OCCUPATIONAL HEALTH INDICATORS:

A Guide for Tracking Occupational Health Conditions and Their Determinants

Last updated June 2015

Changes to the Occupational Health Indicator methodology from the December 2014 version are highlighted in yellow

Council of State and Territorial Epidemiologists

In Collaboration with the National Institute for Occupational Safety and Health
Centers for Disease Control and Prevention
Authors’ Notes

This document is intended to provide guidance to states for generating Occupational Health Indicators for the years 2003 – 2012. In some instances, these “how-to” guides will be applicable for generating data prior to 2003. If you are trying to generate Occupational Health Indicator (OHI) data prior to 2003 and are experiencing difficulty, please contact Amy Patel amypatel@cste.org at CSTE for technical assistance.

Questions about data collection and analysis for any specific OHI may be directed to the state and national lead representatives of the indicator in question (Appendix D). Questions about the OHI Work Group, which collectively manages OHI updates and additions for this document, may be directed to the Work Group Co-chairs (Appendix D).

Indicators which are NOT conducive to state-to-state or state-national comparisons using Workers’ Compensation or Hospital Discharge Data:

- Indicator # 2 Work-related hospitalizations
- Indicator # 5 Amputations identified in state workers’ compensation systems
- Indicator # 6 Hospitalizations for work-related burns
- Indicator # 8 Carpal tunnel syndrome cases identified in state workers’ compensation systems
- Indicator # 9 Pneumoconiosis hospitalizations
- Indicator # 19 Workers’ compensation awards
- Indicator # 20 Hospitalizations for low-back disorders
- **Indicator # 22 Work-Related Severe Traumatic Injuries Hospitalizations**

Please include the following note with presentation of these data: *Workers’ compensation eligibility criteria and availability of data from workers’ compensation programs varies among states, prohibiting state-level data from being directly compared to other states or with national estimates.*

Indicators which are NOT conducive to state-to-state or state-national comparisons using Survey of Occupational Injuries and Illnesses data:

- Indicator #1: Non-fatal work related injuries and illnesses reported by employers
- Indicator #4: Work-related amputations with days away from work reported by employers
- Indicator #7: Work-related musculoskeletal disorders with days away from work reported by employers

Please include the following note with presentation of these data: *Difference in industry concentration and sample size prohibit state-level data from being directly compared to other states or with national estimates.*
TABLE OF CONTENTS

- **INTRODUCTION** .. 5
- **BACKGROUND** .. 6

 Background of Occupational Health Indicator Development ... 7
 The Indicator Pilot Project and Development of "How to" Guides ... 8
 Occupational Health Indicators Limitations and Considerations for Use ... 9
- **PROFILE: EMPLOYMENT DEMOGRAPHICS** ... 10
- **INDICATOR # 1: NON-FATAL WORK RELATED INJURIES AND ILLNESSES REPORTED BY EMPLOYERS** ... 17
 How-To Guide: ... 19
- **INDICATOR # 2: WORK-RELATED HOSPITALIZATIONS** ... 21
 How-To Guide: ... 22
- **INDICATOR # 3: FATAL WORK-RELATED INJURIES** .. 23
 How-To Guide: ... 24
- **INDICATOR # 4: WORK-RELATED AMPUTATIONS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS** ... 28
 How-To Guide: ... 30
- **INDICATOR # 5: STATE WORKERS’ COMPENSATION CLAIMS FOR AMPUTATIONS WITH LOST WORK-TIME** .. 32
 How-To Guide .. 33
- **INDICATOR # 6: HOSPITALIZATIONS FOR WORK-RELATED BURNS** ... 35
 How-To Guide: ... 36
- **INDICATOR # 7: WORK-RELATED MUSCULOSKELETAL DISORDERS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS** ... 37
 How-To Guide: ... 39
- **INDICATOR # 8: STATE WORKERS’ COMPENSATION CLAIMS FOR CARPAL TUNNEL SYNDROME WITH LOST WORK-TIME** .. 44
 How-To Guide .. 45
- **INDICATOR # 9: HOSPITALIZATIONS FROM OR WITH PNEUMOCONIOSIS** 47
 How-To Guide: ... 49
- **INDICATOR # 10: MORTALITY FROM OR WITH PNEUMOCONIOSIS** ... 53
 How-To Guide: ... 54
- **INDICATOR # 11: ACUTE WORK-RELATED PESTICIDE-ASSOCIATED ILLNESS AND INJURY REPORTED TO POISON CONTROL CENTERS** .. 58
 How-To Guide: ... 59
- **INDICATOR # 12: INCIDENCE OF MALIGNANT MESOTHELIOMA, AGES 15 AND OLDER**............... 63
 How-To Guide: ... 64
- **INDICATOR # 13: ELEVATED BLOOD LEAD LEVELS (BLL) AMONG ADULTS** 66
This document is intended to provide guidance to states regarding the minimal level of occupational health surveillance activity. The CSTE recommends that every state should have the ability to collect and utilize data from this minimal list of indicators on a regular basis.

