FDA Update on Infections Associated with Reprocessed Duodenoscopes

HICPAC
May 16, 2019

Shani Haugen, Ph.D., Microbiologist
Center for Devices and Radiological Health
U.S. Food and Drug Administration
Infections Associated with Reprocessed Duodenoscopes

- In September 2013, CDC alerted FDA of association of multi-drug resistant organism infections and duodenoscopes.

- Since that time, healthcare facilities have reported infections associated with duodenoscope use.

www.fda.gov

FDA Actions: Revised Reprocessing Instructions

- FDA worked with duodenoscope manufacturers as they updated and validated their reprocessing instructions
- Updated instructions include additional cleaning and disinfection steps for the elevator recess
FDA Actions: Device Design

- FDA cleared duodenoscopes with design modifications to the elevator channel sealing mechanism
- The labeling was also revised to recommend annual inspection to identify wear and tear
- New duodenoscope device designs
FDA Actions:
Outreach

• February 2015 FDA Safety Communication
• 2015 FDA Advisory Committee Meeting
• 2015 HICPAC Meeting

• Additional Communications: revised reprocessing instructions, clearance/recall of duodenoscopes, webpage for Infections Associated with Reprocessed Duodenoscopes
Prior FDA Actions: Supplemental Measures

• FDA released a summary of supplemental measures to enhance duodenoscope reprocessing that emerged from the Advisory Committee meeting (August 2015)

• FDA worked with CDC and ASM to develop a protocol for sampling and culturing duodenoscopes (February 2018)
Prior FDA Actions: Regulatory Actions

• FDA conducted directed inspections and issued Warning Letters to duodenoscope manufacturers in 2015

• In October 2015, FDA ordered duodenoscope manufacturers to conduct postmarket surveillance studies
 – Human factors studies and Sampling/culturing studies
 – FDA issued Warning Letters in March 2018 for failing to comply with postmarket surveillance studies
Current Data: Duodenoscope Medical Device Reporting

- In 2018, 3 deaths were reported in the US related to duodenoscopes
- Reports of infections declined from 2015
- There is a continued need to improve the safety of reprocessed duodenoscopes

Duodenoscope MDRs associated with infection, exposure, or device contamination

* Note that the year is when the report was submitted to FDA, not necessarily the date of event
Current Data: Human Factors Validation Testing Report

• Results from human factors studies indicate that reprocessing instructions in current user manuals can be strengthened because they are difficult for reprocessing staff to comprehend and follow
 – Some reprocessing staff missed one or more steps in the process and needed additional training to complete the process properly
 – The descriptions of some of the processing steps in the user manuals were unclear
Current Data: Interim Sampling and Culturing Results

• Up to 3.6% of properly collected samples tested positive with low to moderate concern organisms > 100 CFU

• Up to 5.4% of properly collected samples tested positive for high concern organisms, defined as organisms that are more often associated with disease, such as *E. coli* and *Pseudomonas aeruginosa*

www.fda.gov
Survey results indicate widespread implementation of supplemental measures to enhance duodenoscope reprocessing (Thaker 2018)

- Of 249 facilities, 90% implement one or more supplemental measures

- Repeat manual cleaning and HLD: 157/249 (63%)
- Surveillance microbiological culturing: 133/249 (53%)
- Liquid chemical sterilization: 86/249 (35%)
- Ethylene oxide gas sterilization: 30/249 (12%)
Literature: Supplemental Measures

• Results of the sampling/culturing postmarket surveillance study are consistent with published reports (Bartles 2018, Rauwers 2018, Ross 2015, Rex 2018, Snyder 2017, Visrodia 2017)
 – Some percentage of duodenoscopes remain contaminated after use

• Repeat HLD does not significantly impact the contamination rate compared to single HLD (Bartles 2018, Snyder 2017)
Reprocessing Validation

<table>
<thead>
<tr>
<th>Process</th>
<th>Test Organism Inoculum</th>
<th>Minimum bacterial count</th>
<th>Test Cycle</th>
<th>Test Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Level Disinfection</td>
<td>Mycobacterium terrae (in soil)</td>
<td>6 log$_{10}$</td>
<td>Full cycle (minimum cycle conditions)</td>
<td>6 log$_{10}$ reduction</td>
</tr>
<tr>
<td>Liquid Chemical Sterilization</td>
<td>Bacillus atrophaeus spores (in soil)</td>
<td>6 log$_{10}$</td>
<td>Full cycle (minimum cycle conditions)</td>
<td>6 log$_{10}$ reduction</td>
</tr>
<tr>
<td>Ethylene Oxide Sterilization</td>
<td>Bacillus atrophaeus spores (no soil)</td>
<td>6 log$_{10}$</td>
<td>Half cycle</td>
<td>Complete microbial inactivation</td>
</tr>
</tbody>
</table>
Literature: Sterilization

• Contamination rates after EO sterilization are variable (Naryzhny 2016, Snyder 2017)

• Ethylene oxide sterilization of duodenoscopes led to cessation of outbreaks (Epstein 2015, Smith 2015, Humphries 2017)

• Additional sterilization technologies are in development for duodenoscopes (Molloy-Simard 2019)
FDA Conclusion

- Current practices for reprocessing duodenoscopes are not sufficient to avoid all infections associated with the use of duodenoscopes.
- In appropriately selected patients, the benefits of the procedure still outweigh the risks.
Questions the FDA is Exploring

What changes could be made to ensure the safer use of duodenoscopes, and how should those changes be implemented, considering potential challenges?
Questions the FDA is Exploring

Given the information provided today, what level of concern do you have regarding the safety of reprocessed duodenoscopes?
Questions the FDA is Exploring

Do you think high level disinfection provides an adequate assurance of safety?
Questions the FDA is Exploring

What are the challenges to sterilizing duodenoscopes?

Revised Reprocessing Instructions:

Clearance of Modified Duodenoscopes

Olympus January 2016: https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm481956.htm

Fujifilm July 2017: https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm567793.htm

Pentax February 2018: https://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm595603.htm
Additional Resources:

FDA AER website: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/ReprocessingofReusableMedicalDevices/ucm483896.htm

522 Status: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pss.cfm

References:

References:

References:

