stage functionalization with thiolated ligands, and a self-immolative carbonate group for esterase-mediated cleavage. Using cytochrome c (Cyt c) and the green fluorescent protein (GFP) as models, we generated protein conjugates modified with diverse domains for cellular delivery that include a small molecule, targeting and cell-penetrating peptides (CPPs), and a large polysaccharide and PEG group, to assist the delivery of proteins into the cytosol of live mammalian cells in the presence of serum.

To further expand the utility of α-aryl-α-diazoacetamides in protein delivery applications in vivo, we propose a new therapeutic platform involving nanoparticles for the intracellular delivery of therapeutic proteins. Lipid and polymer-based nanoparticles have revolutionized gene delivery into the cell both in vivo and in the clinic. However, these nanoparticles have seldom been applied for protein delivery. This is because proteins are extremely diverse, varying in size, surface character, charge, and hydrophobicity/hydrophilicity, or simply not “anionic” enough. Here, we propose to chemically “esterify” therapeutic proteins (e.g., STING, Cas9, PTEN) that will facilitate encapsulation within clinically promising nanoparticle formulations. This strategy focuses on the fine-tuning of electrostatic interactions between the protein cargo and the nanoparticle carrier. Our strategy represents a significant advance over previous reversible strategies because protein mutagenesis is not required, modifications are done under mild conditions, the probe is synthetically accessible, and most importantly, our strategy is potentially compatible with virtually any protein of interest.

References
2, Cheah* and Jun* et al., Mol. Pharm., 2022, 19, 11, 3869–3876. (*equal contributors)

Acknowledgments
We are grateful to Keith M. Cheah (Massachusetts Institute of Technology) for GFP production. J.V.J. was supported by a postdoctoral fellowship from the Ludwig Center at the Koch Institute for Integrative Cancer Research at MIT and a Life Sciences Research Foundation fellowship sponsored by the Shurl and Kay Curci Foundation. This work was supported by NIH grants R01 GM044783, R35 GM148220, and P30 CA014051.
Unraveling the signaling mechanisms of endogenous cell-cell signaling peptides

James W. Checco1

1Department of Chemistry, University of Nebraska-Lincoln, 639 N 12th St, Lincoln NE, USA

*E-mail: checco@unl.edu

Endogenous peptides (neuropeptides and peptide hormones) act as cell-to-cell signaling molecules to carry out complex tasks in living systems, including regulating metabolism, pain perception, stress response, circadian rhythm, and more. Characterizing the molecular mechanisms of endogenous peptides represents a significant goal to understand how living systems function in both healthy and disease states, and may identify novel therapeutic targets. Understanding cellular communication requires not only knowledge of the transmitter (i.e., the peptide ligand), but also information regarding the cognate receptor that mediates signaling on the partner cell. However, there exist a relatively large number of biologically active peptides whose cell-surface receptor(s) are not known, primarily because of a lack of techniques to reliably identify peptide receptors de novo.

To better understand the molecular mechanisms of intercellular communication, our group focuses on developing and utilizing chemical biology approaches to understand endogenous peptides and probe peptide-receptor interactions.1-3 One major project in the group is focused on developing methods to label neuropeptide receptors on the surface of living cells for the purpose of probing known peptide-receptor interactions and discovering novel receptors for bioactive peptides.4 In parallel, we are also exploring the impact of an understudied endogenous peptide post-translational modification (L- to D-residue isomerization) on receptor recognition and signaling in nature, and have discovered a neuropeptide signaling system in which peptide isomerization is utilized to alter selectivity between distinct family members.5 Overall, our research combines approaches from chemical biology, bioanalytical chemistry, and synthetic chemistry to advance our understanding of specific cell-cell signaling pathways, identify new pathways for further exploration, and provide innovative starting points for future therapeutics.

References

Acknowledgments

Work in the Checco lab has been supported by the National Institute of General Medical Sciences (R35 GM142784 to J.W.C.), a Nebraska EPSCoR FIRST award (OIA-1557417), and a Ferring Innovation Grant. We also acknowledge support from the Nebraska Center for Integrated Biomolecular Communication (NCIBC, National Institute of General Medical Sciences P20 GM113126).
Epigenetic regulations are involved in establishing cell-lineage diversity and errors in these processes have been linked to many diseases including cancer. Among the key biochemical modifications in epigenetics is protein methylation, a process orchestrated by around 100 human protein methyltransferases (PMTs). Given the importance of PMTs, we leveraged multiple approaches to identify PMT inhibitors. Our effort was made to explore cofactor analogues as selective PMT inhibitors. We found that even closely related PMTs can adopt distinct conformational states and thus be selectively recognized by structurally matched cofactor analogues. This presentation will outline the decade-long journey of the Luo lab to develop cofactor analogue inhibitors of PMTs through unconventional modes of interaction.
SET domain dynamics facilitates targeting histone methyltransferases

Tomasz Cierpicki
E-mail: tomaszc@umich.edu

Department of Pathology, University of Michigan, Ann Arbor, MI, USA

Family of histone methyltransferases involved in mono and di-methylation of H3K36 contains four members: NSD1, NSD2, NSD3 and ASH1L. These methyltransferases play important role in epigenetic regulation of gene expression and have been implicated in multiple cancers. Amplifications, translocations or mutations of H3K36 methyltransferases are found in acute leukemia, breast and brain cancers, multiple myeloma, which prompted multiple efforts to discover small molecule inhibitors of these enzymes. The unique feature of the catalytic SET domain in H3K36 methyltransferases is the presence of autoinhibitory loop blocking the access to enzyme active site. Such an autoinhibitory loop has been attributed to difficulty in discovery of small molecule inhibitors. However, inherent dynamics of the autoinhibitory loop may also offer an opportunity to develop potent and selective inhibitors. In this presentation we will discuss dynamics of H3K36 methyltransferases and progress to develop SET domain inhibitors.
Targeting multi-domain proteins for pediatric cancer therapy

Jun Qi1,2

1Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. 2Department of Medicine, Harvard Medical School, Boston, MA, USA.

Among all the cancer type, the pediatric cancers posted significant challenge for effective therapy development. Despite intense study and cooperative group trials, patients diagnosed with aggressive, high-risk pediatric tumors such as sarcomas, neuroblastoma, high grade gliomas and embryonal brain tumors have poor overall survival outcomes. In addition to the limited efficacy of conventional chemotherapy and radiation in such patients, these modalities are fraught with toxicities, leaving survivors with long-term deficits including infertility, heart failure, endocrine disruption and a risk of secondary malignancies. Thus, one of the most pressing clinical needs in pediatric oncology remains the identification of agents with potent anti-tumor activity that have limited toxicities. We have discovered that the robust epigenetic landscape plays a vital role in gene expression via its ability to promote or repress transcription. Reprogramming of these processes can lead to genomic instability, which may propagate a cancerous state, and offered a great group of targets for novel therapy development. Thus, our research focuses to combat this reprogramming utilizing novel small molecules to target epigenetic proteins.

Among all the targets that play critical roles in pediatric cancers, we have identified several unique dependencies, such as EP300, CBP, SMARCA2/4, that are all multi-domain proteins in pediatric cancers. While targeting these multi-domain proteins selectively remained challenging, advancements in chemical biology, particularly the development of a novel group of molecules, called proteolysis-targeted chimaeras (PROTACs) or degrader offered additional approach to go after these multi-domain proteins. We have established understanding and design principle to effectively targeting these important proteins selectively. More importantly, we identify the unique biological system that depend on these targets as unique dependencies, and assessed the therapeutic potential of our chemical biology approach. Overall, our chemical biology approach combined with cancer biology discovery entitled us to establish the function of targeted proteins in different cancers, and provide an opportunities for developing novel and effective therapy for cancer, particularly for pediatric cancers.
New Chemical Probes for the Nucleosome Remodeling Factor, NURF, an Emerging Therapeutic Target in Adult and Pediatric cancers

William C. K. Pomerantz

1University of Minnesota, Department of Chemistry 207 Pleasant St SE, Minneapolis, MN
*E-mail: wcp@umn.edu

Protein members of nucleosome remodeling complexes are emerging therapeutic targets. One protein of interest, the Bromodomain PHD Finger Transcription Factor, BPTF, is an essential member of the human nucleosome remodeling factor NURF. In recent years, BPTF has become increasingly identified as a pro-tumorigenic factor, prompting investigations into the molecular mechanisms associated with BPTF function. We recently have shown BPTF inhibition can enhance the effects of chemotherapeutics in triple negative breast cancer and in unpublished data, we have now uncovered a new role for BPTF in neuroblastoma, an aggressive pediatric cancer, through regulation of both MYC and MYCN expression. Despite a wealth of genetic data supporting the oncogenic role of BPTF, the functional role of the individual chromatin binding domains in driving tumor progression are poorly understood. Chemical probes and genetic tools are envisioned to serve as useful chemical biology resources for probing BPTF function both in normal and pathophysiology. Here I will describe our recent efforts developing, small molecule inhibitors of two different chromatin binding domains of BPTF, as well as early efforts developing protein degraders. Here, the role of the individual chromatin binding domains will be discussed using a combination of inhibitor studies, genetic knockdowns, and new CRISPR-edited cells in neuroblastoma cell lines.

To date, our lab has developed novel screening approaches using protein-based 19F NMR, protein crystallography, and supporting biophysical methods to develop both the first inhibitor of the BPTF bromodomain AU1, and a more potent second generation inhibitor BZ1. Our bromodomains inhibitors have been used in both cell-based assays as well as in vivo. Subsequently, we have now identified the first small molecules engaging the PHD domain, the first such chemical matter for this domain which we will discuss for the first time. These tool compounds have helped demonstrate the importance of the bromodomain for mediating transcription as well as serving as a mechanism for reducing MYC occupancy on chromatin. Most recently they have showed synergistic effects with chemotherapeutic drugs in metastatic breast cancer. Finally, I will discuss our initial efforts at developing the first degraders of BPTF as an alternative mechanism to phenocopy genetic knockdowns. Together, these studies set the stage to study the role of the chromatin binding domains of BPTF and subsequently NURF function in neuroblastoma and highlights a potential new anticancer strategy.

References
Mapping the druggability of WD40 Repeat (WDR) proteins

Cheryl Arrowsmith

Structural Genomics Consortium & Department of Medical Biophysics, University of Toronto
Princess Margaret Cancer Centre, Toronto

WD40 Repeat (WDR) proteins comprise one of the largest protein families with ~350 WDR encoding genes in the human genome. Many WDR genes have strong genetic links to human diseases and are involved in a wide variety of cellular processes including epigenetics, ubiquitin signaling, DNA repair, RNA splicing, and immune system signaling (Schapira et al, Nat Rev Drug Disc. 2017). Despite the strong links to disease, an unlike other large target classes such as GPCRs or kinases, the WDR family is under-explored with respect to drug discovery. Based on our previous discoveries of chemical probes to modulate the WDR-containing epigenetic regulators WDR5 and EED, we hypothesized that the WDR protein family harbours many more druggable members, and set out to test this hypothesis by systematically evaluating a broad collection of WDR proteins, evaluating their amenability to several assays used in early drug discovery. As part of this strategy we employed a novel approach in which machine learning (ML) was applied to the output of DNA encoded library (DEL) screens to predict commercially available compounds that were likely to bind to the WDR protein of interest. This approach was previously demonstrated by McCloskey et al (J. Med Chem 2020) for a single member of each of the highly druggable protein kinase, hydrolase, and nuclear receptor target classes. Using the same approach, our results support the concept that many of the understudied WDR domain proteins are generally ligandable, and that DEL-ML is a feasible strategy to identify new WDR ligands.
Chemical Synthesis Enabled by Information.

Timothy Cernak

Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI USA

The invention of medicines by a design-make-test cycle of molecular ideation, chemical synthesis, and bioassay is influenced by the availability of robust chemical reactions such as the amide coupling. In an effort to expand access to chemical space, towards safer and more efficacious medicines, we have explored novel strategies for reaction invention, pursuing novel amine-acid coupling reactions that complement the classic amide coupling. Miniaturized high-throughput experimentation has been essential to the discovery and development of such novel amine-acid couplings. Additionally, the coupling of the design-make-test cycle wherein reaction mixtures are directly subjected to biochemical assays promises to further accelerate the design-make-test cycle. This presentation will highlight some of our recent work in using informatics tools and automation in chemical synthesis, towards a goal of the rapid invention of safe and selective medicines.
Computational hit finding: a long way to go
Matthieu Schapira

University of Toronto, Canada

To discover chemical modulators for all druggable human proteins by year 2035 (the mission of Target2035), more efficient hit-finding technologies need to be developed and validated. Given recent advances in machine learning, artificial intelligence is expected to enable a breakthrough in computational hit finding, as it did with alphaFold for protein structure prediction. To accelerate this process, the Structural Genomics Consortium is initiating a two-pronged approach. First, generate ultra-large, high-quality experimental screening data that can serve as training set for machine learning. Second, organize benchmarking challenges modeled after CASP to engage the AI community and identify the most promising computational methods. The status of these novel initiatives, preliminary results and lessons learned from the CACHE hit finding challenge will be presented.
Discovery and rational development of novel DCAF1 WD40 domain ligands

Serah Kimani1,2, Julie Owen1, Alice Li1,4,5, Brian Wilson4, Stuart Green1, Fengling Li1, Yanjun Li1, Aiping Dong1, Suzanne Ackloo1, David Kuter1, Cindy Yang1, Miranda MacAskill1, Stephen MacKinnon3, Matthieu Schapira1,5, Mahmoud Nourdelin4, Héctor González-Alvarez4, Ahmed Mamai4, Laurent Hofer1, John Guilinger5, Ying Zhang6, Moritz von Rechenberg7, Jeremy Disch7, Christopher Mulhern7, Belinda Slakman7, John Cuozzo7, Gennady Podar4, Mohammed Mohammed4, Punit Saraon4, Manish Mittal8, Pratik Modh1, Vaibhavi Rathod4, Bhattacharjee Pall8, Vijayarathnam Santhakumar1, Magdalena Szweczyk1, Dalia Barsyte-Lovejoy1,5, Richard Marcellus4, Marie-Aude Guieu6, Anthony Keefe1,2,9, Peter Brown1, Rima Al-awar1, Masoud Vedadi1,4,5, Vijay Shahani3, Levon Halabelian1,9

1Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada. 2Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada. 3Recursion Pharmaceuticals, Toronto, ON M5V 2A2, Canada. 4Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada. 5Department of Pharmacology and Toxicology, University of Toronto, ON M5S 1A8, Canada. 6X-Chem Inc., Waltham, Massachusetts 02453, United States of America. 7Relay Therapeutics, Cambridge, Massachusetts 02139, United States of America. 8Piramal Discovery Solutions, Pharmaceutical Special Economic Zone, Ahmedabad, Gujarat 382213, India. 9Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.

*E-mail: l.halabelian@utoronto.ca

DCAF1 (DDB1 and CUL4 Associated Factor 1) is the substrate recognition subunit of Cullin 4 RING ubiquitin E3 ligase (CRL4) complex that is involved in the host ubiquitin proteasome-mediated protein degradation pathway, and is implicated in various cellular processes including DNA replication, transcription, cell cycle progression among many others. It has been identified as a driver of tumorigenesis and other disease processes including DNA replication, transcription, cell cycle progression among many others. Here, we report the discovery and development of novel small molecule ligands targeting the WD40 domain of DCAF1: DNA-encoded library (DEL) screening combined with ZebiAI’s Machine Learning (ML) technology and a proteome-wide drug-target interaction prediction ML technology implemented in Recursion’s MatchMaker. Hits emerging from these efforts were tested experimentally using Surface Plasmon Resonance (SPR), which resulted in the identification of two chemical classes of DCAF1 binders. Co-crystallization studies coupled with structure-activity relationship efforts have led to the synthesis and development of more potent compounds from one of the chemical series, with binding affinities in the lower nanomolar range. Further extension of this hit to develop a PROTAC handle is underway.

Here, we report the discovery and development of novel small-molecule ligands targeting the WD40 domain of DCAF1 by combining DEL screening, ML, structural and biophysical tools.

References

1Nakagawa et al. BMC Molecular Biology. 2013, 14:22.

Acknowledgements

We acknowledge the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (P30 GM124165). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Structural Genomics Consortium is a registered charity (no: 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario Genomics Institute [OGI-196], EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking [EUBOPEN grant 875510], Janssen, Merck KGaA (aka EMD in Canada and US), Pfizer, and Takeda. Funding for the Ontario Institute for Cancer Research is provided by the Government of Ontario.
This work presents a novel approach that integrates deep learning techniques with quantum chemistry calculations to enhance molecular representation. By combining the strengths of both methodologies, we achieve more accurate and comprehensive molecular descriptors. These improved representations have demonstrated utility in predicting a wide range of downstream properties, including physical characteristics and structure-activity relationships in protein binding.
Many have claimed that Artificial Intelligence (AI) will bring about a revolution in drug discovery and development, while others have argued that we are reaching the zenith of a hype cycle that will lead to a period of disillusionment. As is often the case, the truth lies somewhere between these extremes. This presentation will focus on areas where AI is having a real impact on drug discovery and highlight factors that are necessary to increase its utility.
Synucleinopathies are a family of neurodegenerative diseases characterized by the formation of fibrillar aggregates composed primarily of the neuronal protein α-synuclein, including Parkinson’s Disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Positron emission tomography (PET) probes have proved invaluable for monitoring the progression of protein aggregation in Alzheimer’s disease and for the development of first in class antibody therapeutics. Currently, there are no PET probes available to enable similar progress for PD and the other synucleinopathies. We have used a variety of computational methods, including structural modeling, ultra-high throughput virtual screening, and machine learning guided structure activity relationship analysis to identify several candidate PET ligands with 1-10 nM affinity for α-synuclein fibrils.1,2 These ligands are being tested in tissue autoradiography, mouse disease models, and non-human primates to optimize them for human imaging in PD and MSA patients.3,4

References
1. Ferrie et al., Chemical Science, 2020, 11, 12746-12754
2. Hsieh et al., Pharmaceuticals, 2023, 16, 317

Acknowledgments
This work was supported by the National Institutes of Health (U19 NS110456).
The field of biologics drug discovery has witnessed remarkable advancements in recent years, driven in large part by the integration of bioinformatics and machine learning approaches. Biologics, including antibodies, enzymes, and gene therapies, represent a growing class of pharmaceuticals with immense potential for targeting complex diseases. This presentation explores the pivotal role of bioinformatics and machine learning in expediting the discovery and development of biologics through prediction of process/sequence risks, identification of critical sequence elements, and critical process parameters.
2023 ICBS Global Lectureship
Chemical Control of Cell Plasticity
Raphaël Rodriguez
Institut Curie, Paris, France
(no abstract)
Leveraging CRISPR genome editing for chemical genetic approaches at scale

Brian Liau

Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA, USA.

*E-mail: liau@chemistry.harvard.edu

Chemical genetic approaches are powerfully enabling for biological discovery and therapeutics development. The identification of mutant alleles that enhance or suppress the activity of chemical probes may not only validate on-target mechanism but also drive deeper understanding of a small molecule’s binding interactions, molecular mechanism of action, and downstream biological effects. Recent breakthroughs in CRISPR genome editing technologies enable the systematic mutation of endogenous proteins at scale and directly in cells, opening new research paradigms for chemical genetic approaches. Exploiting these new technologies, we have developed and employed in situ CRISPR-mutational scanning approaches to systematically profile protein target(s) sequence-function relationships in their native cellular environment. When leveraged with chemical biology, these mutations in the target can be exploited as discovery tools to study small molecule mechanism of action and target biology, allowing us to uncover mechanisms of allosteric regulation, cell signaling, and cancer vulnerabilities.

We showcase these capabilities through two vignettes exploring the mechanisms of chromatin regulator complexes and the small molecules that target them. First, through the discovery of resistance alleles, we revise the mechanistic role of lysine-specific histone demethylase 1a (LSD1) in leukemia, highlighting how LSD1 active site inhibitors are serendipitously transcription factor inhibitors. By diving deeper into the mechanism of unexpected resistance mutations in the intrinsically disordered N-terminus of LSD1, we show how this region plays a key role in leukemia differentiation, revealing new principles of how unstructured domains can control protein-protein interactions. In the second vignette, we implemented base editor protein scanning to identify mechanisms that regulate DNA methyltransferase 3A (DNMT3A) activity. Utilizing base editor scanning, we have annotated the function of several DNMT3A clinical mutations and uncovered new allosteric mechanisms that govern catalytic activity, nominating potential protein sites for the development of small molecule agonists. I will then conclude by discussing potential future directions of CRISPR genome editing approaches for catalyzing chemical biology research.