INTRODUCTION

This document describes the current recommended set of indicators for occupational health surveillance by the Council of State and Territorial Epidemiologists (CSTE), in association with the National Institute for Occupational Safety and Health (NIOSH) Work Group. The developed occupational health indicators represent the consensus view of State and NIOSH representatives, and are intended as advisory to the states. They are a subset of the larger number of conditions that were recommended for surveillance in 2001. The indicators represent a core set of data that, if calculated at the state level, can assist in the development of programs to prevent workplace injuries and illnesses. The indicators are intended to be used in conjunction with other guidelines for the state-based surveillance of occupational injuries and illnesses (NIOSH 1995, CSTE 2001), and to be used as a complement to overall state and national goals to improve the health of the population (CDC 2000). Members of the current Work Group are listed in Appendix C.
BACKGROUND

State health agencies, which are vested with the legal authority to require disease reporting and collect health data, play a central role in public health surveillance. Whereas public health surveillance was once focused primarily on infectious diseases, it has expanded in recent years to include surveillance of a wide range of health outcomes and their determinants, including chronic diseases, injuries and health behaviors (Halperin 1998). National statistics on occupational injuries and illnesses have been collected largely outside of the public health infrastructure and rely almost entirely on data reported by employers. State health agencies that have access to a wide variety of public health data systems have an important role in the surveillance of occupational diseases, injuries and hazards. State health agencies are in a unique position to:

- Provide critically needed data on occupational diseases. State health agencies can augment and complement employer-based systems to fill the information gap using a variety of existing health data sources (e.g., death certificates, hospital discharge data, and physician reports).

- Generate information necessary to evaluate the conventional occupational injury data sources. Both the annual Survey of Occupational Injuries and Illnesses and the Occupational Safety and Health Administration (OSHA) Data Initiative are based on employer reports of occupational injuries and illnesses. There has been longstanding concern about the accuracy of records maintained by employers (NRC 1987). State surveillance systems – derived from multiple data sources – can be used to supplement the Bureau of Labor Statistics (BLS) data sources to better understand the true economic and human burden of occupational diseases and injury.

- Link surveillance findings with intervention efforts at the State and local levels. State agencies are in a critical position to work with employers, labor unions, health and safety professionals, and community-based organizations to develop and disseminate feasible and effective interventions that can prevent targeted workplace illnesses, injuries and fatalities.

- Integrate occupational health into mainstream public health. Building surveillance programs at the state level that are actively linked to intervention efforts provides an opportunity to integrate occupational health into mainstream public health. Collaborations with partners outside the occupational health infrastructure such as school-based programs or community health clinics may yield benefits in disseminating prevention strategies to reduce the incidence of occupational injuries and illnesses.

In a nationwide surveillance system, all states should have core capacity to conduct a minimum level of surveillance of occupational injuries and illnesses (CSTE 2008). At a minimum, this capacity should include personnel and resources to conduct surveillance of basic occupational indicators using existing data systems, and the ability to develop working relationships with federal, state and local partners in both the public and private sectors. States and their partners may also conduct more in-depth surveillance, follow-up and intervention for specific, targeted diseases, injuries and hazards.
In 1998, the Council of State and Territorial Epidemiologists (CSTE), in association with the National Institute for Occupational Safety and Health (NIOSH), convened the NIOSH-States Occupational Health Surveillance Work Group to make recommendations to NIOSH concerning State-based surveillance activities for the coming decade. The original Work Group members (see Appendix A) agreed that the surveillance planning process should be outcome driven; e.g., begin with the identification of occupational injuries, illnesses and hazards to be placed under surveillance. The Work Group also identified a number of surveillance issues that cut across specific conditions and made several recommendations to NIOSH for the implementation of comprehensive State-based occupational health surveillance systems (CSTE 2001). A draft of the Work Group report contributed to the NIOSH Surveillance Strategic Plan (NIOSH 2001).

