Objective Vision-Based Testing in Mild Traumatic Brain Injury: A Bibliography

Kenneth J. Ciuffreda, OD, PhD, FCOVD-A, FAAO, Diplomate in Binocular Vision (FAAO), FNAP, FARVO
SUNY/College of Optometry, NYC (Emeritus)

Barry Tannen, OD, FAAO, FCOVD
Eye Care Professionals, Hamilton Square, New Jersey, and SUNY/College of Optometry (Emeritus)

Daniella Rutner, OD, MS, MBA, FAAO, FNAP, FCOVD
SUNY/College of Optometry, Chief of Vision Rehabilitation Services

Naveen K. Yadav, BS. Opt., MS, PhD, FAAO
Western University of Health Science, College of Optometry, Pomona, California

Penelope S. Suter, OD, FCOVD, FNORA, FABDA
Private optometric practice, Bakersfield, California

ABSTRACT
The area of traumatic brain injury has received considerable attention in the medical and related health care communities over the past three decades. One major focus has been on the constellation of visual deficits and correlated symptoms frequently found in these patients. A subset of intense focus has involved the use of objectively-based vision testing for diagnostic, prognostic, and therapeutic purposes. The assembled bibliography provides a listing of the major published research papers and chapters over the past 30 years involving objective vision testing using an array of instrumentations and protocols. This should help both the clinician and researcher obtain a broad perspective in this important and rapidly evolving area.

INTRODUCTION: THE TWO WORLDS
The area of traumatic brain injury has exploded over the past two decades. This is primarily due to two factors: first, the many brain injuries related to the United States mideast military encounters, and second, concern over sports-related concussions.\(^1,2\)

This renewed interest has led to the development of new clinical and laboratory tests to assist in its diagnosis and treatment.\(^2\)

This has been especially true with respect to the visual system. It is not surprising, as over 300 intracortical pathways linking more that 30 cortical areas are involved in vision.\(^3\)

This has resulted in a constellation of visual dysfunctions of a sensory (e.g., photosensitivity, impaired contrast sensitivity), motor (e.g., saccadic dysmetria, slowed vergence), and perceptual (e.g., abnormal egocentric localization, impaired distance perception) nature.\(^1,2,4,5,6,7\)

One area of particular interest has been the use of objective testing to detect and quantify a visual deficit. There are several important benefits derived from objective testing. First, it serves to support the patient’s symptom(s) and related problem(s). Second, it circumvents the problem of malingering, unreliable responses in young children, and potential difficulties with special populations. Third, with such tools, treatment can be more targeted for the affected neural site, and hence be more

Keywords: bibliography, diagnosis, mild traumatic brain injury, objective testing, treatment, vision
efficacious. Fourth, and related to #3, it could help set a more targeted research agenda. And lastly, it could serve as critical information in the case of an expert witness: it is difficult to argue against one’s claim of “brain injury” and related visual dysfunctions when the objective test findings (e.g., visual-evoked response, diffusion tensor imaging, eye movement recordings) clearly reveal a correlated abnormality.

Thus, the purpose of this paper is to furnish a bibliography of objective, vision-based tests, by category, in the patient with mild traumatic brain injury. It involved extensive searches of the literature via PubMed, Google, Google Scholar, APA PsychNet, and Semantic Scholar, as well as other related papers and books. This should assist the neuro-optometrist, and others, in the aforementioned five areas. Furthermore, this bibliography reflects the successful diagnostic and therapeutic approaches used in the field across a wide range of visual dysfunctions.

REFERENCES

Vergence Eye Movements

Versional Eye Movements

Reading Eye Movements

Accommodation

Pupil

2. Thiagarajan P, Ciuffreda KJ. Pupillary responses to light in chronic, non-blast-induced mTBI. Brain Inj 2015; 29(12): 1420-1425. doi.org/kf2b

3. Truong JQ, Ciuffreda KJ. Comparison of pupillary dynamics to light in the mild traumatic brain injury (mTBI) and normal populations. Brain Inj 2016; 30(11): 1378-1389. doi.org/gmwrtx

4. Truong JQ, Ciuffreda KJ. Quantifying pupillary asymmetry through objective binocular pupillometry in the normal and mild brain injury (mTBI) populations. Brain Inj 2016; 30(11): 1372-1377. doi.org/gmwrtw

Visual-Evoked Potential

8. Yadav NK, Ciuffreda KJ. Effect of binasal occlusion (BNO) and base-in prism on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI). Brain Inj 2014; 28(12): 1568-1580. doi.org/gm738b

9. Yadav KN, Ciuffreda KJ. Objective assessment of visual attention in mild traumatic brain injury (mTBI) using visual-evoked potentials (VEP). Brain Inj 2015; 29(3); 352-365. doi.org/gcsfpd

Posture, Gait, and Yoked Prisms

Brain Imaging

AUTHOR BIOGRAPHY:
Kenneth J. Ciuffreda, OD, PhD
New York, New York

Kenneth J. Ciuffreda received his B.S in biology from Seton Hall University in 1969, his O.D. from the Massachusetts College of Optometry in 1973, and his Ph.D. degree in physiological optics from the University of California/School Optometry at Berkeley in 1977. He has been a faculty member at the SUNY/State College of Optometry in New York City since 1979, where he is presently a Distinguished Teaching Professor. He has also had adjunct appointments for many years at Rutgers/ The State University of New Jersey, as well as at the New Jersey Institute of Technology, both in the department of biomedical engineering. He also helped establish a school of optometry in Harbin, China. He has conducted research in many areas: amblyopia, strabismus, reading, myopia, eye movements, accommodation, bioengineering applications to optometry, and more recently with an emphasis in the area of acquired brain injury, both the diagnostic and therapeutic aspects. His goal has been the use of objective recording techniques in the diagnosis and treatment of neurological and ocular conditions. He holds two patents, and has received many awards and honors from the AAO, AOA, NORA, COVD, and various state optometric associations and colleges. He has authored over 450 research papers/chapters, and 10 books. His hobbies are playing jazz guitar and enjoying the visual aspects of art.