References

Acknowledgments

This work was supported by the National Institutes of Health (1DP2GM137494, 1R01CA274437-01A1), the Damon Runyon Cancer Foundation (DDR 60S-20), the American Cancer Society (RSG-22-083-01-DMC), and startup funds from Harvard University.
Understanding and Engineering Precision Genome Editing Tools
Quinn T. Cowan¹, Sifeng Gu¹, Zsolt Bodai¹, Rachel A. Anderson¹, Annika So¹, and Alexis C. Komor*¹
¹University of California, San Diego, La Jolla, CA, USA. ²
*E-mail: akomor@ucsd.edu

Currently, less than 0.5% of identified human single nucleotide variants (SNVs) have a defined clinical interpretation. This represents a major barrier to precision medicine efforts, and new laboratory-based methods to clinically classify genetic variants are needed. Base editors (BEs) enable the programmable installation of point mutations with high efficiency and precision and are thus highly valuable tools for variant classification. Two major classes of BEs exist that convert C•G base pairs to T•A (CBEs) and A•T base pairs to G•C (ABEs). Here, I will describe the development and characterization of aptamer-derived CBEs and ABEs that can be multiplexed with each other orthogonally. These multiplexed orthogonal base editor (MOBE) systems are a valuable addition to the genome editing toolbox, and will aid significantly in efforts to study/model combinations of genetic variants, such as those found in haplotypes, polygenic disorders, and driver-passenger mutation pairs. I will also describe our efforts to characterize the cellular DNA repair factors that process CBE intermediates. This mechanistic information is in turn useful for the development of CBEs with enhanced efficiency and precision.
NSD2 is a requisite subunit of the AR neo-enhanceosome in promoting prostate tumorigenesis

Abhijit Parolia1,2,3,4, Sanjana Eyunni1,2,5,7, Brijesh Kumar Verma6,*, Eleanor Young1, James George1, Sweta Aras6, Jie Luo1,2, Sandra E. Carson1, Rahul Mannan1,2, Yuanyuan Qiao1,2, Tongchen He1, Lanbo Xiao1,2, Chandan Kanta Das6, Mustapha Jaber1, Yihan Liu1,7, Reyaz ur Rasool6, Prathibha Gajjala1,2, Matthew Pang1, ..., Mohammed Alhusayan6, Erick Mitchell-Velasquez6, Yuping Zhang1,2, Jessica Waninger1, Fengyun Su1,2, Rui Wang1,2, Xuhong Cao1,2,8, Lianchao Liu9, Zhen Wang9, Ke Ding9, Arul Chinnaiyan1,2,3,4,8,9, and Irfan Asangani6,10,11.

1Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA. 2Department of Pathology, University of Michigan, Ann Arbor, MI, USA. 3Rigel Cancer Center, University of Michigan, Ann Arbor, MI, USA. 4Department of Urology, University of Michigan, Ann Arbor, MI, USA. 5Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA. 6Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 7Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA. 8Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. 9State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China. 10Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 11Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

* These authors contributed equally.

Corresponding authors.

Abstract:
The androgen receptor (AR) is a ligand-responsive transcription factor that binds FOXA1-pioneered enhancers as a homodimer at palindromic DNA response elements. Prostate cancer (PCa) is highly dependent on the AR enhanceosome complex, and in castration-resistant disease, this dependency is reinforced through alterations in the AR pathway. This involves extensive redistribution of AR on the chromatin, away from its physiologic proliferation and metastatic gene programs. However, essential subunits of the AR neo-enhanceosome and its exclusive target genes remain uncharacterized. Here, we CRISPR-engineered an endogenous AR reporter system by fusing the mCherry sequence in-frame with the KLK3 gene and conducted a knock-out screen to identify druggable chromatin/epigenetic cofactors of AR. Ranked alongside BRD4 and TRIM24, we identified NSD2 as a novel AR coactivator. NSD2 is a histone 3 lysine 3 methyltransferase that activates gene expression. In PCa cells, inhibition of NSD2’s catalytic function attenuated the AR targets without affecting the abundance of AR or FOXA1. ChIP-seq profiles of AR in NSD2-deficient PCa cells showed its dramatic off-loading from over 40,000 genomic sites (>65% of the cistrome). Strikingly, motif analyses of the NSD2-dependent AR sites identified a marked enrichment of a hexameric 5′-AGAACA-3′ AR half-site juxtaposed to the FOXA1 DNA sequence. In contrast, NSD2-independent AR sites, a large fraction of which showed increased AR binding, housed the canonical 15-bp palindromic AR motif with two invertedly-oriented half-sites recognized by each half of the AR homodimer. Meta-analyses of primary AR cistromes from patient samples revealed AR loading at degenerate half-sites to be a defining feature of the tumor-specific neo-enhancer circuitry. Concordantly, NSD2-inactivation in PCa cells attenuated cancer hallmark phenotypes such as colony formation, invasion, hyper-proliferation, and in vivo grafting. Further, we found that NSD2 through its HMG domain interacts with the AR transcriptional complex, and that NSD2-deficiency engendered enhanced dependency on its paralog NSD1 in PCa cells. To therapeutically exploit these findings, we developed a first-in-field dual NSD1/2 PROTAC, called LLC0150. This compound showed preferential cytotoxicity in AR/FOXA1+ PCa relative to the AR-negative disease, as well as other cancer and normal cell lines from 22 distinct lineages. In a pan-cancer screening comprising over 120 cell lines, treatment with LLC0150 triggered apoptotic death in AR/FOXA1+ tumors, notably including NSD2-driven acute lymphocytic leukemia and multiple myeloma. Altogether, we identify NSD2 as a novel AR neo-cofactor that assists FOXA1 in loading the AR enhanceosome at degenerate, low-affinity AR motifs, thereby wiring its oncogenic gene programs. Furthermore, we develop a dual NSD1/2 PROTAC that selectively kills AR-driven prostate and NSD2-altered tumors, positioning NSD-targeted agents and novel tools of cancer therapy.
Enabling Technologies for Revealing the Druggability of RNA-Protein Interactions
Amanda L. Garner*
1Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520/3343, Ann Arbor, MI, USA
*E-mail: algarner@umich.edu
RNAs are invariably bound to and often modified by RNA-binding proteins (RBPs), which regulate many aspects of coding and non-coding RNA biology. Disruption of this network of RNA-protein interactions (RPIs) has been implicated in a number of human diseases and targeting RPIs has arisen as a new frontier in RNA-targeted drug discovery. This talk will highlight newly developed technologies by the Garner laboratory for validating and screening RPIs to enable RBP-targeted drug discovery.

References

Acknowledgments
We acknowledge funding from the NIH (R01 GM135252) and Merck Sharp and Dohme LLC.
Rethinking the Paradigm: New roles for miRNA in controlling the proteome and glycome

Lara K. Mahal 1*

1 Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2
*E-mail: lkmahal@ualberta.ca

microRNAs (miRNAs, miRs) are small non-coding RNA that tune protein expression through modulation of mRNA. The canonical view of miRNAs is that they are posttranscriptional repressors, binding to the 3'-untranslated region (UTR) of mRNA and causing mRNA destabilization and/or loss of translation. Using our recently developed high-throughput fluorescence assay (miRFluR)1, we have comprehensively mapped the miRNA regulatory landscape of multiple proteins, including glycosylation enzymes2-3, and discovered, contrary to expectations, miRNA predominantly upregulate protein expression of some messages. Our results upend common assumptions surrounding miRNA, arguing that upregulation by these non-coding RNA is common. Here I discuss my laboratory’s latest work on miRNA-mediated protein upregulation and underlying mechanisms.

References

Acknowledgments
The Mahal Laboratory thanks the Canada Excellence Research Chair Program (CERC in Glycomics) for support.
Targeting RNA-binding proteins and RNA modification with small-molecule inhibitors

Peng Wu*

1Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
2Department Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
*E-mail: peng.wu@mpi-dortmund.mpg.de

The pervasive interactions between RNAs and RNA-binding proteins (RBPs) regulate all aspects of RNA biology and metabolism. Dysregulation of the interplay between RNAs and RBPs is closely associated with diseased cellular states, leading to a wide range of human disorders. Consequently, the identification of small molecules targeting either RBPs or structured RNAs has emerged as an attractive strategy for the development of biological probes and therapeutic candidates. Whereas small molecules have been reported for different RNA species with varied structured elements, the majority of RBPs remain challenging targets to be addressed by small molecules, partially due to the lack of a classical deep ligand-binding pocket and corresponding discovery approaches. Therefore, we aim to develop RBP-targeting small-molecule modulators by using a multifaceted approach combining screening and rational design methods for chemical biology and medicinal chemistry research. In this talk, I will present our latest results in the identification of such small molecules by targeting RNA-binding proteins involved in the recognition and installation of the m6A RNA modification, which is the most abundant and conserved RNA modification in eukaryotes. The identified first-in-class small-molecule inhibitors targeting m6A-binding and modifying proteins offer an opportunity to study protein–RNA interactions and RNA metabolism at the post-transcriptional level.
Nitrative Stress on Lipid Membranes and Surfactants: Nitrative stress, a critical redox condition characterized by the presence of peroxynitrite (ONOO\(^-\)), can alter the integrity of biomolecules and its dysregulation is associated with a number of human pathologies (1). We have developed a membrane-localized phospholipid (DPPC-TC-ONOO\(^-\)) that allows, for the first time, the high-fidelity detection of nitrative stress in diverse lipid environments and interfaces: biomimetic vesicles, cell compartments, and within the lung lining (Fig. 1) (2). Real-time confocal imaging demonstrated substantial fluorescence enhancement of the ER in HeLa and RAW cells under nitrative stress induced d through endogenous stimulation (Fig. 1A). Further, we successfully demonstrated the biological potential of DPPC-TC-ONOO\(^-\) through murine models of ex vivo and in vivo acute lung injury (ALI). We observed iNOS-dependent nitrative stress around bronchioles in precision-cut lung slices (Fig. 1B) and in pulmonary macrophages (Fig. 1C) following ALI.

Assessment of nitrative stress pathways in and tissue environments opens the opportunity understanding lung homeostasis and inflammation resolution. In the long term, gained from these investigations could contribute development of therapeutic approaches for lung injury and pulmonary fibrosis.

Advancing the Application Space of Aptasensors: Many biological targets (e.g., molecules, metabolites) have no fluorogenicity or known aptamer. Recently, we developed a small-approach that allows a single RNA aptamer, bind a specific organic ligand, to detect structurally diverse and non-fluorogenic inorganic targets (Fig. 2) (3). We successfully adapted this method to E. coli competent cells (BL21-DE3), which transformed them into cell-based biosensors. This approach substantially expands the capabilities of aptamers for diagnostics and synthetic biology.

In addition, we studied the detection of miR-21, miR-19b, and miR-92a, which are closely associated with dysfunctional physiology, especially cancer (Fig. 3) (4). MiR-21 downregulates tumour-suppressing proteins (5), and miR-19b and miR-92a are part of the oncogenic miR-17/92 cluster, which promotes Myc-dependent tumour growth (6). All these miRNAs are upregulated in a number of cancer types. However, each has a hybridization characteristic or secondary structure that challenges the design of a typical aptasensor or molecular beacon. We developed split DNA aptamers that enhance fluorescence of 4,4'-((iminomethylene)bis(N,N-dimethylaniline)) (AO) in the presence of the miRNA target. With minimal sample handling, we achieved single-nucleotide specificity in the medium collected from cultured HeLa cells, human serum, and plasma.

Acknowledgments. We thank Andrew Gow and his group (Rutgers Pharmacy) for in vivo studies. We acknowledge financial support by the US National Institutes of Health / National Institute of Biomedical Imaging and Bioengineering, Trailblazer Award (EB029548), the Rutgers Center for Lipid Research, the American Cancer Society (Institutional Research Grant Early Investigator Award) and the Rutgers Cancer Institute of New Jersey NCI Cancer Center Support Grant (P30CA072720), and Steven A. Cox Scholarship for Cancer Research.
Human Pluripotent Stem Cell, Organoids and Drug Screening
Shuibing Chen¹ ²
¹Department of Surgery, Weill Cornell Medicine, New York, NY, 10065
²Center for Genomic Health, Weill Cornell Medicine, New York, NY, 10065

Organoids are miniaturized, in vitro-grown organs that closely resemble the functional, structural, and biological complexity of in vivo organs. They can be derived from either human pluripotent stem cell (hPSCs) or adult tissues. Notable, hPSC-derived organoids offer enhanced complexity and scalability compared to those derived from adult tissue-derived organoids. In the early years of my scientific career, we conducted high throughput/content chemical screens and identified several small molecules promoting hPSC differentiation toward pancreatic β cells, pancreatic ductal epithelial cells, cardiac pacemaker cells, colon organoids, and more. We established an hPSC platform encompassing over 14 types of hPSC-derived cells and organoids, including endoderm derivatives, such as pancreatic endocrine, colonic, small intestinal, alveolar, airway, liver organoids, mesoderm derivatives, such as cardiomyocytes, endothelial cells, pacemaker cells, macrophages, etc, and ectoderm derivatives, such as cerebral organoids.

We are interested in applying this multi-organoid platform to study common diseases. Compared to traditional in vitro models, human organoids more accurately recapitulate the intricate cellular components and three-dimensional tissue architecture, making them increasingly popular for modeling human diseases. While most previous organoid-based disease modeling has focused on rare diseases caused by single gene/mutation, common diseases affect entire populations, involve multiple organs, and are associated with complex genetics. In our previous studies, we have used this multi-organoid platform to demonstrate the key concepts of applying organoid to study common diseases, including isogenic hPSCs to study the individual genetic variants identified from population-based genome-wide associate studies (GWAS), induced pluripotent stem cell (iPSC)-based GWAS, multiple organoids models to examine organ/tissue-specific host response, and immune-host mini-tissue to mimic the immune cell-mediated host response. Our current focus is on applying the hPSC-derived organoid platform to systematically investigate the impact of genetic and environmental factors on disease progression, with the aim of developing precision medicine for common diseases.
Patient-Derived Micro-Organospheres Enable Precision Oncology

Xiling Shen
Duke University
E-mail: xiling.shen@duke.edu

Patient-derived xenografts (PDX) and organoids (PDO) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here we used droplet emulsion to rapidly generate thousands of Micro-Organospheres (MOS) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of newly diagnosed metastatic colorectal cancer (CRC) patients using a MOS-based precision oncology pipeline reliably predicted patient treatment outcome within 14 days, a timeline suitable for guiding treatment decisions in clinic. Furthermore, MOS capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors. Lastly, we demonstrate an ultra high-throughput MOS screening platform that provides “virtual clinical trials” to capture patient diversity for determining drug efficacy.
Identifying drugs effective to target head and neck squamous cell cancer using a drug repurposing library on organoids.

Elena S. Reckzeh1,2*, Daniel Krüger1, Else Driehuis1, Martina Celotti1, Rosemary Millen1, Mandy Koomen1, Roàn Gobits1, Cor Lieftink2, Roderick Beijersbergen1, Remko de Bree4, Lot Devriese4, Hans Clevers1*

1Hubrecht Institute for Developmental Biology & Stem Cell Research, Oncode Institute, Uppsalalaan 8, Utrecht, The Netherlands
2University of Bonn, TRA “Life & Health”, LIMES Institute, Carl-Troll-Str. 31, Bonn, Germany
3The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
4University Medical Center Utrecht, Oncology, Heidelbergaan 100, Utrecht, The Netherlands

*E-mail: h.clevers@hubrecht.eu, e.reckzeh@uni-bonn.de

Advanced stage head and neck squamous cell carcinoma (incidence >700,000 yearly worldwide) is generally treated with surgery combined with adjuvant (chemo)radiotherapy.1 Despite these interventions, up to 60% of patients relapse or do not qualify for treatment due to inadequate fitness. Hence, therapeutic alternatives are urgently needed for these patients. Organoids have been shown to recapitulate the patients’ tumor and treatment response.2,3 Hence, we conducted a high-throughput drug repurposing screen (>5,600 compounds) in patient-derived head and neck squamous cell carcinoma (HNSCC) organoids and identified novel potential clinical candidates, which we validated for their efficacy, tumor selectivity, mode-of-action and toxicology profile. We identified two final hits with extraordinary sensitivity differences between normal and tumor organoid lines from 4 and 10 distinct donors, respectively. The final hits are tested in MicroOrganoSpheres™, which are generated directly from tissue and include cancer-associated fibroblasts, tumor organoids and immune cells, to estimate the potential cancer selectivity.4 Ultimately, we aim to conduct clinical studies in HNSCC. Drug repurposing screens have been described in patient-derived organoids before.5,6 However, to our knowledge, this is the largest drug screen ever reported in patient-derived organoids.

From initial drug and compound screens to mode-of-action investigations, toxicology studies and pharmacokinetic predictions, success stands and falls with the right in vitro models. The era of stem cell-derived organoid models has the potential to increase clinical relevance for all of these research areas, which could accelerate successful drug development and reduce failure of potential drugs in clinical stages.

References
3. Campaner et al., Cancers (Basel), 2020, 12, 3869
5. Hirt et al., Cell Genomics., 2022, 2, 100095

Acknowledgments
We thank the Oncode institute for funding this screening campaign under P2021-0021. E.S.R. is thankful for the support through the Human Frontier Science Program LT000410/2021-C.
Neo-protein-protein interactions as a new dimension of cancer genome: discovery and intervention

Haian Fu
Department of Pharmacology and Chemical Biology, Emory University School of Medicine; and Winship Cancer Institute of Emory University, Atlanta, GA 30322
E-mail: hfu@emory.edu

Oncogenic mutations represent cancer-specific features that offer unprecedented opportunities for mutation-directed therapeutic strategies. Here we describe the discovery of prevalent variant-enabled neo-protein-protein interactions (neoPPI) and mutation-disabled hypo-PPIs. Analysis of the established neoPPI network suggests unique oncogenic re-wiring mechanisms supported by chemical synthetic lethal studies, revealing the BRAFV600E-KEAP1 signaling axis. On the other hand, mutation-disabled hypo-PPIs offer opportunities to develop mutation-specific molecular glues. A case study with mutated SMAD4 will be presented to illustrate our systematic approach to identify small molecule glues, which can restore the PPI and re-activate its lost function. Our studies highlight a functional dimension of the cancer genome to inform variant-directed therapeutic strategies for precision medicine.
Deciphering the chemical crosstalk of host-gut microbiota interactions

Pamela V. Chang1,2*
1Department of Chemistry and Chemical Biology; 2Department of Microbiology and Immunology, Cornell University, 930 Campus Road, Ithaca, NY 14853 USA
*Email: pvc29@cornell.edu

The metagenome of the gut microbiome encodes tremendous potential for the biosynthesis and transformation of small-molecule metabolites through the activity of many enzymes expressed by the intestinal bacteria. The metabolic activity of this gut bioreactor provides numerous important functions for the host, including breaking down indigestible components of our diet, biosynthesizing essential vitamins and nutrients, and regulating the development of our immune system. Accordingly, elucidating the metabolic potential of the multitude of potential enzymatic reactions is critical for understanding how the activities of the gut microbiota contribute to human health and physiology. Therefore, there is a critical need for new technologies that can determine the enzymatic activities of the gut microbiome because these activities cannot be directly determined by existing metagenomic approaches used to profile microbial taxonomy by genetic content. Activity-based probes, which are mechanism-based covalent tags for enzyme active sites, represent a powerful chemical approach for directly identifying and profiling enzymatic activities. Here, we have developed activity-based probes for a class of cysteine proteases known as bile salt hydrolases (BSHs), which are gate keeper enzymes of gut microbial transformation of host-derived, or primary, bile acids into a large and diverse group of secondary bile acids. These important metabolites regulate myriad host biological processes, including metabolism, gut barrier function, and immune homeostasis. In addition, changes in bile acid levels are known to accompany different physiological states. However, the role of BSH activity in these processes remains poorly understood due to the lack of adequate tools to address its function. To address this critical gap in knowledge, we have applied our chemical approach to profile BSH activity in gut microbiomes using healthy and diseased samples.