The Work Group report described draft “profiles” for priority conditions to be placed under surveillance as part of State-based surveillance systems. Since the publication of the Work Group report, public health surveillance “indicators” have been developed in several areas, including chronic disease, injury control and environmental health (CSTE 1999, STIPDA 1999, CDC 2001, CSTE 2002). These indicators are a construct of public health surveillance that defines a specific measure of health or risk status (i.e., the occurrence of a health event or of factors associated with that event) among a specified population. Surveillance indicators allow a state to compare its health or risk status with that of other states and evaluate trends over time within the state, and guide priorities for prevention and intervention efforts. Occupational health indicators can provide information about a population’s health status with respect to workplace injuries and illnesses or to factors that can influence health. These indicators can either be measures of health (work-related disease or injury) or factors associated with health, such as workplace exposures, hazards or interventions.

From 2001 through 2003, the Work Group members developed an approach for indicator selection, and then subsequently drafted and finalized the set of occupational health indicators. The following criteria were considered in selecting the indicators:

- **Availability of easily obtainable state-wide data.** Access to existing data was considered a critical element in the development of the indicator set. The Work Group recognized that some states might have access to other sources of data for occupational health surveillance, and that additional indicators may be developed, as these data will allow. However, this document sets out a “core” or minimum set of occupational health indicators that relies on data that should be available to most states.

- **Public health importance of the occupational health effect or exposure to be measured.** This criterion was used in identifying health effect and exposure indicators. Factors considered in determining public health importance included the magnitude or extent of the effect or exposure, severity of the health effect, economic impact, emergent status of the condition, and degree of public concern.

- **Potential for workplace intervention activities.** The indicator should inform program and policy development at the state level to protect worker safety and health.

The Work Group reviewed a number of sources to guide the selection of the final indicator set. This included CSTE recommendations for the surveillance of occupational injuries and illnesses, surveillance case definitions from the published literature, and indicators developed in other public health domains (CSTE 1999, STIPDA 1999, CDC 2001, CSTE 2002).

A total of **22** indicators were selected by Work Group consensus:

- **15 Health effect** indicators (measures of injury or illness that indicate adverse effects from exposure to known or suspected occupational hazards),
• 1 Exposure indicator (measures of markers in human tissue or fluid that identify the presence of a potentially harmful substance resulting from exposure in the workplace),
• 3 Hazard indicators (measures of potential for worker exposure to health and safety hazards in the workplace),
• 2 Intervention indicators (measures of intervention activities or intervention capacity to reduce workplace health and safety hazards), and
• 1 Socioeconomic impact indicator (measure of the economic impact of work-related injuries and illnesses).

In addition, the Work Group recommended that states develop a profile of employment demographics.

The Indicator Pilot Project and Development of "How to" Guides

The Work Group recognized the need to pilot the indicators to assess the feasibility of widespread implementation and to develop specific guidance on how to compute the proposed measures. In summer 2002, the five “Core” states with NIOSH Cooperative Agreements to conduct “Core Occupational Health Surveillance” (California, Massachusetts, Michigan, New York, and Washington) (see Appendix B) agreed to both pilot-test the indicators and to create user-friendly “how-to” guides so that other states could calculate the indicators. This pilot project met one of the established goals of the NIOSH Core Surveillance program: “to develop models for other states that can be used to establish a comprehensive, nationwide system of state-based occupational injury and illness surveillance.”

An implementation plan was agreed upon, and the states worked on the indicators independently, communicating primarily through conference calls and e-mail. All five pilot states did each indicator; however, individual states took the lead on the various indicators, becoming the primary authors of the “how to” guides for their respective indicators. These guides and the indicator data were shared among the states. Monthly conference calls were held to discuss data issues including, for example, clarification of numerators and denominators, and inconsistencies in the data sources between the states.

Based upon the results of the pilot, the Core States and Work Group worked together to redefine the indicators and finalize the "how to" documents. For example, Indicator 8 (“Carpal Tunnel Syndrome Cases Filed with the State Workers’ Compensation System”) was modified from the original indicator of “Musculoskeletal Disorders Filed with the State Workers’ Compensation System” because of difficulties in defining and obtaining information on all musculoskeletal disorders. Because of differences among states with regards to their data systems, particularly Workers’ Compensation data, more general “how-to” guides were developed for indicators 5 and 8 (“Amputations and Carpal Tunnel Syndrome Cases Filed with the State Workers’ Compensation System”).

Subsequent to the initial pilot testing by the five Core states, eight additional states (Connecticut, Maine, Nebraska, New Jersey, New Mexico, North Carolina, Oregon and Wisconsin) pilot tested the “how to” guides. Feedback from these additional states were incorporated into the development of final “how to” guides in November 2004. Using these guides, thirteen states generated indicator data for 2000 and the results were published in September 2005 (“Putting Data to Work: Occupational Health Indicators from Thirteen Pilot States for 2000”).

Procedures to review, approve, and implement new indicators were developed by the Work Group. In 2013, a fourteenth health effect indicator (Asthma among Adults Caused or Made Worse by Work) was developed and pilot tested. The Work Group voted to adopt this as the twenty-first indicator. In 2014, a fifteenth health effect indicator (Work-Related Severe Traumatic Injury Hospitalizations) was developed and pilot tested. The Work Group voted to adopt this as the twenty-second indicator.
The Work Group acknowledges significant limitations in the design of these indicators, both intrinsic to the nature of the indicators as well as to the data sources upon which they rely. While the indicators should be implemented in all states, some states will not have all of the data resources available to them.

Due to changes (e.g., website addresses, coding schemes) inherent in the data sources used to generate the indicators, the “how to” guides have been updated. Each year, states review the instructions to ensure that up-to-date information is provided.

These indicators and the "how-to" guides are meant to assist states in building a capacity for occupational health surveillance. Results from the pilot project showed that the process of generating the indicators is as useful as the data itself. All states will not be able to complete all indicators, nor will the indicators alone provide all of the information necessary for a state occupational health program. However, the process of generating the indicators will help raise awareness and build capacity for using available data, and also open dialogues among occupational health partners within the state. The indicator data itself will be most useful when multiple years of data have been compiled and potential problems with rate instability can be minimized and trends across multiple years can be observed within each state. Due to significant differences in data sources, comparing data across states for certain indicators is not recommended. These limitations are discussed in the individual section for each indicator. The design and implementation of any public health surveillance system should be evaluated according to established criteria (MMWR 2001). Several factors should be considered in the design and evaluation of any occupational health surveillance system:

- Underreporting by employees and health care providers of occupational injuries and illnesses;
- Inadequate health care provider recognition of occupational injuries and illnesses;
- Failure by employers and/or health care providers to report cases according to applicable state laws;
- Difficulties in attributing diseases with long latency from time of exposure to disease manifestation and/or from multifactorial causes (e.g., silicosis, lung cancer);
- Possible exclusion of at-risk populations from surveillance (e.g., self-employed, military);
- Variations in coding the causes of injury, illness or death; and
- Differences in underlying populations at risk (“denominators”)

The Work Group remains committed to ensuring the ongoing viability of this project and assisting all 50 States to address the important public health issue of work-related injury and illness.

Council of State and Territorial Epidemiologists

The Council of State and Territorial Epidemiologists enhances the ability of state and other health agencies to detect, prevent, and control diseases and risks of public health significance. CSTE does this by developing and building effective relationships among state and other health agencies. As a professional organization, CSTE represents public health epidemiologists working in state and territorial health agencies. CSTE has over 1,000 members with surveillance and epidemiologic expertise in a broad range of areas including chronic disease, communicable disease, immunization, environmental health, occupational health, and injuries. The organization frequently provides technical advice and assistance to federal agencies, including the Centers for Disease Control and Prevention (CDC), on matters of state-based epidemiology. CSTE is an affiliate organization of the Association of State and Territorial Health Officials (ASTHO), the professional organization of chief public health executives in each state and territory.
TOPIC: DEMOGRAPHICS