References
Parasar et al., ACS Central Science, 2019, 5, 867-873.

Acknowledgments
This work was supported by the R35 Maximizing Investigators’ Research Award for Early Stage Investigators (R35GM133501). We thank the staff in the Proteomics and Genomics Facilities at the Biotechnology Resource Center of Cornell University and NIH SIG 1S10 OD017992-01 grant support for the Orbitrap Fusion mass spectrometer. We also thank the Cornell University NMR Facility, which is supported, in part, by the NSF through MRI award CHE-1531632.
DrugMap: A quantitative pan-cancer analysis of cysteine ligandability
Mariko Takahashi1,2, Harrison Chong1, Siwen Zhang1, Matthew Lazarov1, Stefan Harry1, Kira Vordermark1, Hanna Griesshaber1, Tobias Hosp1, Jonathan Assaad1, Magdy Gohar1, Farah Makram1, Tzu-yi Yang1, Himani Patel1, Marianne Richter1, Liron Bar-Peled1,2

1Massachusetts General Hospital Center of Cancer Research, 149 13th St, Charlestown, MA, USA. 2Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
*E-mail: lbar-peled@mgh.harvard.edu

Cysteine-focused chemical proteomic platforms have expanded the repertoire of protein targets for covalent inhibitors. However, it remains unknown how cysteine targeting varies across multiple cancer contexts. To address this question, we compiled an atlas of cysteine ligandability across 417 cancer cell lines. We unexpectedly find that cysteine ligandability fluctuates across cancers, which we attribute to differences in cellular redox state, protein expression and mutation. Focusing on lineage-restricted liganding, we identify a highly actionable cysteine in SOX10, leveraging this information to develop covalent inhibitors that disrupt the transcription factor. We find the SOX10 ligand functions as a covalent molecular glue and disrupts transcriptional activity in a dominant negative manner, leading to inhibition of melanoma proliferation. Our findings reveal pervasive heterogeneity in cysteine ligandability across cancer, pinpoint cell-intrinsic features driving cysteine targeting, and exemplify the use of covalent probes to disrupt oncogenic transcription factor activity.

References
1, Bar-Peled et al., Cell, 2017, 171, 696-709
2, Kuljanin et al., Nat Biotech, 2021, 5, 630-641
3, Henley et al., Nat Rev Drug Discov. 2021, 9, 669-688

Acknowledgments
This work was supported by the Damon Runyon Cancer Research Foundation (62-20), the American Association for Cancer Research (19-20-45-BARP), the American Cancer Society, the Melanoma Research Alliance, the Ludwig Cancer Center of Harvard Medical School, LUNGevity, ALKPositive, V-Foundation, Mary Kay Foundation, Paula and Rodger Riney Foundation, and the NIH/NCI (1R21CA226082-01, R37CA260062 to L.B.-P).
A chemical probe to modulate human GID4 Pro/N-degron interactions

Matthew E.R. Maitland1,4, Dominic D.G. Owens1, Aliakbar Khalili Yazdi1, Viviane Reber5, Martin P. Schwalm6, Nicolas Bauer6, Magdalena M. Szweczyk1, Xu Wang2, Feng Wang7, Matthieu Schapira1, Stefan Knapp8, Matthias Gstaiger3, Masoud Vedadi1, Jinrong Min1, Dafydd R. Owen6, Dalia Barsyte-Lovejoy1, Gilles A. Lajoie3,4, Caroline Schild-Poultier2,3, Cheryl H. Arrowsmith1*
1Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada. 2Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
3Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada. 4Don Rix Protein Identification Facility, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.
5Institute of Molecular Systems Biology at ETH Zurich, Zurich, Switzerland. 6Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. 7Pfizer Worldwide Research, Development & Medical, Groton, CT, USA. 8Pfizer Worldwide Research, Development & Medical, Cambridge, MA, USA.
*E-mail: cheryl.arrowsmith@uhnresearch.ca

Protein turnover is an incompletely understood aspect of biology, important for various processes including adaptation to environmental stimuli. In Saccharomyces cerevisiae, glucose triggers ubiquitination and proteasomal degradation of gluconeogenic enzymes which bear N-terminal Proline degron sequences (Pro/N-degrons). The Pro/N-degrons are recognized by a β-barrel substrate binding pocket in Gid4, a substrate receptor for the GID/CTLH multi-subunit E3 ligase. Though GID4 and this E3 ligase complex are evolutionary conserved, the targets of the Pro/N-degron pathway beyond S. cerevisiae remain undefined. Here, we report PFI-7, a potent, selective, and cell-active chemical probe that binds in the human GID4 β-barrel pocket to antagonize Pro/N-degron binding. Use of PFI-7 in proximity-dependent biotinylation proteomics enabled the identification of dozens of endogenous GID4-interacting proteins that bind via the GID4 substrate binding pocket. GID4 interactors, including those with canonical Pro/N-degron sequences, are enriched for nuclear and nucleolar proteins including RNA helicases. GID4 antagonism by PFI-7 altered protein levels of several proteins including RNA helicases as measured by label-free quantitative proteomics. Together, PFI-7 and the proteomic datasets profiled the Pro/N-degron pathway in humans, which revealed insights into GID4 and CTLH complex biology and their potential use for targeted protein degradation. Overall, the work demonstrates the utility of combining chemical probes and proteomics for biological discovery which we will continue to exploit going forward.

References

Acknowledgments
This work was supported by Mitacs Elevate Postdoctoral Fellowship to D.D.G.O, funding from the Canadian Institutes for Health Research (CIHR) (MOP-142414 and PJT-169101 to C.S-P; FDN154328 to C.H.A.), and NSERC grant RGPIN-2021-02728 to J.M. D.B-L. is supported by NSERC grant 2021-03435 and CRS grant 25418. M.P.S is funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation), CRC1430 (Project-ID 42428829). We thank M. Robers and K. Riching from Promega for advising on the NanoBRET and target engagement assays. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Mass spectrometry analyses were performed on equipment funded by a grant from the Canada Foundation for Innovation to G.A.L. The Structural Genomics Consortium is a registered charity (no: 1097737) that receives funds from Bayer AG, Boehringer Ingelheim, Bristol Myers Squibb, Genentech, Genome Canada through Ontario Genomics Institute [OGI-196], EU/EFPIA/OICR/McGill/KTH/Diamond Innovative Medicines Initiative 2 Joint Undertaking [EUbOPEN grant 875510], Janssen, Merck KGaA (aka EMD in Canada and US), Pfizer and Takeda.
As the science field advances and evolves, the need for platforms to efficiently organize and manage data becomes increasingly relevant. As a company, Collaborative Drug Discovery (CDD) started out as a way for chemists and biologists to share data easily as part of the classical model of drug discovery projects. In the current state, “drugs” are starting to look less like small molecules and start to resemble entities that are larger and cross into the realm of biologics. Tracking structure activity relationships of biologics is just as important as that of small molecule medicinal chemistry.

Collaborative Drug Discovery (CDD) provides a whole solution for today’s biological and chemical data needs, including the ability to register many different types of entities like DNA, RNA, and amino acid sequences. CDD Vault® is differentiated from other platforms by ease-of-use and superior collaborative capabilities. The software includes Activity & Registration, Visualization, Inventory, and ELN capabilities. Researchers can archive, mine, and securely collaborate within CDD Vault. Collaborative hypothesis generation and evaluation allow multiple perspectives for multi-parameter optimization.
2. Light Controlled Reversible Michael Addition of Cysteine: A New Tool for Dynamic Site-Specific Labeling of Proteins

Soham Maity,1 Courtney Bingham,1 Wei Sheng, Nona Ehyaei, Debarshi Chakraborty, Setare Tahmasebi-Nick, Thomas E Kimmel, Chrysoula Vasileiou, James H Geiger, ** Babak Borhan*
Department of Chemistry, Michigan State University, 578 S. Shaw Ln., East Lansing, MI 48824.
*E-mail: babak@chemistry.msu.edu

The use of cysteine-based Michael addition is a popular method for covalently bonding proteins, peptides, and drugs together. However, this reaction is typically irreversible, making it difficult to control. Our team conducted spectroscopic analyses and X-ray crystallography to demonstrate how an engineered cysteine residue in human Cellular Retinol Binding Protein II (hCRBPII) can undergo Michael addition with a coumarin analog, resulting in a non-fluorescent complex. By using UV-illumination, the conjugation can be reversed, yielding a fluorescent species through a retro-Michael process. This process can be repeated between a bound and non-bound form of the cysteine, allowing for ON-OFF control of fluorescence. We were able to confirm the mechanism by recreating the process in light-irradiated single crystals.

References
Maity et. al., Analyst, 2023, 148, 1085-1092

Acknowledgments
We are grateful to the NIH for support.
3. Harnessing Encapsulins for Intracellular Organometallic and Enzymatic Catalysis

Mariia Zmyslia, Philipp Lohner, Dr. Claudia Jessen-Trefzer

University of Freiburg, Stefan-Meier-Str.19, 79104 Freiburg, Germany
mariia.zmyslia@ocbc.uni-freiburg.de; claudia.jessen-trefzer@pharmazie.uni-freiburg.de

*E-mail: mariia.zmyslia@ocbc.uni-freiburg.de

Subcellular compartmentalization is a fundamental strategy used by all organisms to enable regulation and fine-tuning of metabolic processes. Cells utilize compartmentalization to create specific microenvironments, segregate incompatible biochemical reactions and pathways, or protect themselves from toxic by-products [1]. Encapsulins (Enc), self-assembling protein-based bacterial nanocompartments, are a highly attractive platform for enzyme compartmentalization. Encapsulins are temperature and pH-stable [2] and promote highly selective packaging of co-expressed proteins through a conserved amino acid sequence (encapsulin localization sequence, ELS) at their C-terminus [3–5]. Non-native cargo proteins can be directed inside Enc via simple tagging with ELS, enabling self-assembly of the new functional compartment [3–5].

In this study, we describe the first targeted incorporation of an organometallic catalyst to the interior of Enc from *Mycobacterium smegmatis* (EncSM) enabled by a HaloTag-ELS construct (EncSM[HaloTag]). The approach is versatile, as the HaloTag-ELS strategy enables the introduction of many different metal/ligand systems new to biology, provided they operate in water. We explore, as a proof of concept reaction, the ruthenium-catalyzed deallylation of a profluorophore inside the Enc nanoreactor.

Upon installing a transition metal catalyst inside the capsule, we show that catalysis inside this capsule is possible and that encapsulation affects reaction yields. The deallylation of a profluorophore takes place with lower yields with the HaloTag-PEG3-Ru construct outside of the capsule compared to within encapsulin. We go on to demonstrate that the same reaction is also efficiently catalyzed inside a living cell line that takes up the engineered Enc and produces localized fluorescent vesicles [6].

To investigate enzyme catalysis in EncSM nanocompartment, we explore encapsulation of nitroreductase NfsB from *E. coli* (NTR). The combination of encapsulated NTR with nitroaromatic prodrugs is a promising approach in enzyme prodrug therapy by minimizing toxicity to healthy cells and increasing the concentration of drugs against cancer cells. Since NTR is an obligate dimer, we show that a tandem–dimer configuration (tdNTR), where NTR monomers are connected by a floppy 22-residue linker, enhances enzyme stability [8] and ensures correct packaging of the enzyme inside the nanocompartment, retaining its activity. In vitro prodrug activation is confirmed by LC/MS analysis after incubation with free and encapsulated tdNTR (EncSM[td-NTR]).

In line with this, extracellular prodrug activation proves that EncSM[td-NTR] and 1-(4-Nitrobenzoyl)piperidine prodrug are a promising combination and prodrug activation leads to a decrease in cell viability. On the other hand, in cellulo prodrug activation is not sufficient for a significant decrease in cell viability.

A performed co-localization study shows that the taken-up Enc particles are found together with Lysotracker dye. Therefore, we hypothesize that the encapsulated enzyme is trapped in lysosomes, where it cannot activate the prodrug, as the required co-factor NADH is not present in the lysosomal environment. Surface modification/optimization of EncSM shell is necessary to influence the cellular fate of nanoparticles and direct the encapsulated enzyme to the cytosol, where it can unravel its action.

References

4. Epichaperome imaging probes for precision medicine in Alzheimer's disease

Sahil Sharma1, Vilma Jallinoja2, Chander S. Digwal3, Anna Rodina3, Palak Panchal3, Sadik Bay3, Tanaya Roychowdhury1, Stephen D. Ginsberg1,4, Makoto Ishi5,6, Naga Vara Kishore Pillarsetty2,7, and Gabriela Chiosis1,8*

1Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA; 2Department of Radiology, Memorial Sloan Kettering Cancer Center, MSKCC Zuckerman Building, 417 E 68th St, New York, NY, 10065, USA; 3Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; 4Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; 5Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; 6Department of Neurology, Weill Cornell Medicine, New York, NY, USA; 7Department of Radiology, Weill Cornell Medicine, New York, NY, USA; 8Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

*E-mail: chiosisg@mskcc.org

Alzheimer’s disease (AD) is a multifaceted disorder influenced by a convergence of genetic, epigenetic, and environmental factors, resulting in personalized alterations to brain circuitry and cognitive decline. The identification of therapeutic targets for halting AD progression remains challenging due to the intricate involvement of multiple pathological pathways. Our interdisciplinary team has recently unveiled a crucial link: stressors and vulnerabilities associated with AD impact protein-protein interaction (PPI) networks via specialized structures known as epichaperomes. This discovery offers a central mechanism that unifies the spectrum of AD pathology.

Epichaperomes, long-lived formations uniquely found in afflicted cells, consist of chaperones and other components. Their emergence disrupts essential protein interactions within cells, exerting detrimental effects on neural and cerebral function. Elevated epichaperome levels correlate with more pronounced disruptions in molecular interactions within affected cells, influencing critical AD-associated biological processes including synaptic plasticity, intercellular communication, protein translation, cell cycle re-entry, axon guidance, metabolism, and inflammation. Promisingly, preclinical investigations reveal that targeted intervention with small molecules capable of dismantling epichaperomes restores protein network connectivity and cognitive function to baseline levels. This work establishes epichaperomes as a promising avenue for rectifying functional imbalances linked to AD. Notably, these structures manifest specifically in cells exposed to chronic stressors associated with AD onset and progression, rendering them amenable to imaging and targeting using purpose-designed small molecule probes. However, ensuring selectivity for pathogenic chaperone assemblies (epichaperomes) over physiological chaperone assemblies poses challenges due to the abundance and resemblance of chaperones compared to epichaperomes.

We will present our endeavors in the creation, synthesis, and characterization of small molecule epichaperome probes. Through a spectrum of biochemical and functional assays encompassing in vitro and in vivo experiments, including investigations in both murine and human models, we demonstrate the kinetic selectivity of small molecule HSP90 binders. This selectivity effectively distinguishes the minute fraction of HSP90 residing in epichaperomes from the prevalent HSP90 pools distributed throughout the cell and body. Additionally, we will present evidence derived from murine models, elucidating how an epichaperome imaging probe can unveil region- and age-dependent epichaperome formation within disease-relevant brain regions. Moreover, we outline results from a preliminary clinical feasibility study showcasing the feasibility of imaging and quantifying epichaperomes in human patients through PET scans.

In conclusion, epichaperome imaging tools offer significant diagnostic potential for AD. When amalgamated with anatomical and other neuroimaging techniques, as well as plasma biomarkers, these tools hold promise for diagnosing and quantifying molecular changes underpinning functional deterioration in the AD-afflicted brain, even preceding tau and amyloid pathologies. Additionally, they can serve as indispensable companions in the development of epichaperome-targeting therapeutics, aiding in patient selection, real-time monitoring of target engagement by epichaperome disruptors, and quantitative assessments to optimize dosing and treatment regimens.

References
1. Inda et al., Nature Communications, 2020, 11, 319.

Acknowledgments
This work was supported by the National Institutes of Health (RF1 AG071805, U01 AG032969, R56 AG061869, R56 AG072599, R01 AG067598, R01 AG074004, R01 AG067598), Coins for Alzheimer’s Research, the Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and the Experimental Therapeutics Center of the Memorial Sloan Kettering Cancer Center, the MSKCC Brain Tumor Center, P30 CA008748 (NCI Core Facility Grant) and U54 OD020355. Technical services provided by the MSKCC Small-Animal Imaging Core Facility, supported in part by NIH Small-Animal Imaging Research Program Grant No R24 CA83084 are gratefully acknowledged. Acknowledgment is made to the donors of Alzheimer’s disease Research, a program of BrightFocus Foundation (Award ID: A2022020F) for support of this research.
5. An activity-based covalent photoacoustic imaging probe targeting NCEH1 for in vivo tumor imaging

Jiho Song*,1, Tianqu Zhai*,2, Heung Sik Hahm¹, Xueding Wang², Janggun Jo², and Jae Won Chang*¹
₁Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, GA 30322, USA. ²Department of Biomedical Engineering, The University of Michigan, 1150 W Medical Center Dr, Ann Arbor, MI 48109, USA. *These authors contributed equally.
*Jae.Won.Chang@emory.edu

Photoacoustic (PA) imaging is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PA imaging still has some obstacles, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based photoacoustic imaging probe, NOx-JS013, targeting the cancer-associated serine hydrolase NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also successfully visualizes tumor regions in mouse models of PC3, which is aggressive prostate cancer, while negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings indicate that NOx-JS013 presents an exciting opportunity to develop a new class of precision PA imaging reagents that report on a marker of metastatic progression in several cancers.

Acknowledgments
This work was supported by Winship Cancer Institute of Emory University and Prostate Cancer Foundation (19YOUN12)
6. Chemical biology approaches to target the “undruggable” SMAD4 protein

Pooja Kumari¹, Kenny Ouyang¹, Qiankun Niu¹, Dacheng Fan¹, Andrey Ivanov¹,², Yuhong Du¹,², Haian Fu¹,², Xiulei Mo¹*

¹Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Road, Atlanta, USA
²Emory Chemical Biology Discovery Center, Emory University, 1510 Clifton Road, Atlanta, USA
*E-mail: xiu-lei.mo@emory.edu

Transforming growth factor-beta (TGFβ) signaling plays fundamental roles in numerous physiological processes, including embryonic development, tissue differentiation, and homeostasis. Dysregulation of the TGFβ pathway has been closely associated with multiple diseases such as cancer, fibrosis, inflammation, autoimmune diseases, Juvenile Polyposis Syndrome, and Myhre syndrome. Therefore, the TGFβ pathway presents a promising therapeutic target. Currently, therapeutic approaches focus on inhibiting upstream TGFβ and its receptors through neutralizing antibodies, receptor kinase inhibitors, and antisense oligonucleotides for the treatment of cancer and fibrosis. However, no therapeutic agents have received FDA approval. Herein, we present our versatile chemical biology discovery platforms aimed at targeting the SMAD4 protein to expand the existing repertoire of anti-TGFβ therapeutic options. SMAD4, a transcriptional master regulator downstream of TGFβ signaling, forms a heterotrimeric complex with receptor-regulated SMADs, such as SMAD3, and translocate to the nucleus to regulate gene expression for tissue-specific biology. First, we have identified a panel of small molecules functioning as molecular glues that can induce interaction between the mutant SMAD4-SMAD3 complex. These molecular glues not only stabilize the SMAD4 R361H/C mutant interaction with SMAD3 but also restore tumor suppressive TGFβ signaling in cancer cells harboring SMAD4 mutations. These results demonstrate the potential development of mutant SMAD4-SMAD3 PPI molecular glues for novel personalized anti-cancer agents in early-stage pancreatic and colon cancers. Second, we have identified a panel of natural products as inhibitors for wildtype (WT) SMAD4 that can disrupt the SMAD4-SMAD3 PPI. We found that gambogic acid and gambogenic acid can potently inhibit the WT SMAD4-SMAD3 PPI, blocking TGFβ pathway activation and mitigating TGFβ-mediated cancer metastasis. These results suggest novel therapeutic strategies using SMAD4 inhibitors to suppress the TGFβ pathway in advanced metastatic cancer. Last but not least, both SMAD4 molecular glues and inhibitors serve as promising small molecule SMAD4 binders, enabling us to further develop SMAD4-targeted proteolysis targeting chimeric (PROTAC) chemical probes to explore therapeutic opportunities through SMAD4 protein degradation. In summary, our proof-of-concept studies demonstrate the feasibility of developing small molecules to target the “undruggable” SMAD4 protein which may enable us to target pluripotent TGFβ pathway with the expanded arsenal of SMAD4-targeted chemical probes.

References:
Proteinaceous shell structures are ubiquitous in nature. They are used for various biological phenomena such as transportation, storage, and production of the specific biomolecules. For example, viruses deliver nucleic acids, ferritins store iron, and bacterial microcompartments (BMCs) encapsulate enzymes which are responsible for various metabolic pathways. BMCs are organelle-like structures widely distributed in majority of bacterial phyla and are thoroughly made of proteins. BMC shell structures are known to be self-assembled from thousands of shell proteins, which are subdivided into hexameric, pseudo-hexameric, and pentameric proteins, however, it is relatively recent that the first intact shell structure of a small (~40 nm) BMC was determined at an atomic resolution. In general, sizes of BMCs are extremely large (ranging from 100 to 400 nm), and the entire shell structures are polyhedral but not necessarily symmetric. Thus, despite availability of the diverse sets of genes encoding BMC shell proteins from many bacterial genomes, it is still challenging to reconstruct the uniform and defined shell structures in vitro, and this limits the potential applications using BMC shell proteins in synthetic biology and medicine such as creation of artificial organelles and development of vaccines and drug delivery systems etc. To overcome this problem, we aimed to develop easily reconstructed uniform artificial shell structures consisting of a single BMC shell protein through the process of molecular evolution.

Among many BMC shell proteins, we selected two permuted hexameric proteins, EutS from ethanolamine utilization microcompartment and PduU from propanediol utilization microcompartment found in Salmonella enterica. Based on the previous studies, we predicted that permuted hexameric BMC shell proteins might have potential to form shell structures by themselves. To prove this hypothesis, we applied molecular evolution technique, which was previously developed for evolution of lumazine synthase derived shells, to the permuted hexameric proteins, EutS and PduU, to alter their self-assembled states into symmetric shell structures.

First, we replaced three basic amino acids on the surfaces of EutS and PduU with negatively charged glutamic acid to make them interact with a toxic protein (HIV-protease) possessing a positively charged polyarginine tag by electrostatic interactions. The resulting variants, named EutS-neg and PduU-neg, were further introduced random mutations throughout the sequences using error-prone-PCR. Second, the resulting shell protein libraries were co-expressed with the toxic HIV-protease in E. coli. If the shell proteins form the closed shell structures along with interacting with the toxic protease, they may sequester the protease in the shells and provide growth advantage to the host cells. We applied different selection pressures by controlling the expression levels of HIV-protease in E. coli and extracted the plasmids encoding the evolved shell proteins from the survived cells. After three rounds of the evolution, we analyzed the evolved shell protein sequences and selected two PduU variants, PduU-1 and PduU-2, for further characterization. We confirmed that (i) PduU-1 and PduU-2 exhibited the growth advantage over PduU-neg when co-expressed with HIV-protease, (ii) PduU-1 and PduU-2 were stable when heated to 50-80°C, and (iii) PduU-1 and PduU-2 purified by size-exclusion chromatography showed spherical shell structures ranging from 25 to over 120 nm in diameter, but most particularly ~30, ~50, and ~70 nm in diameter, when subjected to transmission electron microscopy (TEM) analysis.

In summary, we succeeded in creating artificial shell structures composed of a single BMC-derived protein through three rounds of molecular evolution. Taking advantage of the flexible and scalable nature of the PduU-derived shells, it may be useful to create custom-made shells that match the size and shape of the cargo molecules for various biological applications in future.

References
8. α-N-methylation of Protein Arginine Deiminase 1 (PAD1) Affects its Stability and Protein-protein Interactions

Ying Meng1, Ming He1, Zhouxian Li2, Yinsheng Wang2, and Rong Huang1,*

1Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
2Department of Chemistry, University of California, Riverside, CA 92521, United States

*E-mail address: huang-r@purdue.edu, phone number: 765-551-2317

α-N-terminal (Nα) methylation is catalyzed by N-terminal methyltransferases (NTMT1, NTMT2, METTL13), featuring the transfer of 1-3 methyl group(s) from S-adenosyl-L-methionine (SAM) to the α-N-terminus of substrate proteins. Nα methylation modulates protein cellular distribution, protein stability, protein-protein and protein-DNA interactions in diverse biological systems.[1–4] NTMT1/2 recognizes an N-terminal sequence X-P-K/R (X represents any amino acid other than D/E).[5] Compared to the number of substrates, the function of protein Nα methylation remains largely enigmatic. Protein arginine deiminase 1 (PAD1) catalyzes citrullination, converting the guanidine group on the side chain of arginine to an ureido group.[6] PAD1 possesses an extended N-terminal tail starting with APKR following the cleavage of the initial methionine, conforming to the consensus recognition motif of NTMTs (XPK/R). Here we reported the identification and characterization of Nα methylation of PAD1. We demonstrated that the α-N-terminus of PAD1 is methylated by NTMT1 in vitro and human HEK293 cells. Around 30% of transfected PAD1 undergoes Nα methylation in HEK293 cells. In addition, WT-PAD1 displayed extended protein stability compared to a methylation-defective mutant of PAD1. Besides, Nα methylation of PAD1 resulted in decreased protein-protein interactions based on the pull-down assay. Our results also showed that Nα methylation affects neither the enzymatic activity nor the cellular distribution of PAD1, though the N-terminal tail was reported to be essential to its activity. Our study provides new knowledge about the posttranslational regulation of PAD1 and expands the biological functions of protein α-N-methylation.

References

Acknowledgments
We thank the support from the Department of Medicinal Chemistry and Molecular Pharmacology (RH) at Purdue University.
Design strategy to control the emission of fluorophores via a twisted intramolecular charge transfer (TICT) process

Kenjiro Hanaoka¹*, Shimpei Iwaki², Takuya Myochin², Yasuteru Urano²,³
¹Graduate School of Pharmaceutical Sciences, Keio University, Japan. ²Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan. ³Graduate School of Medicine, The University of Tokyo, Japan.

*E-mail: khanaoka@keio.jp

Fluorogenic probes for bioimaging have become essential tools for life science and medicine, and the key to their development is a precise understanding of the mechanisms available for fluorescence off/on control, such as photoinduced electron transfer (PeT) and Förster resonance energy transfer (FRET). Rhodamine dyes are one of the most widely used fluorescent dyes for bioimaging because they have high fluorescence quantum yield and high photostability. In contrast, N-Ph rhodamine dyes, which are rhodamine derivatives conjugated with the phenyl moiety at N atoms of 3- or/and 6-position of the xanthene moiety, are known to be non-fluorescent. The application of N-Ph rhodamine dyes has been limited to the usage as fluorescence dark quenchers, and the mechanism of the nonradiative decay of N-Ph rhodamine dyes has not been fully elucidated. However, some fluorescence probes based on N-Ph rhodamine dyes such as RNA aptamer probe and ROS probe were recently reported. So, we tried to analyze the quenching mechanism of N-Ph rhodamine dyes and further develop novel fluorescence probes rationally based on this mechanism. First, the energy minimized structure of N-Ph rhodamine dyes in the excited state was calculated by TD-DFT method. As a result, it was strongly suggested that the formation of the twisted intramolecular charge transfer (TICT) state is related to the fluorescence quenching of N-Ph rhodamine dyes. Then, we synthesized various derivatives of N-Ph rhodamine dyes, and the formation of the TICT state of N-Ph rhodamine dyes was also supported by their photophysical properties. Based on these results, we established a new molecular design strategy to rationally develop fluorescence probes, which exhibit a fluorescence off/on change in response to target biomolecules, by controlling the twisted intramolecular charge transfer (TICT) process. To illustrate and validate this TICT-based design strategy, we developed fluorescence probes for HaloTag and SNAP-tag. The fluorescence intensity of the probes increased 17 or 25 times by the reaction with HaloTag or SNAP-tag, respectively. Further, we succeeded to visualize the expression of HaloTag and SNAP-tag on cell surface by means of fluorescence confocal microscopy without washing out unreacted excess probes. We further showed that the TICT-controlled fluorescence off/on mechanism is generalizable by synthesizing a Si-rhodamine-based fluorogenic probe for HaloTag, thus providing a palette of chemical dyes that spans the visible and near-infrared range.

Reference
1. Identification of small molecule-enhancers of natural killer cell cytotoxicity

Aylin Binici¹,², Elisabeth Hennes¹, Sandra Koska¹,², Alisa Reich¹, Jens Niemann²,³, Christiane Pfaff¹,⁴, Sonja Sievers¹,⁴, Slava Ziegler¹, Carsten Watzl²,³, Herbert Waldmann¹,²,⁶

¹Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany,
²Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227 Dortmund, Germany,
³Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139 Dortmund, Germany, ⁴Compound Management and Screening Center, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.

Natural Killer (NK) cells have the unique ability to sense and eradicate malignant cells without prior sensitization, making them crucial for the mammalian first-line defence against tumor development. Cancer cells and the surrounding supportive tissue within the tumor microenvironment (TME) promote tumor growth by co-opting immune inhibitory pathways and via secretion of immunosuppressive factors such as kynurenine, prostaglandin E2 (PGE₂), and transforming growth factor β (TGFβ). This allows cancer cells to become less immunogenic, which supports the escape of immune cell-mediated cytotoxicity. Many strategies are currently being developed to harness the anticancer potential of NKs and overcome resistance of cancer cells. However, previous clinical studies using NK cells to treat diverse malignancies had mixed outcomes due to lacking efficacy. For this reason, novel strategies to enhance and preserve NK cell tumoricidal activity within the TME are demanded. To harness the power of NKs, we developed a phenotypic co-culture-based approach that mimics the TME using primary lymphocytes. This medium-throughput assay enabled the identification of small molecules that revert the immunosuppressive effect of TME and thereby restore NK cell-mediated cytotoxicity.

References

11. Designing an Engineered Biosynthetic Pathway to Access Complex Diketopiperazines

Casandra P. Sandoval Hurtado1,2, Samantha Kelly1,2, Makayla Perez3, David H. Sherman1,4,5*

1Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, Michigan 48109, United States. 2Program in Chemical Biology, 210 Washtenaw Ave, Ann Arbor, Michigan 48109, United States. 3California State Fullerton, 800 N State College Blvd, Fullerton, California 92831, United States. 4Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, United States. 5Department of Microbiology and Immunology, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, United States.

*Email: davidhs@umich.edu

For decades, researchers have investigated the fungal-derived natural product family of diketopiperazine indole alkaloids with bicyclo[2.2.2]diazaoctane cores because of their diverse biological activities and the intriguing chemistry needed to generate these metabolites.1-3 However, they can be challenging to access from fungal strains due to their low yields, and synthetically because of their structural complexity and multiple stereocenters.1,4 A new study by our group shows that introducing a substrate to two flexible biosynthetic enzymes derived from unrelated biosynthetic pathways can produce the desired diketopiperazine precursor.5 By extending this one-pot biocatalytic cascade in \textit{Escherichia coli}, endogenous and commercially available precursors can be employed as starting materials in an engineered biosynthetic pathway. This pathway is more efficient, sustainable, and enables the stereoselective production of target diketopiperazines compared to previously reported synthetic methods.4 Our results indicate that key intermediates in the biocatalytic cascade are readily identified and isolated after heterologous co-expression of all enzymes in \textit{E. coli}. The ultimate goal of this project is to apply this platform to access a diverse library of complex diketopiperazines for bioactivity analysis against human microbial pathogens and parasites.

References

Acknowledgments

Thank you to the current Sherman Lab and former members, Samantha Kelly and Makayla Perez. A special thank you to the Williams Group and the Lawrence Group for providing test standards. And, finally, thank you to the Rackham Graduate School and David Sherman for funding me.
12. Unearthing druggable vulnerabilities in cancer with Averon Notebook: Leveraging mutant-directed protein-protein interactions

Hongyue (Nicole) Chen¹, Sean Yeung³, Brian Revennaugh¹, Haian Fu¹², Andrey A. Ivanov¹²*

¹Department of Pharmacology and Chemical Biology, Emory University School of Medicine. ²Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30032, USA

*E-mail: andrey.ivanov@emory.edu

Cancer, a formidable disease driven by genomic changes, continues to be a major global threat which causes over 10 million deaths annually. The impact of genomic alterations, such as mutations, extends to crucial cellular processes, disrupting protein-protein interaction (PPI) networks, and driving the onset and advancement of this devastating ailment. The quantitative High Throughput differential Screening (qHT-dS) platform we have developed has unveiled numerous mutant-enabled or neomorph protein-protein interactions (neoPPIs). These findings encompass both oncogenic and tumor suppressor mutations, presenting exciting prospects for precision medicine with novel mutant-directed therapeutic strategies (Mo, X., et al., Cell. 2022, 185, 1974-1985). Nevertheless, comprehensively understanding the precise pathogenic functions acquired through mutant-directed neoPPIs and devising clinical approaches to regulate them poses a significant challenge. To address this critical challenge, we developed a novel computational platform termed Averon for discovering Actionable Vulnerabilities Enabled by Rewired Oncogenic Networks. We implemented the Averon as a Python Jupyter Notebook that includes new algorithms and statistical methods to i) assess and analyze the levels of neoPPIs in cancer patients, ii) evaluate their impact on clinical outcomes, iii) determine specific signature gene sets and oncogenic pathways which can be regulated by individual neomorph PPIs, and iv) identify clinically significant neoPPI-regulated genes with available clinical compounds and approved drugs. The Averon Notebook represents the first computational platform that enables the exploration of functional consequences resulting from mutant-induced dysregulation of PPI networks at a precise single residue resolution. Moreover, it sheds light on previously undiscovered clinically actionable dependencies facilitated by neomorph PPIs in cancer patients.

Acknowledgments

This work was supported in part by NCI’s Informatics Technology for Cancer Research (ITCR) Program (R21CA274620, A.A.I.), Mary Kay Foundation Grant for Cancer Research (A.A.I), NCI Emory Lung Cancer SPORE (P50CA217691, H.F.), NCI P01CA257906 (H.F.), Career Enhancement Program (A.A.I., P50CA217691), Winship Cancer Institute (NIH 5P30CA138292).
13. Development of miRNA Targeted Therapies for High Grade Serous Cancer

Grace McIntyre1,3, Jose Colina, Ph.D.1,3, Aaron Robida4, Ph.D., Peter Toogood, Ph.D.5, Andrew Alt, Ph.D.4, Analisa DiFeo, Ph.D.1,3

1 Department of Pathology, Rackham Graduate School, University of Michigan, 1150 W Medical Center Dr. Ste 752, Ann Arbor, MI 48109, USA. 2Rogel Cancer Center, University of Michigan, 1150 W Medical Center Dr. Ste 752, Ann Arbor, MI 48109, USA. 3Michigan Ovarian Science and Innovation Consortium 4Center for Chemical Genomics, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109, USA. 5Michigan Drug Discovery, University of Michigan, 210 Washtenaw Ave, Rm. 4403, Ann Arbor, MI, USA.

*Email: adifeo@umich.edu

High grade serous cancer (HGSC) remains the deadliest gynecological cancer and subtype of ovarian cancer. Despite high genomic instability being a key phenotype of HGSC, there are very few genetic drivers contributing to its progression prompting the exploration of new genetic drivers and therapeutic targets. Our group has discovered that microRNA-181a (miR-181a) is highly expressed in HGSC and promotes oncogenesis through the activation of the WNT and TGF-β signaling pathways thus mediating epithelial to mesenchymal transition and transcription of pro-survival signals. Additionally, miR-181a inhibits innate immune function by suppressing STING, making it an attractive therapeutic target. Therefore, in this study we aim to identify a series of small molecule inhibitors specifically targeting miR-181a. To achieve this, we functionally screened >54,000 drug-like compounds using a previously characterized high-throughput miR-181a biosensor drug screen that can simultaneously assess changes in miR-181a function and cell viability. From this collection, 32 compounds reduced miR-181a activity by >20% while also decreasing cellular viability. Interestingly, of the 32 compounds 5 of the compounds clustered as structurally similar RNA binding molecules. At least 4 of these have been shown to target miR-181a post-transcriptionally and at least 1 reduces TGF-β mediated epithelial to mesenchymal transition. Future cell-based profiling of these compounds will confirm and identify our lead hits to be optimized using structure activity relationship analysis. Identification of a miR-181a small molecule inhibitor will be the first of its kind to be used in HGSC and will establish a novel and foundational therapeutic avenue to be exploited in gynecological cancers.

Acknowledgements

I want to express my sincere gratitude to Dr. Analisa DiFeo and the members of the DiFeo lab for providing their mentorship and guidance. I would also like to thank the pathology department and team at the University of Michigan’s drug discovery core for their support of this work.
14. *In silico* modeling and analysis of small molecules binding to the PHLPP1 protein by molecular dynamics simulation

Tehreem Anwar*1

1Lahore Medical Research Center LLP, 746-A Kashmir Block, Allama Iqbal Town, Lahore, Pakistan.

*E-mail: tehreemamwar@lmrc.com.pk

The PHLPP (Pleckstrin homology domain leucine-rich repeat protein phosphatases) is a newly discovered group of genes which includes PHLPP1 and PHLPP2 and plays an integral part in several cellular processes like apoptosis, cell signaling cell survival, and cell proliferation etc. Both the activation and deactivation of these genes can have vital role in several ailments like heart diseases, circadian rhythm and most importantly the cancer, hence encouraging the growth of novel therapeutic elements. To give new directions into the development of PHLPP1- targeting drugs, the interaction mechanism between PHLPP1 and five important ligands 4IP, B39, 635, ATP and GTA were investigated through docking and Molecular Dynamics Simulation. It is also noteworthy to be mentioned here that there is no previous crystal structure of PHLPP1 available. The *in silico* results can provide potential base for advancements in development of new therapeutic elements targeting different diseases, mainly cancer. In this study, we employed homology modeling technique to develop a high-quality structure model of PHLPP1. The PHLPP1 model was then used in docking interaction analysis and Molecular Dynamics Simulation, to study binding pockets and interactions of PHLPP1 ligands and finding actively contributing residues in binding pocket. In final step, Free Energy Estimation was performed to observe ligand binding’s quantitative characteristics.

Keywords

PHLPP1, cancer, molecular docking, homology modeling, molecular dynamics, phosphorylation.

Acknowledgments

None.
In living systems, there are thousands of enzymes present to maintain the homeostasis, and their alterations are often tightly connected to the onset of diseases. The screening of the enzymatic activities by enzymomics (omics of enzyme) approach is a strategy for the discovery of activity-based biomarkers\(^1,3\), in which we prepare for the library of enzyme substrates and perform the specimen-based screening to identify the activities that showed the differences between the samples of interest. We proposed a concept of single-molecule enzyme activity-based enzyme profiling (SEAP) to detect the lower concentrations of enzymes with the capability of discriminating the enzyme subtypes and showed its suitability to analyse biomarker enzymes in blood samples\(^4,5\). In this study, we have established the way of preparing the library of substrates useful for the single-molecule enzyme activity analysis to widen the scope of the enzymes targetable by the assay and to perform single-molecule activity-based screening of disease biomarkers.

The single-molecule enzyme activity analysis is performed by preparing a microdevice with \(10^6\) reaction chambers, each with volumes of 10-100 fL, and diluting enzyme solution so theoretically 0 or 1 target molecule is included in each chamber. All chambers are loaded with fluorogenic probes and oil. If the target single-molecule enzyme is included in the chamber, the turnover of the enzyme generates the fluorescent product, which quickly accumulates to the detectable concentration in the small chamber. Currently, only limited classes of enzymes, phosphatases and glycosidases, have been analysed in this platform due to the unavailability of the fluorogenic substrates useful for the study. We have established the on-demand fluorogenic substrate preparation platform for various enzymes such as amidases, peptidases, and proteases for single-molecule assays. We synthesized probe library and performed activity-based screening to characterize disease-related alterations of single-enzymes of DPP4, CD13, and pancreatic elastase in blood samples of patients with early-stage (stage I-II) pancreatic tumor\(^6\).

Keywords: chemical biology, enzymes, fluorescent probes, microdevices, liquid biopsy.