PROFILE: EMPLOYMENT DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Demographic Group</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Employed persons 16 years or older by specific demographic characteristics</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed population 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measures of Frequency:</th>
<th>1. Percentage of civilian workforce unemployed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Percentage of civilian employment self-employed.</td>
</tr>
<tr>
<td></td>
<td>3. Percentage of civilian employment employed part-time.</td>
</tr>
<tr>
<td></td>
<td>4. Percentage of civilian employment by number of hours worked (<40, 40, 41+) per week.</td>
</tr>
<tr>
<td></td>
<td>5. Percentage of civilian employment by sex.</td>
</tr>
<tr>
<td></td>
<td>6. Percentage of civilian employment by age group (16-17, 18-64, 65+ years of age).</td>
</tr>
<tr>
<td></td>
<td>7. Percentage of civilian employment by race (White, Black, Other).</td>
</tr>
<tr>
<td></td>
<td>8. Percentage of civilian employment by Hispanic origin.</td>
</tr>
<tr>
<td></td>
<td>9. Percentage of civilian employment by industry.</td>
</tr>
<tr>
<td></td>
<td>10. Percentage of civilian employment by occupation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time Period:</th>
<th>Calendar year</th>
</tr>
</thead>
</table>

| Significance and Background: | In 2012, there were 142 million civil, non-institutional workers in the United States of which 47% were female, 19% were of a racial minority, 15% were of Hispanic origin, and 94% were aged 18-64 years (Bureau of Labor Statistics, 2013b). The makeup of the workforce differs between states and may be important in understanding the occupational health status between and within a state. |

| Rationale: | Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Research has shown relationships between demographic characteristics of workers and the risk of occupational injury or illness. Understanding the basic characteristics of a state’s workforce will help state health departments assess possible occupational health risks for their state. |

| Limitations of Indicator: | These indicators are not direct measures of occupational risk for a state’s workforce or for individual workers. |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BLS Geographic Profiles of Employment and Unemployment (denominator, except age).</td>
</tr>
</tbody>
</table>

| Limitations of Data Resources: | The Geographic Profiles data are based on the Current Population Survey (CPS), which is a monthly probability sample of households across the United States. Geographic Profiles excludes workers less than 16 years of age, active-duty members of the military, and inmates in institutions. These data may underestimate the percentage of certain racial or ethnic worker populations that do not have permanent residences, or are migratory in nature. Additional information is available at http://www.bls.gov/gps/home.htm. |

<table>
<thead>
<tr>
<th>HP2020 Objectives(^1):</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
</tbody>
</table>

| Other Available Data: | Data are available to report cross tabulations of many of these demographic indicators, including tabulations by major industry or occupation divisions on the Geographic Profiles website. Information on age distribution, education, unionization, and income are available from the CPS micro-data, which states may be able to utilize (http://dataferrett.census.gov). |

| Recommendations: | States could report the available cross tabulations of demographic indicators provided within the Geographic Profiles reports. |

\(^1\) Throughout this document, Healthy People 2020 objectives corresponding to OHI measures may be tracked using different data sources.
How-To Guide:
Profile of Employment Demographics

P1. Percentage of civilian workforce unemployed
To obtain the percentage:
- Go to: http://www.bls.gov/opub/gp/laugp.htm. The webpage will be titled “Geographic Profile of Employment and Unemployment, 2013.”
- Scroll down to “Geographic Profile of Employment and Unemployment, 2012.” Click on the corresponding link to the PDF.
- Data are available in Table 14.
- Find your state.
- Within the Total row, find the value under Unemployment Rate.

P2. Percentage of civilian employment self-employed
a) To obtain the number of self-employed workers:
- Data are available in Table 21 of “Geographic Profile of Employment & Unemployment for 2012.”
- The heading in the first column “Population group and area” should be “TOTAL.”
- Find the row corresponding to your state.
- Add the data in the column titled “Agricultural industries Self-employed” and the data in the column titled “Nonagricultural industries Self-employed”. Multiply the result by 1,000.

b) To obtain the total employed civilians 16 years or older:
- Using the table described in P2a, find the number listed under Total for your state (first data column).
- Multiply the listed number by 1,000.

c) To calculate the percentage:
- Divide the number of self-employed persons (P2a) by the number of employed persons (P2b).
- Multiply the result by 100 to get the “Percentage of civilian employment self-employed”.

P3. Percentage of civilian employment in part-time jobs
a) To obtain the number of workers in part-time jobs:
- Data are available in Table 16 of “Geographic Profile of Employment & Unemployment for 2012.”
- The heading in the first column “Population group and area” should be “TOTAL.”
- Find the row corresponding to your state.
- Find the column headed “Total” under “Part-time workers.” Multiply the listed number by 1,000.

b) To obtain the total employed civilians 16 years or older:
- Use P2b.

c) To calculate the percentage:
- Divide the number of part-time workers (P3a) by the total number employed (P3b).
- Multiply the result by 100 to get the “Percentage of civilian employment in part-time jobs”.

P4. Percentage of civilian employment by number of hours worked
a) To obtain the number of employed persons by hours worked:
- Data are available in Table 22 of “Geographic Profile of Employment & Unemployment for 2012.”
- The heading in the first column “Population group and State” should be “TOTAL.”
- Find the row corresponding to your state.
- 0 to 39 hours worked:
• **0 hours worked.** These are individuals who worked 0 hours during the week of the survey (e.g., due to vacation, sick leave). To obtain the number of employees working 0 hours, multiply the number listed under “Total at work” by 1,000, then subtract this from the total employed civilians 16 years or older (P2b).

• **1-14 hours worked.** Multiply the number listed in the column “1 to 14 hours” by 1,000.

• **15-29 hours worked.** Multiply the number listed in the column “15 to 29 hours” by 1,000.

• **30-34 hours worked.** Multiply the number listed in the column “30 to 34 hours” by 1,000.

• **35-39 hours worked.** Multiply the number listed in the column “35 to 39 hours” by 1,000.

• Sum the above together.

ii) **40 hours worked:**

• Multiply the number listed in the column “40 hours” by 1,000.

iii) **41+ hours worked:**

• **41-48 hours worked.** Multiply the number listed in the column “41 to 48 hours” by 1,000.

• **49 hours and over worked.** Multiply the number listed in the column “49 hours and over” by 1,000.

• Sum the above together.

b) **To obtain the total employed civilians 16 years or older:**

• Use P2b.

c) **To calculate the percentages:**

• Divide each of the subcategories by P4b.

• Multiply the result by 100 to get the “Percentage of civilian employment by number of hours worked”.

P5. **Percentage of civilian employment by sex**

a) **To obtain the number of employed males and females:**

• Data are available in Table 14 of “Geographic Profile of Employment & Unemployment for 2012.”

• Find your state.

• Under ‘Total’, the second row lists data for ‘Men’; the third row lists data for ‘Women’.

• Find Employment Number. For each sex, multiply the listed number by 1,000.

b) **To obtain the total employed civilians 16 years or older:**

• Using the table described in P5a, find employment number for Total (listed just above “Men” and “Women”).

• Multiply the listed number by 1,000.

c) **To calculate the percentages:**

• **Males.** Divide the number of males employed (P5a) by the total number employed (P5b). Multiply the result by 100.

• **Females.** Divide the number of females employed (P5a) by the total number employed (P5b). Multiply the result by 100.

P6. **Percentage of civilian employment by age group (16-17, 18-64, 65+ years of age)**

To obtain the number of employed persons by age group:

• Go to http://dataferrett.census.gov.

12
DataFerrett is a web-based data analysis and extraction tool to customize federal, state, and local data. Using DataFerrett, you can develop an unlimited array of customized spreadsheets that are as versatile and complex as your usage demands then turn those spreadsheets into graphs and maps without any additional software.

- Read and follow the directions in the “What you should check before getting started” block on the homepage, including:
 - Check for and install the latest version of Java on your computer
 - Allow pop-ups in your browser
 - Run in IE or Firefox
 - On the homepage, you will find helpful information on DataFerrett in the blue box on the right hand side of the page, including a “Getting Started” tutorial, information about the data sets and user resources.

- To initiate DataFerrett, click on “Launch DataFerrett” in the blue box on the right.
- The “DataFerrett – Application Launch Page” will pop up, then a second, gray screen will pop up that will ask if you want to run the DataFerrett application page. Click “run”. DO NOT CLOSE THE LAUNCH APPLICATION SCREEN.

- Type your work e-mail address into the DataFerrett login pop-up box and click OK.