The remarkable clinical achievements of immune checkpoint inhibitor (ICI) therapy have propelled the rapid advancement of immune-mediated anti-tumor strategies, establishing them as the first-line treatment for various tumor types. Despite the paradigm-shifting progress in cancer immunotherapy over the last decade, the majority of patients fail to respond to current monotherapy based on ICIs, and a significant challenge lies in the occurrence of patient relapse following initial response. Consequently, there is an urgent and unmet clinical need to address the requirements of the majority of cancer patients, necessitating renewed endeavors to broaden the scope and efficacy of immune system-targeted strategies.

Transforming growth factor-beta (TGFβ) signaling has emerged as a promising target for cancer immunotherapy. While the role of TGFβ signaling in cancer initiation, progression, and metastasis is multifaceted and context-dependent, its contribution to the establishment of an immunosuppressive tumor microenvironment (TME) has been extensively documented for both adaptive and innate immune responses. For instance, TGFβ hampers anti-tumor immunity by inhibiting the proliferation, maturation, differentiation, and activation of natural killer (NK) cells, macrophages, dendritic cells (DCs), and CD8+ T cells. Moreover, it promotes the conversion of naïve CD4+ T helper cells into immune suppressive regulatory T (Treg) cells. Building upon these observations, anti-TGFβ signaling therapies have been actively investigated in clinical trials, particularly in combination with immune checkpoint inhibitors (ICIs), across a wide variety of tumor types.

Numerous therapeutic approaches targeting the anti-TGFβ signaling pathway have been developed, focusing on inhibiting upstream TGFβ and its receptors through the use of neutralizing antibodies, receptor kinase inhibitors, and anti-sense oligonucleotides. Although promising results have been obtained with these anti-TGFβ therapies in preclinical in vitro studies and mouse models, most clinical trials have failed to reproduce these favorable outcomes. The formidable challenges encountered in the clinical translation of anti-TGFβ signaling therapy not only necessitate the development of novel mechanism-driven strategies but also underscore the imperative to expand the existing repertoire of anti-TGFβ therapeutic options.

SMAD4 (Mothers against decapentaplegic homolog 4) serves as a critical downstream master regulator in the TGFβ signaling pathway. It functions as a common SMAD (co-SMAD) and acts as an adaptor protein, forming protein-protein interaction (PPI) complex with the receptor-regulated SMADs (R-SMADs), such as SMAD3. Following the activation of the TGFβ pathway, the SMAD4-SMAD3 PPI complex translocates into the nucleus, binds to SMAD-binding elements (SBE) containing DNA sequences, and initiates the expression of a wide spectrum of TGFβ target genes. However, SMAD4 has been considered ‘undruggable’ due to its lack of enzymatic activity and its large protein-protein interaction interface.

To advance the search for SMAD4 inhibitors and broaden the arsenal of anti-TGFβ signaling therapy, we present the development of a multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay capable of simultaneously measuring SMAD4-SMAD3 protein-protein interaction (PPI) and SMAD-SBE protein-DNA interaction (PDI). This assay enables the precise monitoring of the dynamics of SMAD4-SMAD3-SBE PPI and PDI at the resolution of single amino acids within a homogeneous cell lysate-based configuration. Furthermore, the assay has been miniaturized and validated for ultrahigh-throughput screening (uHTS) in 1536-well plate format. This optimized and validated uHTS assay will facilitate future large-scale screening campaigns for SMAD4 inhibitors in the quest for novel anti-TGFβ signaling therapy drugs.

References
17. Revisiting the Se-ntral role of GPx4 in Ferroptosis: the Selenoprotein TXNRD1 emerges as a primary target of RSL3

Stephen L DeAngelo, Marwa Elderany, Sofi Dziechciarz, Andrii Balia, Markos Koutmos, Nouri Neamati, Yatrik Shah

Ferroptosis is a regulated Iron dependent form of cell death distinct from apoptosis. Recent literature has shown that Colorectal Cancer (CRC) has heightened sensitivity to ferroptosis due to high accumulation of Iron from the tumor microenvironment. In the presence of high cytoplasmic Iron levels, intracellular hydrogen peroxide (produced as a metabolic byproduct) undergoes a chemical decomposition to form a highly reactive peroxide radical (HO•), one of many cellular Reactive Oxygen Species (ROS). While low levels of ROS are natural and may even aid tumor growth and metastasis, elevated levels of ROS can quickly cause high levels of cellular damage by reacting with proteins, DNA, and lipids, with high levels of lipid peroxides directly leading to ferroptosis. Over the last 10 years the field has focused in on the enzyme Glutathione Peroxidase 4 (GPx4) as a key target in ferroptosis resistance as GPx4 utilizes a catalytic selenocysteine residue to detoxify lipid peroxides. In 2014 the ferroptosis inducing agent (FIN) RSL3 was characterized as an inhibitor of GPx4 and has since been prolifically used throughout the field of cancer biology to study ferroptosis.

Driven by the success of RSL3 as a FIN, our laboratory sought to genetically validate GPx4 as a therapeutic target in colorectal cancer. Unexpectedly we observed that genetic depletion of GPx4 in our mouse models of CRC does not lead to increased survival. Furthermore, upon inducible knockdown of GPx4 in our CRC cell lines we see varying levels of response despite high sensitivity to RSL3. Intrigued by these experimental results we synthesized a biotinylated RSL3 derivative to perform IP-MS. Our preliminary data suggest that RSL3 is not an inhibitor of GPx4 but is instead an inhibitor of another selenoprotein, Thioredoxin Reductase 1 (TXNRD1), with many additional selenoprotein off-targets that regulate Endoplasmic Reticulum (ER) stress and Calcium Homeostasis. The gold compound Auranofin (Ridaura) is an FDA approved agent for the treatment of Rheumatoid Arthritis that potently inhibits TXNRD1. Additionally, flavonols are natural product inhibitors of the SERCA calcium pumps that disrupt calcium homeostasis to induce ER stress and ROS formation. Here we show preliminary evidence Auranofin and several flavonols can drastically reduce the proliferation of CRC cell lines. While preliminary we hope that this work may lead to a repurposing study of Auranofin for the treatment of CRC.
18. Simple purification of small-molecule-labelled peptides via palladium enolate formation from β-ketoamide tags

Kota Koike¹, Kenji Hayamizu¹, Kosuke Dodo¹⁺, Miwako Asanuma¹, Hiromichi Egami¹, Mikiko Sodeoka¹⁺
¹RIKEN, Wako, Saitama, Japan.
*E-mail: dodo@riken.jp, sodeoka@riken.jp

Palladium enolates derived from β-ketocarbonyl compounds serve as key intermediates in various catalytic asymmetric reactions.¹ We found that the palladium enolate formed from β-ketoamide is stable in air and moisture,² and we applied this property to develop a peptide purification system using β-ketoamide as a small affinity tag in aqueous media. A solid-supported palladium complex successfully captured β-ketoamide-tagged molecules as palladium enolates and released them in high yield upon acid treatment. Optimum conditions for the catch and release of tagged peptides from a mixture of untagged peptides were established. To demonstrate the value of this methodology in identifying the binding site of a ligand to its target protein, we purified and identified a peptide containing the ligand-binding site from the tryptic digest of cathepsin B labelled with a covalent cathepsin B inhibitor containing a β-ketoamide tag.³

References
19. Targeting p38/MK2 protein-protein interaction for therapeutic discovery in human diseases

Maylynn Hu1, Yuhong Du1,2, Haian Fu1,2, Andrey A. Ivanov1,2,*
1Department of Pharmacology and Chemical Biology, Emory University School of Medicine. 2Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30032, USA
*E-mail: andrey.ivanov@emory.edu

P38 kinases are essential components of signal transduction. Four known p38 isoforms (p38α, p38β, p38g, and p38d) serve non-redundant functions by binding various substrates, including transcription, signal transduction, protein folding, and cytoskeleton maintenance1,2. The inhibition of p38 activity has emerged as a highly appealing therapeutic strategy in multiple human diseases, including cancer, Alzheimer’s disease (AD), and different metabolic conditions. Although many p38 inhibitors have been developed, none of them have been approved as a drug due to a limited selectivity against p38 isoforms and other kinases. The failure of p38 inhibitors in clinical trials highlights the urgent need for new therapeutic approaches to p38 regulation. To address this unmet medical need, we develop a novel approach to control p38 activity by selectively targeting p38 protein-protein interaction (PPI) with its major substrate the MAPK-activated protein kinase 2 (MK2), coded by MAPKAPK2. MK2 is one of the most clinically important p38-regulated proteins which play a key role in AD-associated neuroinflammation and neurotoxicity, as well as tumor growth and DNA damage response in cancer metastasis and proliferation3. The discovery of potent p38/MK2 PPI inhibitors may open new avenues for p38-based therapeutic development. Our Time-Resolved Fluorescence Energy Transfer (TR-FRET) and affinity pulldown assays revealed that MK2 has a significantly higher binding affinity to p38a and p38b compared to p38g and p38d isoforms. Using computational structural analysis, we identified multiple contact sites on the p38/MK2 PPI interface that are critical for p38/MK2 interaction. The calculated druggability scores and contribution of p38 and MK2 residues to the MK2/p38 free binding energy allowed us to prioritize two pockets suitable for small molecule p38/MK2 disruptor binding. Based on the analysis, we experimentally confirmed the p38/MK2 interface, and designed short inhibitory peptides to disrupt the p38/MK2 PPI. Through a computational screening, we have uncovered and validated the first small molecule p38/MK2 PPI inhibitors. We have further optimized and miniaturized the TR-FRET assay for the high-throughput screening (HTS) and ultra-HTS 1,536-well plate formats. We have shown that both p38a/MK2 and p38b/MK2 PPIs demonstrated strong TR-FRET signal with >20 signal/background ratio, which was stable for more than 48 hours and tolerated >10 % DMSO. Together, our data indicate the p38/MK2 complex druggability, provides the first chemical tools to regulate this clinically significant complex, and establish a new robust assay to discover small molecule MK3/p38 PPI inhibitors to facilitate therapeutic discovery towards cancer, neurological, and metabolic diseases.

References

Acknowledgments
This work was supported in part by NCI’s Informatics Technology for Cancer Research (ITCR) Program (R21CA274620, A.A.I.), Mary Kay Foundation Grant for Cancer Research (A.A.I), NCI Emory Lung Cancer SPORE (P50CA217691, H.F.), NCI P01CA257906 (H.F.), Career Enhancement Program (A.A.I., P50CA217691), Winship Cancer Institute (NIH 5P30CA138292).
Development and Evaluation of Covalent NSD3 Inhibitors

Bradley Clegg1, Sergei Zari1, Se Ra Park1, Shuangjiang Li1, Christina Howard1, Jonas Cook1, Jolanta Grembecka1, Tomasz Cierpicki1

1Department of Pathology, University of Michigan, 500 S. State St., Ann Arbor, MI, USA.

*E-mail: bdclegg@umich.edu

The Nuclear Receptor SET domain-containing (NSD) family of proteins are histone lysine methyltransferases (KMTase) that mono and di-methylate histone 3 lysine 36 (H3K36), which is known to activate transcription of euchromatin. There are three enzymes in this family: NSD1, NSD2, and NSD3 with NSD1 and NSD3 sharing 80% sequence similarity in the SET domain. Overexpression of NSD3 has been found in a variety of different cancers to date such as lung, breast, and pancreatic and is often associated with a poor prognosis. It has been shown that NSD3 drives breast cancer tumor initiation and metastatic progression through H3K36 methylation. The NSD family has been a difficult target for inhibitor development due in part to the presence of an autoinhibitory loop that blocks the entrance of the lysine binding channel. We have previously developed covalent inhibitors of NSD1. Subsequent optimization yielded novel inhibitor BT479, which potently and selectively binds and inhibits NSD3 KMTase activity in biochemical assays. BT479 demonstrates potent anti-proliferative activity in breast cancer models, inhibiting sphere formation in cell lines with high levels of NSD3 expression. Proper characterization of such covalent inhibitors requires analysis of the engagement in biological samples. In order to assess engagement, we have developed several methods utilizing a variety of different probe compounds. Employing a biotinylated probe, we utilized streptavidin bead capture to enrich biotin-tagged proteins for bottom-up proteomics analysis. We are also developing a new approach to establish cellular engagement through employment of a probe compound functionalized with a HaloTag ligand. Together, these approaches can be used to gain valuable information for the development of covalent inhibitors targeting NSD3. These inhibitors will serve as valuable probes to study the potential of targeting the histone methyltransferase activity of the NSD family in cancers. In this presentation, we will describe the development of novel NSD3 inhibitor BT479 as well as several different approaches to establish covalent engagement of potent and selective inhibitors in mammalian cells.
Development of Enantiomerically Pure 1,4-thiazepanes and Their Evaluation as Domain-Selective BET Bromodomain Inhibitors

Brandon Datuin¹, Prakriti Kalra¹, Saba Sabreen¹, Nayan Banerjee¹, Baraa Al-Jasim, and William Pomerantz¹

¹Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
*E-mail: wcp@umn.edu

Heterocyclic compounds represent a significant fraction of pharmaceuticals and materials, with a variety of ring systems present in many natural products and biologically active molecules. One such class of heterocycles are 1,4-thiazepanes—seven-membered rings containing a nitrogen and sulfur atom in their respective positions. Molecules containing 1,4-thiazepane cores exhibit biological activity, with examples of thiazepane-based drugs having been marketed such as thiazesim and diltiazem. However, the lack of representation of non-benzofused-thiazepane syntheses in the literature illustrates the difficulty of medium-sized ring construction. While methods do exist, their limited substrate scope—often paired with long reaction times and low yields—are not amenable to the construction of diverse libraries for medicinal chemistry applications.

Recently, the Pomerantz lab reported a robust method for the construction of racemic 1,4-thiazepanes. A series of thiazepanes were also shown to selectively bind to the second N-terminal bromodomain (BD2) of the bromodomain and extra-terminal domain (BET) family of proteins. Moreover, one enantiomer demonstrated higher affinity than the other for bromodomain binding. Taken together, these results highlight the potential for further development of the thiazepane scaffold as a BD2-selective BET inhibitor. Here, we show the progress towards the stereoselective synthesis of 1,4-thiazepanes and testing of a small molecule library for improving their affinity and selectivity for BD2 of BET proteins.

The current direction of this project seeks to utilize bifunctional hydrogen bond catalysis to initiate the sulfa-Michael addition used in the synthesis developed by the Pomerantz lab while biasing the reaction to produce enantiomerically pure thiazepanes. Preliminary experiments have shown an improvement in yield over our previously established synthesis while also demonstrating stereoselective enrichment. While the stereoselective method is being developed, several racemic analogues have been synthesized, with guidance from a solved co-crystal structure with BRD2-D2, and evaluated via an AlphaScreen competitive inhibition assay. The effects of acetylated lysine mimics, ring rigidity, and vectors targeting the WPF shelf of the BET bromodomain are being evaluated. Further attempts at functionalizing the thiazepane core itself are also underway.

References
1. Pandey et al., Organic Letters, 2020, 22, 3946–3950
2. Kalra et al., ACS Chemical Biology, 2020, 15, 3038–3049
3. Johnson et al., ACS Medicinal Chemistry Letters, 2019, 10, 1648–1654

Acknowledgments
We acknowledge the NIH MIRA Award R35GM140837 for funding.
22. Class Ila Histone Deacetylases And Their Inhibitors

David P. Fairlie*, Jeffrey Y. Mak¹, Kai-Chen Wu¹, Eunice Poon¹, Xun Li¹, Junxian Lim¹, Jiahui Tng¹, Lilong Dong¹, Robert C. Reid¹, Ligong Liu¹

¹Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia.

*E-mail: d.fairlie@uq.edu.au

Histone deacetylases and their inhibitors¹ regulate the acetylation status of the lysine sidechain in many proteins. However, inhibitors of the zinc-containing class Ila enzymes² (HDACs 4, 5, 7, 9), unlike those of class I (HDACs 1, 2, 3, 8), do not lead to hyperacetylation of nuclear proteins called histones³ and they tend to be much less cytotoxic. We have identified class Ila HDACs capable of regulating cytosolic proteins, metabolic⁴ and inflammatory⁵ responses, affording new molecular insights into the biology² of class Ila proteins. Here we describe different chemical approaches to inhibitors of class Ila HDACs, novel interactions they make with class Ila versus class I HDACs, and their efficacy in models of inflammatory disease.

References
3. Mak J et al., J Med Chem 2021, 64, 2186–2204
23. Structure-guided Design of New ASH1L Inhibitors As Potential Anti-leukemic Agents

Guang Huang, Sidney Weaver, Rhiannon Stevens, Devon Hucek, Trupta Purohit, Hongzhi Miao, Shuangjiang Li, Mya Gough, Tomasz Cierpicki*, Jolanta Grembecka*

Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
*E-mail: jolantag@med.umich.edu; tomaszc@umich.edu

The absent, small, or homeotic-like 1 (ASH1L) protein is a histone lysine methyltransferase responsible for the methylation of histone 3 lysine 36. ASH1L is found to be overexpressed in various cancer types, including acute leukemia, making it an attractive therapeutic target. Herein, we present a new generation of ASH1L inhibitors with improved inhibitory activity and enhanced cellular activity in leukemia cell over our previously developed ASH1L inhibitor, AS-99. The structure-based design, synthesis, and structure-activity relationship studies of these compounds will be presented together with their activity in leukemic cells. Furthermore, development of a fluorescence polarization (FP) assay to determine the activity of our new ASH1L inhibitors will be reported. Among these compounds, the most promising lead compound AS-254 and its close analogs demonstrated significantly improved inhibitory activity and microsomal stability as compared to our previously developed ASH1L inhibitors. Furthermore, our lead compound AS-254 effectively blocked cell proliferation and induced apoptosis and differentiation in leukemia cells harboring MLL1 translocation. This work will pave the way for future drug discovery efforts aiming at the development of small-molecule inhibitors of ASH1L as therapeutic agents.

References

Acknowledgments
This work was funded by the National Institute of Health (NIH) R01 grants (1R01 CA244254, R01 CA272561, R01 CA276074 and 5R01 CA160467), LLS TRP 6579-20 and LLS TRP 6649-23 to J.G., and NIH R01 grants (1R01 CA226759, 1R01 CA240514 and 1R01 CA207272) to T.C.
24. Decitabine inhibits DNA methyltransferases activity and suppresses vasculogenic mimicry formation in tumor cells

Haru Kudo, Sayaka Sugayama, Minami Nakajima, Siro Simizu*
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan.
*E-mail: simizu@apple.keio.ac.jp

Background: Vasculogenic mimicry (VM) is a phenomenon in which blood vessel-like structure is formed by tumor cells, not vascular endothelial cells like tumor angiogenesis. Tumors intake nutrients and blood cells carrying oxygen through the structures, so VM has been suggested to be associated with tumor aggressiveness and poor patient prognosis. However, its comprehensive mechanism remains unclear. DNA methylation is one of the major epigenetic mechanisms mediated by DNA methyltransferases (DNMTs). DNMTs catalyze the addition of methyl groups onto cytosine residues of DNA and regulate gene expression. Hence, aberrant DNA methylation of oncogenes and tumor suppressor genes is associated with cancer progression. In recent years, some studies have shown that epigenetic aberrance such as hypermethylation of THBS1 is involved in oncogenic angiogenesis. This might imply the relationship between DNA methylation and VM formation, which exhibits the angiogenic phenotype. Therefore, we sought to investigate whether and how DNA methylation contributes to VM formation.

Results: In this study, we show that the treatment with a DNMTs inhibitor, 5-aza-2'-deoxycytidine (decitabine), significantly suppresses VM formation in human fibrosarcoma (HT1080) and breast cancer (MDA-MB-231) cells. Such VM-positive cells form vasculogenic-like networks on Matrigel in vitro. Moreover, decitabine treatment on HT1080 cells decreased the protein level of DNMTs, which is caused by trapping them on decitabine-incorporating DNA. It was also checked by bisulfite sequencing (BS-seq) that the DNA methylation level in a genome region accordingly decreased by decitabine treatment. Next, we conducted RNA-seq analysis on decitabine-treated HT1080 cells in order to reveal the regulatory mechanism of VM formation by DNA methylation. As a result of the comparison between DMSO- and decitabine-treated HT1080 cells, 1,962 differentially expressed genes (DEGs) including 1730 upregulated and 232 downregulated genes were identified. Some of the upregulated DEGs have also been reported as methylation-silenced genes. Gene Ontology (GO) analysis demonstrated that GO terms putatively related to VM were significantly enriched such as collagen trimmer and cell junction. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that cytokine signaling pathways could also be activated. Of the upregulated DEGs, we selected ones that were presumably the most contributory genes and examined their effect on VM formation. We established an HT1080 cell line overexpressing vesicle-associated membrane protein 5 (VAMP5). The overexpression of VAMP5 partially suppressed VM formation in HT1080 cells.

Conclusion: These results suggest that DNMTs inhibition by decitabine suppressed VM formation of cancer cells through reprogramming genome-wide DNA methylation and gene expression.

References

Acknowledgments
The authors thank Dr. T. G. Yamada and Prof. A. Funahashi for their data analyses of this study.
Polycomb repressive complex 1 (PRC1) is an epigenetic regulatory complex that monoubiquitinates histone H2A lysine 119, resulting in the repression of target genes important for cellular identity, stemness and differentiation\(^1\). The canonical core of PRC1 is composed of a RING1A/RING1B and BMI1 heterodimer, which elicits its E3 ligase activity\(^2\). Previous studies have implicated the role of PRC1 in the maintenance and proliferation of leukemia stem cells\(^3,4\). Furthermore, loss of PRC1 activity via RING1A/RING1B knockdown impairs leukemic stem cell proliferation and induces leukemic stem cell differentiation\(^4,5\). Therefore, the development of small molecule inhibitors of PRC1 presents a valuable therapeutic strategy for leukemia treatment. We previously reported the development of first-in-class small molecule inhibitors that bind directly to RING1A/RING1B to block its interaction with the nucleosome and prevent PRC1 E3 ligase activity\(^6\). Here, we present the development and characterization of a potent, new generation of PRC1 inhibitors with enhanced inhibitory activity. Treatment of acute leukemia cell lines with these inhibitors results in potent anti-proliferative effects at mid-nanomolar concentrations. PRC1 inhibitors display on-target activity as seen by the reduction of the H2A ubiquitination mark. On-target activity is also supported by gene expression analyses revealing the de-repression of CDKN1A, a key PRC1 target gene encoding for the p21 tumor suppressor protein important for cell cycle progression and leukemic stem cell differentiation. Global upregulation of p21 levels is also seen by western blot analysis. Additionally, we demonstrate small-molecule inhibition of PRC1 induces differentiation of leukemic cells, as well as apoptosis. ChIP-seq and RNA-seq studies demonstrate the displacement of PRC1 from chromatin and the upregulation of multiple PRC1 target genes upon PRC1 inhibitor treatment in acute myeloid leukemia cells. Furthermore, our PRC1 inhibitors are non-toxic in normal human CD34+ bone marrow cells and have been shown to reduce leukemia burden in in vivo mouse models. Our studies suggest that multiple subtypes of acute leukemia are sensitive to PRC1 inhibition, and our small-molecule inhibitors elicit potent effects in both in vitro and in vivo models of leukemia. These inhibitors offer a new therapeutic approach for leukemia treatment.

Acknowledgments

This work was funded by the National Institute of Health (NIH) R01 grant CA207272 to TC
Characterizing MLL-binding affinity of clinically resistant Menin mutations

Joshua Ray, Bradley Clegg, Tomasz Cierpicki, Jolanta Grembecka

University of Michigan Department of Pathology, 500 S State Street, Ann Arbor, United States
joshmrav@umich.edu

The Mixed Lineage Leukemia (MLL) family of proteins are histone methyltransferases that tri-methylate histone 3 lysine 4 (H3K4) and regulate important genes for normal hematopoiesis, including Hox gene expression. Chromosomal translocations of MLL’s C-terminal fragment, which contains its methyltransferase activity, leads to upregulation of Hox gene activity, allowing stem cells to avoid differentiation and ultimately cause leukemia. Menin, an oncogenic co-factor of MLL, binds to MLL’s N-terminus and is essential in directing MLL to its target genes. In MLL rearranged (MLLr) and NPM1 mutated leukemias, disrupting the Menin-MLL interaction with small molecule inhibitors has shown positive therapeutic outcomes in vivo and patient populations. Several menin inhibitors are currently being evaluated in clinical trials, and clinical studies with one of such inhibitors, Revumenib, reported on the discovery of somatic mutations in Menin that disrupt Revumenib’s ability to inhibit the Menin-MLL interaction, leading to cancer resistance and progression. Here we characterize the interaction of the most prevalent mutations reported in the Revumenib study with MLL. These mutations include M327I, T349M, G331D, and G331R. Utilizing fluorescence polarization (FP) experiments and isothermal calorimetry (ITC), we have found that these mutations minimally affect the Menin-MLL interaction, giving similar binding as with wild-type Menin. We have also determined crystal structures of Menin mutants in complexes with MLL derived peptides, rationalizing the retention of the high affinity interaction. By understanding if and how these mutations change the Menin-MLL binding interface, we hope to aid the development of a new generation of inhibitors that can overcome resistance caused by somatic mutations in Menin.

References
Protein N-acetyltransferases (Nats) are a class of enzymes that transfer an acetyl group from acetyl coenzyme A to the alpha-N-terminus of a protein substrate. N-terminal acetyltransferase D (NatD) is a highly selective Nat that acetylates the protein sequence SGRGK on histones H4 and H2A. NatD expression is increased in human lung and colorectal cancer tissues and is associated with poor patient survival. NatD knockdown reduces lung cancer progression by repressing the transcription factor Slug, which prevents epithelial-to-mesenchymal transition. Furthermore, NatD depletion promotes p53-independent apoptosis in colorectal cancer cells. This suggests NatD is a potential epigenetic target for lung and colorectal cancers. A potent and selective NatD inhibitor is needed to unravel the functions of NatD acetyltransferase activity in cancer progression. We previously designed and synthesized a series of potent and selective NatD bisubstrate inhibitors by covalently attaching coenzyme A to peptide substrates via ethyl and propyl linkers. However, these inhibitors were not cell permeable due to their hydrophilic phosphate groups, which limits their application in cellular studies. Our current research aims to improve the cellular permeability of NatD bisubstrate inhibitors using (1) cell-penetrating peptides (CPPs) or (2) lipofectamine delivery. We designed and attached cell-penetrating peptides (CPPs) to bisubstrate inhibitors, which displayed Ki values in the nanomolar range but had limited cell permeability. Alternatively, lipofectamine-aided delivery of NatD bisubstrate inhibitors improved cell permeability and inhibitor treatment decreased proliferation and migration in A549 lung cancer cells. In addition, NatD inhibition led to an increase of cellular phosphorylation of Ser1 on histones H4/H2A and alterations in EMT-related protein markers. Overall, we expect that the biological evaluation of NatD inhibitors can facilitate our understanding of the biological roles of NatD and provide evidence of NatD as a potential therapeutic target.

References

Acknowledgments
We thank the support of Purdue University’s College of Pharmacy for the graduate travel award.
28. Structure-guided development of potent small-molecule inhibitors of PRC1

Miranda Simes1*, Yiwu Yao1, Se Ra Park1, Hongzhi Miao1, Trupta Purohit1, Alyssa Winkler1, Haiqing He1, Jolanta Grembecka1, Tomasz Cierpicki1
1Department of Pathology, University of Michigan, 500 S State St, Ann Arbor, MI, USA.
*E-mail: simesml@umich.edu

PRC1 (Polycomb Repressive Complex 1) is a multiunit epigenetic complex responsible for monoubiquitination of lysine 119 on histone H2A. This repressive mark leads to chromatin compaction and transcriptional repression of target genes, which regulate developmental gene expression and maintain stemness.1 The core of PRC1 that confers its E3 ligase activity is a heterodimeric unit comprised of RING1A or RING1B and one of six PCGF proteins, making six potential PRC1s.2 Canonical PRC1 possesses PCGF4 (also known as BMI1). Studies implicate RING1B and BMI1 in various cancers and highlight the importance of PRC1 activity in the proliferation and maintenance of leukemic stem cells.3-4 Therefore, the development of well-characterized, potent small molecule inhibitors directly targeting PRC1 activity may serve as a new approach for therapeutic intervention in leukemia. Our group previously reported the first-in-class PRC1 small molecule inhibitor, RB-3 which blocked proliferation and induced differentiation of primary acute myeloid leukemia samples.5 Through an extensive medicinal chemistry campaign facilitated by structure-based design and elaborate biochemical and biophysical characterization, we developed a new generation of PRC1 inhibitors with vastly improved potency in the low-nanomolar range. We solved several high-resolution crystal structures of RING1B-BMI1 in complex with PRC1 inhibitors that informed potent inhibitor design. We demonstrate our inhibitors directly bind to the RING domain of both RING1A and RING1B, classifying them as general PRC1 inhibitors. Biochemical and structural studies identify our PRC1 inhibitors as protein-nucleosome inhibitors, as they block the interaction between RING1A/B and the nucleosome, ultimately preventing the deposition of ubiquitin onto histone H2A. We also solved the first known, high-resolution crystal structures of the RING domains of RING1A-BMI1 and RING1B-PCGF1 in complex with our PRC1 inhibitors. RING1A-BMI1 and RING1B-PCGF1 represent canonical and noncanonical PRC1 E3 ligase cores, respectively. From these structural studies, we observed our PRC1 inhibitors bind similarly to both canonical and noncanonical PRC1 cores. Furthermore, our PRC1 inhibitors block the H2A ubiquitination function of canonical and noncanonical PRC1 cores with similar inhibitory activity. These medicinal chemistry efforts and thorough characterization of small-molecule inhibitors led to the development of YWB-214, a potent PRC1 inhibitor that blocks the proliferation of leukemia cells and reduces leukemia burden in in vivo mouse models.

References

Acknowledgments
This work was funded by the National Institute of Health (NIH) R01 grants CA207272, CA226759 and CA240514 to Dr. Cierpicki; CA201204, CA244254 and CA160467 to Dr. Grembecka; and LLS Scholar grants (1340-17) to Dr. Cierpicki and (1215-14) to Dr. Grembecka.
Structural studies of intrinsically disordered MLL-fusion protein AF9 in complex with peptidomimetic inhibitors

Yuting Yang1, Ejaz Ahmad1, Vidhya Premkumar1, Alicen Liu1, SM Ashikur Rahman1, Zaneta Nikolovska-Coleska1, 2, *
1Department of Pathology, 1600 Huron Parkway, 2Rogel Cancer Center, 1500 E. Medical Center Dr., University of Michigan Medical School, Ann Arbor, MI, USA.
*Email: zanetan@med.umich.edu

AF9 (MLLT3) and its paralog ENL (MLLT1) are components of the super elongation complex (SEC) and serve as key MLL fusion partners in MLL fusion-transformed acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The fusion proteins MLL-AF9/ENL recruit the histone methyltransferase DOT1L to the promoters of MLL target genes, inducing H3K79 hypermethylation and aberrant transcriptional activation of these genes, thus promoting leukemogenesis. The interaction between AF9 and DOT1L is mediated by an intrinsically disordered C-terminal ANCl homology domain (AHD) in AF9, which undergoes folding upon DOT1L binding. Conducting biochemical, biophysical, and functional analyses, we mapped the AHD binding site in DOT1L[1] and demonstrated the crucial role of the interactions between DOT1L and AHD in oncogenic transformation [2]. These findings were confirmed by other groups, which established the consensus binding sequence, LXV(I, L)XIXL(V, I)XXL(V, I) in DOT1L, and identified other binding partners of AF9 AHD. Therefore, blocking these protein-protein interactions represents a viable treatment for MLL-rearranged leukemia. We have developed potent peptidomimetics that disrupt the recruitment of DOT1L by AF9 and ENL, providing a proof-of-concept for targeting these interactions [3]. Understanding the recognition and binding of peptidomimetics to AHD is critical for further optimizing these compounds and facilitating the design and development of potent drugs targeting AHD. In this study, we present a protein engineering strategy by fusing MBP and AF9 AHD using various linkers. This strategy has led to the determination of the first series of X-ray crystal structures of complexes between AF9 AHD and peptidomimetics. The crystal structures provide high-resolution insights into the interactions between AHD and its inhibitors as well as the role of AHD in recruiting various proteins. The findings set the groundwork for future structural investigations of intrinsically disordered proteins and the development of novel therapeutics targeting their interactions.

References

Acknowledgments
This work is supported by a grant from Circle Pharma to Dr. Zaneta Nikolovska-Coleska. Use of the Advanced Photon Source was supported by the U. S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817).
The ENL YEATS epigenetic reader domain critically links MLL-ENL to leukemic stem cell frequency in t(11;19) Leukemia

Fonseca-Lanza Franchesca
E-mail: ffonseca@umich.edu
University of Michigan, USA

MLL (KMT2a) translocations are found in ~10% of acute leukemia patients, giving rise to the oncogenic MLL-fusions and a subset of aggressive leukemia. In t(11;19) patients, MLL is fused to ENL, the third most common MLL fusion partner. ENL contains a highly conserved N-terminal YEATS domain that binds to acetylated histones and interacts with PAF1 of the PAF1c, an epigenetic regulator protein complex essential for MLL-fusion leukemogenesis. Recently, wild type ENL, and specifically the YEATS domain, was shown to be essential for leukemic cell growth. However, the inclusion and importance of the YEATS domain in MLL-ENL mediated leukemogenesis remains unexplored. We found the YEATS domain is retained in 84.1% of MLL-ENL patients and crucial for MLL-ENL mediated leukemogenesis in mouse models. Mechanistically, deletion of the YEATS domain impaired MLL-ENL fusion protein binding and impacted the epigenetic landscape at and expression of pro-leukemic genes like Eya1 and Meis1. Point mutations that disrupt YEATS domain binding to acetylated histones decreased stem cell frequency and increased MLL-ENL-mediated leukemia latency. Therapeutically, YEATS containing MLL-ENL leukemic cells display increased sensitivity to the YEATS inhibitor SGC-iMLLT compared to control AML cells. Our results demonstrate that the YEATS domain is important for MLL-ENL-mediated leukemogenesis and exposes an “Achilles heel” that may be therapeutically targeted for treating t(11;19) patients. Future directions involve further investigation of other domains present in MLL-ENL that may also play a role in promoting leukemogenesis.
Targeting triple-negative breast cancer through the MYC-MKK3 complex

Sophia West1, Sean Yeung1, Dacheng Fan1, Yoon H. Oum1,2, Yuhong Du1,2, Haian Fu1,2, Andrey A. Ivanov1,2,*

1Department of Pharmacology and Chemical Biology, Emory University School of Medicine. 2Emory Chemical Biology Discovery Center, Emory University, Atlanta, GA 30032, USA

*E-mail: andrey.ivanov@emory.edu

The triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer and the main cause of breast cancer mortality. The lack of targeted TNBC therapy exposes the urgent need for new therapeutically actionable molecular mechanisms underlying the disease. The transcriptional factor MYC is a major oncogenic driver of TNBC. MYC amplification, found in > 60% of TNBC samples, leads to the aggressive phenotype and poor clinical outcomes in TNBC patients, making MYC a highly appealing therapeutic target. However, MYC-targeted therapy remains unavailable. We discovered that MYC protein-protein interaction (PPI) with Mitogen-Activated Protein Kinase Kinase 3 (MKK3) represents a novel pharmacologically actionable mechanism of MYC activation in TNBC. Using our specially designed bioinformatics workflow we identified MKK3 among the genes whose high expression strongly correlates with worsened clinical outcomes of African American TNBC patients. By integrating patient genomics data with the histopathological image analyses, we showed that MKK3 promotes TNBC aggressiveness in part by activating MYC transcriptional program. Moreover, we discovered that MKK3 directly binds to MYC in TNBC cell lines and enhances both MYC protein stability and transcriptional activity. By combining computational modeling with ultra high-throughput screening, we have discovered the first chemical tools to interrogate MKK3/MYC PPI functions in cancer cells, and demonstrated that the disruption of the MKK3/MYC complex in cells correlates with decreased MYC activity and suppressed viability of TNBC cells. Together, our data suggest a novel mechanism of TNBC tumorigenesis mediated through MKK3-induced MYC activation, defines MKK3/MYC complex as a new druggable target to decrease TNBC-related mortality, and provides the first inhibitors to regulate this oncogenic axis.

References

Acknowledgments
This work was supported in part by Mary Kay Foundation Grant for Cancer Research (A.A.I), the NCI’s Informatics Technology for Cancer Research (ITCR) Program (R21CA274620, A.A.I.), NCI Emory Lung Cancer SPORE (P50CA217691, H.F.), NCI P01CA257906 (H.F.), Career Enhancement Program (A.A.I., P50CA217691), Winship Cancer Institute (NIH 5P30CA138292).
32. Design and Synthesis of Orally Active Quinolyl Pyrazinamides as Sigma 2 Receptor Ligands for the Treatment of Pancreatic Cancer

Joyeeta Roy1, Armita Kyani1, Maha Hanafi1,2, Yibin Xu1, John Takyi-Williams1, Duxin Sun1, Essam Eldin A. Osman1,2 and Nouri Neamati1,*

1Departments of Medicinal Chemistry and Pharmaceutical Sciences, College of Pharmacy, Rogel Cancer Center, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, Michigan, 48109, United States. 2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.

*E-mail: neamati@umich.edu

Sigma 2 receptor (σ2R) is overexpressed in select cancers and is regarded as a biomarker for tumor proliferation. σ2R ligands are emerging as promising theranostics for cancer and neurodegenerative diseases. Herein, we describe the design and synthesis of a series of novel quinolyl pyrazinamides as selective and potent σ2R ligands that show sub-micromolar potency in pancreatic cancer cell lines. Compounds 14 (JR1-157) and 17 (JR2-298) bind σ2R with \(K_i \) of 47 and 10 nM, respectively. Importantly, compound 14 has an oral bioavailability of 60%, \(t_{1/2} \) of 6 h, and shows significant in vivo efficacy without obvious toxicity in a syngeneic model of pancreatic cancer. The cytotoxicity of the quinolyl pyrazinamides significantly enhanced in the presence of copper and diminished in the presence of the copper-chelator tetrathiomolybdate. The copper complexes of this series of quinolyl pyrazinamides also bind to σ2R. In conclusion, compound 14 is water-soluble, metabolically stable, orally active, cytotoxic in multiple pancreatic cancer cell lines, increases the expression of the autophagy marker LC3B and the ER stress marker GRP78 and warrants further development for the treatment of pancreatic cancer.

Figure 1. (A) Docking pose of compound 1 in the ligand binding site of the human σ2R. (B) SAR summary of quinolyl pyrazinamides.

References

Acknowledgments
This work was supported by the NIH grant R01 CA272641. The compounds were tested for σ2R binding through the NIMH Psychoactive Drug Screening Program (PDSP).
Synthetic optimization of a small-molecule ATG14L-Beclin 1 protein-protein interaction inhibitor for selective autophagy inhibition.

Ryan S. Hippman, Andrea C. Arrieche Suarez, Victoria A. Soliz, Qiwen Gao, Ivan Pavlinov, Gautami R. Sonarikar, and Leslie N. Aldrich*

University of Illinois Chicago, 845 W. Taylor St., Chicago, IL, 60608, United States
*E-mail: aldrich@uic.edu

Autophagy is a major catabolic recycling and degradation process through which cells maintain homeostasis. Cancer cells can utilize the autophagy pathway to promote proliferation and tumorigenesis, thus allowing cell survival within a hypoxic, nutrient-deprived environment. In these cases, autophagy inhibition has been suggested as a potential treatment strategy. The FDA-approved antimalarial drugs chloroquine (CQ) and hydroxychloroquine (HCQ) have been used in clinical trials to inhibit autophagy by disrupting lysosome function, but their lack of selectivity for the autophagy pathway leads to undesired off-target effects. Several inhibitors of the lipid kinase VPS34 have recently been developed in an attempt to improve selectivity. However, VPS34 is involved in two multi-protein complexes: the autophagy initiation complex (Complex I) and the vesicle trafficking complex (Complex II), so direct kinase inhibition results in inhibition of both pathways. By contrast, ATG14L is found exclusively in Complex I, where it interacts with Beclin 1 through a coiled-coil domain and is critical for the formation of the autophagosome structure, a required component of the autophagy pathway. We have previously optimized a cellular NanoBRET assay to monitor the interaction of the ATG14L-Beclin 1 protein-protein interaction (PPI) and performed a high-throughput screen to identify small molecules that inhibit this interaction. This led to the discovery of Compound 19, a selective and moderately potent inhibitor of the ATG14L-Beclin 1 PPI. Synthetic strategies were developed to generate the initial hit and diverse analogues, and molecules with improved pharmacokinetic properties and potency are being prioritized. Through iterative synthesis based on previously established structure activity relationships, we will generate analogues which will support in vitro and in vivo efficacy studies. These efficacy studies will help clarify the role of selective autophagy inhibition in cancer and will reveal the utility of autophagy inhibition as a potential therapeutic strategy in cancer.