- Click on “Step1: Select Dataset and Variable” at the top of the page.
- Within “Select Dataset(s) to Search,” click on the + sign for Current Population Survey. Then click on the + sign for Basic.
- Select the months of interest. Multiple months can be highlighted by clicking and simultaneously using the control key. (Alternatively: a range of months can quickly be selected by clicking on one month (e.g., January 2011), then clicking on another month (e.g., December 2011) while holding down the Shift key. All the months within the range should then be highlighted.)
- Select View Variables from the pop-up box.
- Select the following topics: “Labor Force Variables”, “Geography Variables”, and “Demographic Variables” and then select Search Variables at the bottom of that box.
- On the next screen all of the available variables for the selected topics will be displayed. Click on the heading “Name” to sort the variables alphabetically.
- Select the following variables and value ranges:
 - **GESTCEN** (Geography – census state code.) Click to highlight. Click on Browse/Select Highlighted Variables. Check the “Select” box on next pop-up screen. Click “Deselect all values.” Check your State code, then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your Data Basket.
 - **PEMLR** (Labor force – employment status.) Click to highlight. Click on Browse/Select Highlighted Variables. Check the “Select” box on next pop-up screen. Click “Deselect all values” and then check “Employed – At Work” and “Employed – Absent” then click OK. Click on ‘OK’ to confirm and to add the variable to your Data Basket.
 - **PRTAGE** (Demographics – age top coded at 90 years old). Click to highlight. Click on Browse/Select Highlighted Variables. Check the “Select” box on next pop-up screen. Make the age range 16 to 90. Click on OK. Click on ‘OK’ again to confirm and to add the variable to your Data Basket.

- Click on “Step2: Data Basket/Download/Make a Table”.
- Click on the “Make a Table” icon. You will then see an empty spreadsheet on the left side of your screen and a box on the right with the variables in the Data Basket.
- Using your mouse, pull the variable titled PRTAGE (i.e., “click and drag”) from the right side to the top left corner of the empty spreadsheet and click on “GO Get Data” on the toolbar.
- In a few seconds the table will be populated with a total employment number for all of the single years of age between 16 and 90.
• The selections for the query are provided in simple SAS code on the right side of the screen. Verify that you have selected your state, ages between 16 and 90, “PEMLR=1” and “PEMLR=2” and the correct months of interest.
• Highlight the cells containing data in the spreadsheet. Select Copy from the Edit dropdown menu. Paste the copied cells into an Excel file.

i) 16 to 17 year olds
• In Excel, sum the average annual number of employed persons corresponding to 16-17 year olds.

ii) 18 to 64 year olds
• Follow the process above (i) for ages 18-64.

NOTE: if you simply highlight the values associated with the 18-64 group, Excel should illustrate the sum at the bottom of the screen.)

iii) 65+ year olds
• Follow the process above (i) for ages 65 to 90 (equivalent to 65 and older). (Again, summation can be done by Excel by simply highlighting the appropriate values.)

b) To obtain the total employed civilians 16 years or older:
• Sum the average annual number of employed for each of the three age groups.

c) To calculate the percentage:
• 16 to 17 year olds. Divide the number of 16 to 17 year olds by the total employment (P6b). Multiply the result by 100.
• 18 to 64 year olds. Divide the number of 18 to 64 year olds by the total employment (P6b). Multiply the result by 100.
• 65+ year olds. Divide the number of 65+ year olds by the total employment (P6b). Multiply the result by 100.

P7. Percentage of civilian employment by race

a) To obtain the number of employed by race:
• For most states, data are available in Table 14 of “Geographic Profile of Employment & Unemployment for 2012.” (If no data are provided for White and Black for your state in Table 14, you can obtain this information in Table 18 - look for "White" and "Black or African American" under the heading "Population group and state.")
• Find your state.
 i) White.
 • Find Employment Number listed for row titled “White.” Multiply the number by 1,000.
 ii) Black.
 • Find Employment Number listed for row titled “Black or African American.” Multiply the number by 1,000.
 iii) Other.
 • Sum the number of Whites (P7ai) and the number of Blacks (P7aii). Subtract this number from the “Total employed civilians 16 years or older” (P2b).

b) To obtain the total employed civilians 16 years or older:
• Use P2b.

c) To calculate the percentage:
- **White.** Divide the number of Whites employed (P7ai) by the total number employed (P7b). Multiply the result by 100.