References

Acknowledgments
We would like to thank Dr. Ramnik Xavier, Massachusetts General Hospital for providing the GFP-LC3 HeLa cells. In addition, we would like to thank the UIC Collaborative Engagement in Novel Therapeutic Research and Enterprise (UICENTRE) Drug Discovery and Research Resource Center (RRC). We would also like to acknowledge our funding sources including the Ruth L. Kirschstein NRSA NIH F31 Fellowship (F31CA265072), UIC Proof-of-Concept Award, American Cancer Society Research Scholars Grant (RSG-22-042-01-ET), and University of Illinois Chicago, College of Liberal Arts and Sciences.
Development of the menin-MLL1 inhibitors targeting menin patient mutations

Dong Chen¹, Natalia Skrzypczak¹, Joshua Ray¹, Hongzhi Miao¹, Trupta Purohit¹, Bradley Clegg¹, Tomasz Cierpicki¹*, Jolanta Grembecka¹

Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, United States
*E-mail: tomaszc@umich.edu

The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 or NUP98 genes as well as with NPM1 mutations. Indeed, small molecule inhibition of the menin-MLL1 interaction represents a promising therapeutic strategy for the treatment of acute leukemia patients, which has been already validated in clinical studies. However, mutations in the MEN1 (Multiple Endocrine Neoplasia 1) gene, which encodes menin, were detected in leukemia patients undergoing menin inhibitor treatment, leading to drug resistance and relapse in patients. In particular, mutations in M327, G331 and T349 were most frequently found in patients. Interestingly these mutations are located in the inhibitor binding site, leading to dramatically reduced inhibitory activity of structurally distinct classes of menin inhibitors introduced to clinical trials. To overcome drug resistance caused by mutations in menin, we applied structure-based design combined with traditional medicinal chemistry approaches, and discovered a new generation of menin-MLL1 inhibitors, including DCM-262, which showed very potent inhibitory activity for both wild type menin and the menin patient mutants. Importantly, our new menin inhibitors also demonstrate strong activity in leukemia cells harboring MEN1 patient mutations. These results support that our new generation of menin inhibitors might represent valuable candidates that can be further developed to possibly overcome drug resistance in patients.
Synthesis of Small Molecule Autophagy Modulators as Potential Therapeutics for Alzheimer’s Disease

Thomas Whitmarsh-Everiss¹, Andrew Dobria¹, Victoria Soliz¹, Ryan Hippman¹, Amanda Snead², Sruchi Patel², Swetha Gowrishankar², Leslie Aldrich¹.
¹University of Illinois Chicago, Department of Chemistry, College of Liberal Arts and Sciences, 845 W. Taylor St., Chicago, IL, United States. ²University of Illinois Chicago, Department of Anatomy and Cell Biology, College of Medicine, 808 S. Wood St., Chicago, IL, United States.
*E-mail: twhitmar@uic.edu

Autophagy is a major catabolic degradation process, crucial for maintaining cellular homeostasis through degradation of damaged proteins in organelles known as autolysosomes.¹ Defects in the autophagic pathway have been implicated in multiple neurodegenerative diseases, including Alzheimer’s disease, in which abnormal lysosomal function results in impaired proteolytic function in lysosomes and therefore a significant accumulation of autophagic vesicles and undegraded autophagic cargo in neurons.² We hypothesized that compounds capable of restoring and increasing autophagic flux could help reduce neuronal cell death, and potentially find use as therapeutics for the treatment of Alzheimer’s disease. Our lab recently performed a high-throughput screen to identify autophagy modulators in a GFP-LC3 reporter cell line, identifying two different series of autophagy inducers, featuring distinct chemical scaffolds and definitive structure-activity relationships. Current research efforts are focused on further optimizing these compound series for in vitro potency and pharmacokinetic properties, in addition to synthesizing biotinylated pulldown probes to facilitate ongoing target identification efforts.

References

Acknowledgments
We would like to thank Dr. Ramnik Xavier, Massachusetts General Hospital for providing the GFP-LC3 HeLa cell line. UIC Collaborative Engagement in Novel Therapeutic Research and Enterprise (UICENTRE) Drug Discovery are thanked for providing our initial screening library. UIC Research Resource Center (RRC) is thanked for providing access to instrumentation. We gratefully acknowledge UIC CCTS (NIH UL1TR002003) award no. 2019-01, The Wolverine Foundation, Dr. Ralph and Marian Falk Medical Research Trust Catalyst Award, and the National Institute of Health, NIA: RF1AG076653 for funding.
Boronic acids (R–B(OH)₂) are well-known organoboron reagents used for carbon-carbon bond-forming reactions.¹ When a chemist employs these reagents to stitch together smaller chemical fragments into complex, functionally active compounds, the boron moiety is lost as a by-product. However, intact boronic acids have increasingly been leveraged as nucleophile-targeting pharmacophores in small molecule therapeutics due to their mild Lewis acidity and ability to form reversible, covalent bonds in enzyme active sites (e.g., with serine or threonine residues).² To date, five boronic acid-containing molecules have been approved by the FDA. Most notably, the proteosome inhibitor Bortezomib is a first-line treatment for multiple myeloma.³ Unfortunately, boronic acids are highly sensitive to oxidation, resulting in rapid deboronation and short half-lives in biological systems. We recently designed an oxidatively stable phenylboronic acid derivative that contains an ortho-carboxylic acid that forms a borolactone, benzoxaborolone (BOL), and engenders a 10,000-fold increase in oxidative stability.⁴ To evaluate known substituent effects on BOL stability—which may influence the type of linkage used when appending BOL to molecular scaffolds—we carried out experimental and computational linear free energy analyses with a series of BOL derivatives containing electron-withdrawing or electron-donating groups, uncovering only minor effects. To this end, we demonstrate a variety of synthetic routes for accessing this novel pharmacophore. Finally, to demonstrate BOL as a stable and efficacious boronic acid pharmacophore, we synthesized BOL-containing analogues of the FDA-approved phosphodiesterase-4 (PDE4) inhibitor crisaborole, which contains a boronic acid moiety. While the overall binding affinity of our compound for PDE4 is lower than that of crisaborole, the improved oxidative stability is expected to increase compound half-life, as well as bioavailability due to increased aqueous solubility.

References
3. Song et al., Acta Pharma, 2021, 11, 2, 3035-3059

Acknowledgments
We are grateful for financial support awarded to FGF as a Graduate Research Fellowship by the National Science Foundation.
Ferrocene as a Three-Dimensional Platform for Molecular Building: Development of Ferrocene-Based Nuclear Receptor Ligands

Kotaro Ochiai¹, Hiroyuki Kagechika¹, Shinya Fujii*¹

¹Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-1, Tokyo, Japan.
*E-mail: fujis.chem@tmd.ac.jp

Ferrocene is a stable and non-toxic organometallic species, and has recently attracted attention in the field of medicinal chemistry. Given the three-dimensional characteristics of small molecule-protein interactions, the multisubstituted structure of ferrocene, allowing for the arrangement of various pharmacophores in three dimensions, is a fascinating platform for drug design. In this research, we developed novel nuclear receptor ligands using ferrocene as the three-dimensional platform, with the aim of expanding the chemical space of drug discovery chemistry.

Nuclear receptors (NRs) such as androgen receptor (AR) and progesterone receptor (PR) are important drug targets since their ligands regulate the transcription of various genetic information. Based on the structural similarity between the steroidal CD ring and ferrocene, we previously reported the development of potent AR antagonists such as compound 1 bearing ferrocene as a hydrophobic core. We also found these compounds exhibited cross-activity toward PR, which shares high homology in ligand binding domain (LBD) with AR. The capability of ferrocene for three-dimensional and diverse structural development may be advantageous in tuning the activity profile of compound. We assumed that further structural development based on compound 1 by introducing the second substituent on the ferrocene moiety could lead to develop the potent NR ligands with improved potency and receptor selectivity. Based on these considerations, we designed and synthesized disubstituted ferrocene derivatives and investigated their structure-activity relationships toward AR and PR.

Docking simulations of compound 1 with each receptors suggested that there is a hydrophobic cavity in the ligand-binding pocket around the ferrocene unit of 1 and also the possibility of additional hydrogen-bonding with the both AR-LBD and PR-LBD receptor. Thus, we designed a series of disubstituted ferrocene derivatives with a hydrophobic substituent or a hydrogen bond donor. Since there are three isomers of disubstituted ferrocenes, namely, 1,1'-isomer, 1,2-isomer and 1,3-isomer, we had set to synthesize all isomers. The AR antagonistic activity and PR antagonistic activity of synthesized ferrocene derivatives was evaluated by androgen-dependent SC-3 cell proliferation and progesterone-dependent alkaline phosphatase assay using T47D cells, respectively. Regarding the AR antagonistic activity, introduction of hydrogen bond donors decreased potency in all isomers, probably due to the inability to form hydrogen bond in an appropriate manner, which is inconsistent with the docking simulation. In contrast, interestingly, the PR antagonistic activity of the 1,1'-disubstituted compounds was greater than that of lead compound 1, suggesting that additional hydrogen bond was probably formed in case of PR. Thus, introduction of a hydrogen bond donor significantly increased the selectivity for PR over AR. Introduction of a hydrophobic methyl group on 1'- or 2-position led to retention or decrease of the both AR and PR antagonistic activity. On the other hand, 3-methyl group enhanced both AR and PR antagonistic activity, consistent with the results of docking simulation. These results indicate that ferrocene is a versatile three-dimensional platform for biologically active compounds with improved potency and selectivity. The detail of compound design, synthesis and structure-activity relationship will be discussed.

References
38. Unveiling a Novel Gα-Pocket in PDGFRA and KIT: Avapritinib-Based SAR Studies Provide Unique Structural Insights into Kinase Inhibition and Acquired Drug Resistance

Tom Schulz1, Alina Teuber1, Ben S. Fletcher2, Rajesh Gontla1, Thomas Mühlenberg2, Mia-Lisa Zschinsky1, Jannina Niggenaber1, Silke B. Kleinböting1, Jonas Lategahn1, Sonja Sievers1, Matthias P. Müller1, Sebastian Bauer1, and Daniel Rauh1*

1Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany.
2Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany.
3Lead Discovery Center GmbH, Department for in vitro ADME and PK, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany.
4Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany.

*E-mail: daniel.rauh@tu-dortmund.de

Avapritinib is the only potent and selective inhibitor approved for the treatment of D842V-mutant gastrointestinal stromal tumors (GIST), the most common primary mutation of the platelet-derived growth factor receptor α (PDGFRA).1 The approval was based on the NAVIGATOR trial, which revealed overall response rates of more than 90%.2 Despite this transformational activity, patients eventually progress, mostly due to acquired resistance mutations or following discontinuation due to mostly neuro-cognitive side effects.3,4 These patients have no therapeutic alternative and face a dismal prognosis. Notable, little is known about this drug’s binding mode and its medicinal chemistry development, which is instrumental for the development of the next generation of drugs.5 Against this background, we have solved the first crystal structures of avapritinib in complex with wild-type and mutant PDGFRA and stem cell factor receptor (KIT), which provide evidence and understanding of type I inhibitor binding and lead to the identification of a unique sub-pocket (Gα-pocket). We utilized this information to design, synthesize and characterize avapritinib derivatives for the determination of key pharmacophoric features to overcome drug resistance and limit potential blood-brain barrier penetration.

References

Acknowledgments
This work was co-funded by the German Research Foundation (DFG), the State of North Rhine-Westphalia (NRW), the European Union (European Regional Development Fund: Investing In Your Future) (EFRE-800400), DDHD (Drug Discovery Hub Dortmund), the German Federal Ministry of Education and Research (InCa (01ZX2201B), the Mercator Research Center Ruhr (MERCUR), IGNITE (Ex-2021-0033) and was supported by the "Netzwerke 2021" program, an initiative of the Ministry of Culture and Science of the State of North Rhine-Westphalia (CANcerTARgeting, NW21-062C). This work was supported by the Swiss Light Source of the Paul Scherrer Institute (SLS, Villingen, Switzerland) and The European Synchrotron Radiation Facility (ESRF, Grenoble, France, proposal MX-2391, DOI: 10.15151/ESRF-ES-744176088 and DOI: 434 10.15151/ESRF-ES-925653639). We thank Andreas Arndt for performing the biochemical assays.
Farming more than Fishes: Bioactive Potential of *Pseudomonas* spp. Isolated from an Aquaculture Facility

Jennifer T. Nguyen¹, Todd Testerman², Hannah J. Boesger¹, Kathryn R. McBride³, Joerg Graf⁴, Marcy J. Balunas¹,³*

¹Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48107, USA, ²Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA ³Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA, ⁴Pacific Biosciences Research Center, University of Hawai‘i at Manoa, Honolulu, HI, USA

*E-mail: mbalunas@med.umich.edu

The widespread use of antibiotics in healthcare settings has led to the emergence of multi-drug resistant bacteria.¹,² The term “ESKAPE” encompasses six resistant bacterial pathogens responsible for the majority of nosocomial infection with growing multidrug resistance and virulence, all of which were recently included by the World Health Organization in the list of 12 bacteria against which new antibiotics are urgently needed.³ Historically, natural products have been harnessed for their antimicrobial potential. Natural products discovery from probiotic microbes presents an avenue to treat and prevent antimicrobial resistant pathogens while also granting the opportunity to identify bioactive compounds that may develop less resistance.⁴,⁵ Amongst several hundred bacteria isolated from a commercial trout farm, six *Pseudomonas* strains were shown to exhibit antimicrobial activities against various ESKAPE pathogens. In this study, we employed co-culture of these six bioactive *Pseudomonas* strains with a human pathogen, *Pseudomonas aeruginosa*, to promote secondary metabolism and elicit the production of bioactive metabolites. Comparison of the bioactivity and metabolome of the monocultures and co-cultures of each strain led to the putative identification of pseudomonine as the bioactive metabolite against methicillin-sensitive *Staphylococcus aureus* (MSSA) from the trout farm isolate, *Pseudomonas fontis*. Additionally, similar comparison across other strains in this study yielded unknown masses that suggests the presence of new chemical structures with antimicrobial activities. This study contributes to the development of a natural product discovery pipeline integrating genomics, metabolomics, and bioactivity applicable to wide-scale investigation of complex microbial consortia for discovery of new classes of antibiotics.

References

Acknowledgements
This work was partially supported by the U.S. Department of Agriculture [8082–32000-006–00-D].
Patient-derived xenografts (PDX) and organoids (PDO) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here we used droplet emulsion to rapidly generate thousands of Micro-Organospheres (MOS) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of newly diagnosed metastatic colorectal cancer (CRC) patients using a MOS-based precision oncology pipeline reliably predicted patient treatment outcome within 14 days, a timeline suitable for guiding treatment decisions in clinic. Furthermore, MOS capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors. Lastly, we demonstrate an ultra high-throughput MOS screening platform that provides “virtual clinical trials” to capture patient diversity for determining drug efficacy.
Discovery of ERD-3111 as a Potent and Orally Efficacious Estrogen Receptor PROTAC Degrader with Strong Antitumor Activity

Zhixiang Chen1,6, Biao Hu1,6, Rohan Kalyan Rej1,6, Dimin Wu1,6, Ranjan Kumar Acharyya1,6, Mingliang Wang1,6, Tianfeng Xu1, Jianfeng Lu1, Hoda Metwally1, Yu Wang1, Donna McEachern1, Longchuan Bai1, Christina L. Gersch1, Meilin Wang2, Wenjing Zhang2, Qixia Li2, Bo Wen2, Duxin Sun2, James M. Rae1,3,5, Shaomeng Wang1,3,4,5*

1Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States. 2Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States. 3Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States. 4Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States. 5The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States. 6These authors contributed equally.

*E-mail: shaomeng@umich.edu

Estrogen receptor α (ERα) is a prime target for the treatment of ER-positive (ER+) breast cancer. Despite the development of several effective therapies targeting ERα signaling, clinical resistance remains a major challenge. Herein, we report the discovery of a new class of potent and orally efficacious ERα degraders using the PROTAC technology with ERD-3111 being the most promising compound. ERD-3111 potently and effectively induced degradation of ERα protein in ER+ MCF-7 and T47D cells. Importantly, it achieved an excellent pharmacokinetic profile in rats, mice and dogs and good oral bioavailability in these species. ERD-3111 shows excellent microsomal stability and exhibits no significant hERG or CYP inhibition. PK/PD studies demonstrated that oral administration of ERD-3111 is highly effective in reducing the levels of wild-type and mutated ERα proteins in xenograft tumor tissues and achieves high plasma and tumor tissue exposures. Consistent with effective depletion of wild-type and ERα mutated proteins in tumor tissues, ERD-3111 demonstrates strong antitumor activity and is capable of achieving persistent tumor regression in the MCF-7 ER wild-type and ESR1D538G xenograft tumor models or 100% of tumor growth inhibition in the MCF-7 ESR1Y537S mutated xenograft tumor model. Significantly, ERD-3111 treatments did not cause animal weight loss or exhibit other signs of toxicity in mice. Taken together, our data show that ERD-3111 is a potent, orally bioavailable and highly efficacious ERα PROTAC degrader, and represents a promising lead compound for extensive evaluations for the treatment of ERα+ breast cancer.

References
1. Chen, Z. et al., Journal of Medicinal Chemistry, 2023, doi.org/10.1021/acs.jmedchem.3c01186

Acknowledgments
This study was supported in part by funding from Oncopia Therapeutics, Inc., Proteovant Therapeutics, Inc., the University of Michigan Rogel Cancer Center Core Grant from the National Cancer Institute, NIH (P30CA046592), and the generous support of Rogel Cancer Center philanthropic funds.
Discovery of CBPD-409 as a Highly Potent, Selective, and Orally Efficacious CBP/p300 PROTAC Degrader for the Treatment of Advanced Prostate Cancer

Zhixiang Chen1,4, Mi Wang1,4, Dimin Wu1, Lijie Zhao1, Hoda Metwally1, Wei Jiang1, Yu Wang1, Longchuan Bai1, Donna McEachern1, Jie Luo2, Meilin Wang3, Qiuxia Li3, Alejandra Duran3, Bo Wen3, Duxin Sun3, Arul M. Chinnaiyan2, Shaomeng Wang1*

1The Rogel Cancer Center, Department of Internal Medicine, Department of Pharmacology, and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States. 2Michigan Center for Translational Pathology, Department of Pathology, Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109. 3Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States. 4These authors contributed equally.

*E-mail: shaomeng@umich.edu

CBP/p300 are critical transcriptional co-activators of the androgen receptor (AR) and are promising therapeutic targets. Herein, we report the discovery of highly potent, selective, and orally bioavailable CBP/p300 degraders using the PROTAC technology with CBPD-409 being the most promising compound. CBPD-409 achieved DC50 values of 0.2-0.4 nM and Dmax >90% against CBP/p300 proteins in the VCaP, LNCaP and 22Rv1 prostate cancer cell lines. Proteomic analysis showed that CBPD-409 is highly selective in reducing CBP/p300 proteins over other 5,000 proteins examined in the VCaP cell line. CBPD-409 was highly potent and effective in inhibition of cell growth with IC50 values of 1-2 nM in the VCaP, LNCaP and 22Rv1 cell lines and are much more potent than two CBP/p300 inhibitors (GNE-049 and CCS1477), AR degrader (ARV-110) and AR antagonist (Enzalutamide). Mechanistic studies revealed that CBPD-409 potently and effectively reduced the expression of AR, KLK3 and c-MYC genes in the VCaP, LNCaP and 22Rv1 cell lines and are much more potent and effective than GNE-049 and CCS1477, ARV-110 and Enzalutamide. CBPD-409 displayed a good PK profile in mice and achieved 50% of oral bioavailability. Pharmacodynamic study showed that a single oral dose of CBPD-409 at 1 and 3 mg/kg attained nearly complete depletion of CBP and p300 proteins in the VCaP tumor tissue at 3 and 24 h time-points. Our efficacy experiment demonstrated that CBPD-409 was highly efficacious in inhibition of tumor growth at 0.3 and 1 mg/kg daily dosing and was more efficacious than GNE-049, CCS1477 and Enzalutamide at 20-30 mg/kg. Furthermore, CBPD-409 at 1 mg/kg daily dosing was also more efficacious than ARV-110 at 10 mg/kg daily dosing. Interestingly, CBPD-409 at 1 mg/kg dosed every other day was also very effective in inhibition of tumor growth. Of significance, CBPD-409 was well tolerated in our efficacy experiment and showed no signs of toxicity in mice at its highly efficacious dose-schedules. Taken together, CBPD-409 represents a promising, highly potent and orally efficacious CBP/p300 degrader and warrants extensive investigations as a potential new therapy for the treatment of human prostate cancer and other types of human cancers.

Acknowledgments

This study was supported by funding from Oncopia Therapeutics, Inc., Proteovant Therapeutics, Inc. and the University of Michigan Comprehensive Cancer Center Core Grant from the National Cancer Institute, NIH (P30CA046592).
43. Discovery of a potent and selective small-molecule degrader of STAT6 as a new class of Immuno-Oncology Therapy

Aisunori Kaneshige1,2, Longchuan Bai2, Mi Wang2, Donna McEachern2, Jennifer Lynn Meagher4, Renqi Xu2, Yiqing Yang2, Hoda Metwally2, Yu Wang2, Yiqing Yang2, Paul Kirchhoff2, Bo Wen3, Chao-Yie Yang, Ilona Kryczek6,7, Duxin Sun3,11, Jeanne Stuckey4,11, Weiping Zou6,7,8,9,10, and Shaomeng Wang1,2,5,11*

University of Michigan, Ann Arbor, MI 48109, USA.

1Department of Medicinal Chemistry, 2Departments of Internal Medicine, 3Department of Life Sciences Institute, 4Department of Pharmacology, 5Department of Surgery, 6Center of Excellence for Cancer Immunology and Immunotherapy, 7Graduate Program in Immunology, 8Graduate Program in Cancer Biology, 9Department of Pathology, 10Graduate Program in Cancer Biology, 11Department of Pathology, 11Rogel Cancer Center.

E-mail: shaomeng@umich.edu

STAT6 is an attractive therapeutic target for not only the treatment of Th2 inflammation driven diseases such as asthma and atopic dermatitis, but also the modulation of tumor microenvironment to treat human cancers. Here, we present the discovery of a potent, selective STAT6 degrader that is effective in vivo. Starting from a very weak STAT6 ligand with elusive selectivity, we developed a STAT6 ligand with a low nanomolar affinity and excellent selectivity to STAT6. We devised the STAT6 ligand into STAT6 PROTAC degraders with AK-1690 as the best compound. We obtained the first co-crystal structure of AK-1690 bivalently complexed with STAT6. AK-1690 induces an efficient degradation of STAT6 as well as pSTAT6Y641 in cells with DC50 of as low as 1 nM while showing minimal effect on the expression levels of other STAT family proteins. AK-1690 also effectively depletes STAT6 in mouse tissues. AK-1690 activated cytotoxic T-cells and slowed tumor growth in a 4T1 xenograft model. AK-1690 will serve as an excellent tool compound in the study where STAT6 is involved and potentially is a nice lead compound for the development of STAT6 targeted therapeutics.

References

Acknowledgments
We are very grateful for financial support from Oncopia Therapeutics, Proteovant Therapeutics and Roivant Sciences. This study is also partially supported by the Cancer Center Support Grant (P30CA046592) from the National Cancer Institute, National Institutes of Health, to Rogel Cancer Center of the University of Michigan. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. Use of the LS-CAT Sector 21 is supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor for the support of this research program (grant 085P1000817). Proteomic profiling is assisted by the Proteomics Resource Facility in the Department of Pathology of the University of Michigan. Animal studies were assisted by the In-Vivo Animal Core of the University of Michigan. Pharmacokinetics studies were performed by the Pharmacokinetics Core at the University of Michigan.
Development of a TR-FRET assay to screen for neo-protein-protein interaction inhibitors

Joyce Kariuki1,*, Qiankun Niu1, Yuhong Du1,2, Haian Fu1,2

1Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia.
2Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia.

*E-mail: joyce.muthoni.kariuki@emory.edu

Small molecule inhibitors to attenuate BRAFV600E-mediated oncogenic activity are crucial to therapeutically treat BRAFV600E-driven cancers. However, patients often exhibit intrinsic or acquired resistance to these drugs. Therefore, there is a need to develop innovative, and precise strategies that could be used to treat BRAFV600E-driven cancers. We have previously discovered that BRAFV600E has an increased interaction with the tumor suppressor KEAP1, forming a mutation-created neo-protein-protein interaction (PPI). This neoPPI leads to NRF2 upregulation even in the absence of oxidative stress, possibly exerting a cytoprotective effect on cancer cells. We hypothesize that inhibiting BRAFV600E and KEAP1 interaction with small molecules would provide an avenue to understand the role of BRAFV600E and KEAP1 PPI in tumorigenesis and therefore offer novel therapeutics for BRAFV600E-driven cancers. In order to discover BRAFV600E/KEAP1 PPI inhibitors, we developed a time resolved fluorescence resonance energy transfer (TR-FRET) assay in a 1536-well ultrahigh-throughput screening format (uHTS) to monitor the BRAFV600E-KEAP1 PPI. A pilot screen with 12,807 Emory Bioactive library identified several primary hits. The inhibitory effect of one of the positive hits was further confirmed in an orthogonal anti-flag immunoprecipitation assay. This study has not only validated the TR-FRET assay for uHTS, but also provided the proof-of-concept that the BRAFV600E and KEAP1 PPI can be disrupted by small molecules. This study set the stage for the large-scale screening to discover novel BRAFV600E/KEAP1 disrupting chemotypes for therapeutics development.

References

Acknowledgments
I would like to thank all the members of Fu Lab for their support and counsel.
45. The Structural Characterization of a Potently Selective NSD2 Degrader in Ternary Complex with a Putative E3 Ligase

Maria Kutera1, David Nie1, Tristan Kenney1, John Tabor2, Lindsey Ingerman2, and Cheryl Arrowsmith1,3*

1Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. 2Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 3Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada

*E-mail: cheryl.arrowsmith@uhn.ca

In the field of epigenetic therapeutics, targeted protein degradation (TPD) has become a growing modality in eliminating difficult to inhibit proteins [1]. TPD uses a bifunctional molecule to recruit an E3-ubiquitin ligase to the target protein, resulting in a ternary complex formation that facilitates the ubiquitination and subsequent proteasomal degradation of the target [2]. Previous efforts to inhibit NSD2, a histone lysine methyltransferase, have been unsuccessful until the recent development of a series of bifunctional molecules to selectively degrade NSD2 [3]. However, the E3 being recruited remained unknown. Through recent efforts in characterizing the unknown degrader mechanism by proximity-based biotinylation (BioID), potential candidate proteins responsible for the degrader mediated effects were deduced. One particular candidate E3 was of interest and has been further subjected to biophysical and structural studies. This handle has been tested via Size Exclusion Chromatography, Differential Scanning Fluorimetry, as well as Hydrogen Deuterium Exchange Mass Spectrometry to confirm its involvement and elucidate the interaction dynamics of this ternary complex formation. With results confirming the formation of this complex, crystallography is being pursued to further understand the interactions taking place. The structural characterization of this degrader in ternary complex with the candidate E3 holds much value as it will allow us to further understand the compounds structure-activity relationship as well as to facilitate improved optimization of the chemical degrader. This also creates opportunities for further advancements in novel therapeutics that could be developed towards other un-targetable oncogenic proteins.

References
2, Neklesa, T.K., Winkler, J.D. and Crews, C.M. Pharmacol & Ther., 2017, 174, 138-144
46. Ultrahigh-Throughput Screening Assays to Identify 14-3-3 Isoform-Selective Modulators

Ally Su1*, Qiankun Niu1, Min Qui1,2, Yuhong Du1,2, Haian Fu1,2

1Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, Georgia 30322. 2Emory Chemical Biology Discovery Center, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, Georgia 30322.

*E-mail: ajsu3@emory.edu

14-3-3 is a master cellular regulator with hundreds of binding partners, many of that are involved in disease-relevant pathways such as cancer. The implications of 14-3-3’s role in disease progression have previously led to the characterization of 14-3-3 modulators. Yet, there are seven isoforms of 14-3-3 proteins and the multitude of binding partners. Therefore, the discovery of an isoform-specific and protein-protein interaction (PPI)-specific small molecule modulators is greatly needed. In this study, we developed fluorescent polarization (FP) assays for each 14-3-3 isoform in a 1536-well ultrahigh-throughput screening format (uHTS) for small molecule modulators of Bcl-2-antagonist of cell death (BAD) and Yap. The two 14-3-3 binding partners, BAD and Yap, are highly dysregulated in cancer due to their modulation of apoptosis and cellular proliferation, respectively, underlining them as prominent proteins of interest. The primary hits from the screening were selected for validation with anti-GST immunoprecipitation assays and functional evaluation. This study demonstrates the capability of FP assays to identify isoform-specific and PPI-specific modulators, allowing the exploration of the PPI’s role in cancer and has significant therapeutic importance in precision medicine.

References

Acknowledgements
Thank you to all the Fu lab members for your support and guidance.
Discovery of Aminothiazolones as Small-molecule Inhibitors of the RNA-modifying protein METTL16

Georg L. Goebel1,2,3, Yang Liu1,2,3, Laurin Kanis1,2,3, Peng Wu
1Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany. 2Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany. 3Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund 44227, Germany
*Email: peng.wu@mpi-dortmund.mpg.de

Modulation of post-transcriptional modifications by targeting RNA-binding and modifying proteins via small molecules has emerged as a new frontier in the chemical biology and medicinal chemistry research. One such RNA-binding protein is the methyltransferase-like protein 16 (METTL16) that deposits N6-methyladenosine (m6A) in substrate transcripts. Besides the methyltransferase activity in the nucleus, METTL16 has been associated with gene regulation by promoting the translation of mRNA substrates in the cytosol. Together with the eukaryotic initiation factors 3a and -b (eIF3a/b), METTL16 was shown to play a potent oncogenic role in hepatocellular carcinoma. To date, no potent small-molecule inhibitor interfering with the protein–RNA interaction (PRI) of METTL16 and corresponding RNAs has been reported, highlighting the unmet need to develop such METTL16-targeting small molecules. Herein, we described the identification of a series of first-in-class aminothiazolones METTL16 inhibitors via a discovery pipeline started with a fluoresce polarization-based (FP) screening. Structural optimization of the initial hit yielded inhibitors with improved inhibitory potencies. The most potent compound GG416 showed potent single-digit micromolar inhibition activity against METTL16 in a methyltransferase activity assay. The identified aminothiazolone inhibitors not only will be useful probes to elucidate the biological function of METTL16 upon perturbation but also set the foundation for the further development of more potent inhibitors for therapeutic applications.

Acknowledgements
The authors thank Professor Jessica A. Brown (Department of Chemistry and Biochemistry, University of Notre Dame) for providing the METTL16 plasmid. The authors thank Dr. Sonja Sievers and Compound Management and Screening Center (COMAS) teams for providing compounds library and assisting screening. Additionally, the authors thank Dr. Raphael Gasper-Schoenenbruecher and Crystallography and Biophysics facility (ZE-CB) team for the assisting biophysical measurement.
Human pseudouridine synthase (PUS) enzymes isomerize uridine bases to pseudouridine (Ψ) in noncoding and mRNAs. Altered pseudouridylation by PUS7 is implicated in several diseases. The mechanisms of PUS7-dependent substrate modification and how Ψ contributes to disease pathogenesis are unclear. Without understanding the cellular contexts that direct PUS7 target selection, we cannot predict the functional consequences of PUS7-dependent Ψ in mRNA. We hypothesize that distinct RNA structural contexts and protein-mRNA interactions drive selection of Ψ sites by PUS7 in cells. We are employing live-cell chemical probing combined with sequencing technologies to identify these cellular contexts. Preliminary data from interaction network probing in human cells suggest a trend for limited protein-binding at Ψ sites compared to unmodified sites, though it is not statistically significant with the current number of targets. We plan to sequence additional targets and repeat probing in PUS7-knockout human cells to identify molecular features in the absence of Ψ. Structural probing experiments will also be performed in the same human cell lines. We anticipate that the knowledge generated from this research will allow us to predict novel PUS7-dependent Ψ sites and may be suggestive of a novel gene regulatory mechanism based on RNA modifications.

References
5. Safra et al., Genome Res., 2017, 27, 393-406
7. Martinez et al., Molecular Cell, 2022, 82, 645-659.e9
10. Li et al., Biology, 2021, 10, 1130
12. Song et al., Cancer Res, 2021, 40, 170
15. Han et al., Molecular Genetics and Metabolism, 2022, 135, 221-229
16. De Brouwer et al., J Hum Genet, 2018, 103, 1045-1052
17. Shaheen et al., Hum Genet, 2019, 138, 231-239
20. Busan et al., RNA, 2018, 24, 143-148

Acknowledgments
National Institutes of Health – National Institute of General Medical Sciences
National Institutes of Health – National Cancer Institute
National Science Foundation
Center for RNA Biomedicine – University of Michigan
Rogel Cancer Center – University of Michigan Health
Biological characterization of small molecule eIF4E inhibitors to assess their therapeutic potential in cancer

Rachel O’Rourke\(^1\), Emilio L. Cárdenas, PhD\(^1\), Arya Menon\(^1\), Jennifer Meagher, PhD\(^2\), Jeanne Stuckey, PhD\(^2,3\), & Amanda L. Garner, PhD\(^1\)

\(^1\)Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States. \(^2\)Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States. \(^3\)Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States.

*Email: algarner@med.umich.edu

Dysregulation of translation is a hallmark of cancer that enables rapid changes in the cell proteome to shape oncogenic phenotypes that promote tumor survival.\(^1\) The predominant signaling pathways leading to dysregulation of translational control in cancer are the PI3K-AKT-mTORC1, RAS-RAF-MAPK, and MYC pathways,\(^2,3,4\) which all converge on eukaryotic translation initiation factor 4E (eIF4E), an RNA-binding protein which binds to the m\(^7\)GpppX cap structure at the 5’ end of mRNAs to initiate cap-dependent translation.\(^2,5\) eIF4E is the rate-limiting factor of translation initiation, and its overexpression is known to drive oncogenic transformation, progression, and chemoresistance across many cancers, establishing it as an attractive therapeutic target.\(^2\)

Traditionally, target transcripts of eIF4E have been characterized as mRNAs with long 5'-UTR motifs,\(^6,7\) but recent studies have demonstrated that select pools of eIF4E-sensitive transcripts are modulated depending on its regulation status.\(^8-10\) Therefore, it is hypothesized that mechanistically distinct eIF4E inhibitors will elicit different responses in tumors based on the dysregulation of select pools of eIF4E-sensitive transcripts. Research in our laboratory focuses on developing mechanistically distinct eIF4E inhibitors, including m\(^7\)GpppX prodrug derivatives which bind directly to the cap-binding pocket of eIF4E. Biological characterization of these molecules, as well as efforts towards translational profiling will be discussed.

References

Acknowledgements

The authors would like to thank the NIH for the R01 CA202018 and R01 GM132341 grants that have funded this work.
50. Cell-Based Assay Development Strategies for the Detection and Validation of Aberrant mRNA-Protein Interactions

Dailia Soueid
University of Michigan

RNA-binding proteins (RBPs) make up a class of over 2,000 proteins that bind to and regulate the diverse functions of various types of RNAs, and accordingly, are involved in controlling many cellular processes. Disruption of RNA-Protein Interactions (RPIs), consequently, has been implicated in human diseases ranging from neurodegenerative and autoimmune diseases to several human cancers. Hence, targeting RBPs and RPIs has surfaced as a new frontier in RNA-targeted drug discovery which takes advantage of the endogenous regulation of messenger RNA (mRNA). This is an alternative strategy to methods currently used in the field to target transcripts which rely on antisense oligonucleotides (ASOs) or microRNAs, resulting in the degradation and silencing of mRNA, respectively. ASO- or miRNA-mediated direct targeting of RNA transcripts poses challenges, as these compounds often possess issues with specificity, delivery, and tolerability. The aim of this work is to characterize the high-affinity interactions of RBPs with mRNA motifs through live-cell detection using an assay previously developed for the detection of pre-miRNAs and their RBP partners, RNA-interaction with Protein-mediated Complementation Assay (RiPCA). Our goal is to be able to expand RiPCA to allow us to study other more complex RPIs in cells composed of RNAs that are larger and more structurally diverse than pre-miRNAs and that bind to proteins which perform a variety of cellular functions. Initial studies to accomplish this included three representative examples motifs found in 3’ untranslated regions (UTRs) of mRNA such as (1) expanded repeat RNA, (2) UAGUAG target sequence, and (3) AU-rich elements (AREs). My efforts towards developing these assays will be discussed, as well as future directions aimed at further improvement of this assay technology. Through RiPCA optimization, we hope to generate a platform for detecting and validating various RPIs in live cells to enable screening and drug discovery efforts.
A Live-Cell Assay to Detect eIF4E-mRNA Interactions

Gabriela Vega-Hernández1 and Amanda Garner1,2*

1Program in Chemical Biology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan USA, 2Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, USA

*Email: algarner@umich.edu

Translation initiation of eukaryotic mRNAs (mRNA) begins with the recognition of the 5’ m7GpppN cap by the cap-binding protein known as eukaryotic translation initiation factor 4E (eIF4E).1 Overexpression of eIF4E, often the case in human cancers, results in increased translation of mRNAs encoding oncoproteins and growth factors.2-3 Consequently, identifying high-affinity ligands that inhibit eIF4E levels has been of high interest as a potential therapeutic strategy.4-6 To enable these efforts, we have developed a live-cell assay system for detecting the interaction of eIF4E and m7G capped mRNA using our laboratory’s RNA interaction with Protein-mediated Complementation Assay (RiPCA) technology.7 Development of this methodology, as well as its application towards small molecule inhibitor testing will be discussed.

References
1. Fischer, P. M. Cell cycle, 2009, 8(16), 2535-2541.

Acknowledgements
This work is supported by the NIH and the University of Michigan Graduate School.
52. Unraveling the function of TRAF2 and NCK interacting kinase (TNIK) in high-grade serous ovarian cancer

Noah Puleo¹,², Michele Cusato, M.S.¹,², Dylan Carvette², Chantelle Hudson, Ph.D.³ and Analisa DiFeo, Ph.D.¹,²*

¹Department of Pathology, University of Michigan, Ann Arbor, MI; ²Rogel Cancer Center, University of Michigan, Ann Arbor, MI; ³BenevolentAI, 40 Churchway, London NW1 1LW, UK

*E-mail: adifeo@med.umich.edu

The large majority of high grade serous ovarian cancer (HGSC) patients will eventually become resistant to platinum-based chemotherapy. Therefore, novel therapeutics are required to better treat recurrent, chemotherapy resistant disease. Using an artificial intelligence (AI)-enabled drug discovery platform developed by BenevolentAI, we sought to identify unique therapeutic targets to treat these cancers. Using two patient derived platinum-resistant models along with non-malignant fallopian tube secretory cells (FTSE), we screened an AI-generated commercially available library of compounds predicted to target known or postulated resistance mechanisms that was not previously identified in HGSC. Through this screen, we discovered a drug known to target TNIK, a critical driver of the Wnt/β-catenin pathway, as the top hit to specifically kill HGSC spheres and not non-malignant fallopian tube cells from this screen. Interestingly, several other TNIK inhibitors in the screen did not affect tumor sphere viability, suggesting that an alternative target in conjunction with TNIK may be contributing to the compounds potency or that the TNIK was inhibiting another kinase. Intriguingly, using AI in conjunction with bench-side experimentation, we identified CDK9 as a critical mediator of the downstream effects of this compound. This work demonstrates the combinatorial ability of using AI, patient-derived models, and in-silico modeling to uncover novel targets for cancer treatment and expedite the drug discovery.

References

Acknowledgments

Patients
DiFeo Lab
MCP Graduate Program
BenevolentAI
Thesis Committee
Michigan Drug Discovery Core

Funding
5T32GM141840-02, RO11CH197780-01A1, Robson Fellowship, Molecular and Cellular Pathology, Rogel Cancer Center