- **Black.** Divide the number of Blacks employed (P7a(ii)) by the total number employed (P7b). Multiply the result by 100.

- **Other.** Divide the number of Other races employed (P7a(iii)) by the total number employed (P7b). Multiply the result by 100.

P8. Percentage of civilian employment by Hispanic origin

a) To obtain the number of Hispanic origin employed:
 - For most states, data are available in Table 14 of “Geographic Profile of Employment & Unemployment for 2012.” (If no data are provided for Hispanic origin for your state in Table 14, you can obtain this information in Table 18 - look for "Hispanic or Latino ethnicity" under the heading "Population group and state.")
 - Find your state.
 - Find Employment Number listed for row titled “Hispanic or Latino ethnicity.”
 - Multiply the number by 1,000.

b) To obtain the total employed civilians 16 years or older:
 - Use P2b.

c) To calculate the percentage:
 - Divide the number of Hispanic origin employed (P8a) by the total employment (P8b). Multiply the result by 100.

P9. Percentage of civilian employment by industry

- Data are available in Table 20 of “Geographic Profile of Employment & Unemployment for 2012.”
- The heading in the first column “Population group and area” should be “TOTAL.”
- Find the row corresponding to your state.
- Find the percent of the total employed in the various industries.

Prior to 2003, these categories were:
- Construction
- Manufacturing – Durable goods
- Manufacturing – Non-durable goods
- Transportation/communications/public utilities
- Trade
- Finance/insurance/real estate
- Services
- Government
- Agriculture.

Starting in 2003, the categories are:
- Mining
- Construction
- Manufacturing – Durable goods
- Manufacturing – Nondurable goods
- Wholesale and retail trade
- Transportation and utilities
- Information
- Financial activities
- Professional and business services
• Education and health services
• Leisure and hospitality
• Other services
• Public administration
• Agriculture and related.

P10. **Percentage of civilian employment by occupation**

- Data are available in Table 18 of “Geographic Profile of Employment & Unemployment for 2012.”
- The heading in the first column “Population group and area” should be “TOTAL.”
- Find the row corresponding to your state.
- Find the percent of the total employed in the various occupations.

Prior to 2003, these categories were:
- Executive/administrative/managerial
- Professional specialty
- Technicians and related support
- Sales
- Administrative support including clerical
- Service
- Precision production/craft/repair
- Machine operators/assemblers/inspectors
- Transportation/material moving
- Handlers/equipment cleaners/helpers/laborers
- Farming/forestry/fishing.

Starting in 2003, the categories are:
- Management, business and financial operations
- Professional and related
- Service
- Sales and related
- Office and administrative support
- Farming, fishing, and forestry
- Construction and extraction
- Installation, maintenance, and repair
- Production
- Transportation and material moving.
TOPIC: OCCUPATIONAL INJURIES AND ILLNESSES COMBINED

INDICATOR # 1: NON-FATAL WORK RELATED INJURIES AND ILLNESSES REPORTED BY EMPLOYERS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons in the private sector</th>
</tr>
</thead>
</table>
| **Numerator:** | Estimated cases of work-related injuries and illnesses
 Estimated cases of injuries and illnesses involving days away from work
 Estimated cases of injuries and illnesses involving more than 10 days away from work |
| **Denominator:** | Estimated total full-time equivalents (FTEs) worked for the same calendar year |
| **Measures of Frequency:** | Estimated annual total number of work-related injuries and illnesses (numerator)
 Estimated annual total work-related injury and illness incidence rate per 100,000 FTEs
 Estimated annual total number of cases involving days away from work (numerator)
 Estimated annual total incidence rate for cases involving days away from work per 100,000 FTEs
 Estimated annual total number of cases involving more than 10 days away from work (numerator) |
| **Time Period:** | Calendar year |
| **Significance and Background:** | In 2012, there were over 3 million work-related injuries and illnesses reported by employers in the private industry sector in the United States. Of those, 94.8% were recordable injuries and 5.2% were recordable illnesses. Over half of the more than 3 million injury and illness cases reported in 2012 were of a more serious nature that involved days away from work, job transfer, or restriction (DART cases). These cases occurred at a rate of 1.8 cases per 100 full-time workers (BLS, 2014). (Data source: BLS www.bls.gov/data/#injuries) |
| **Rationale:** | Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers. |
| **Limitations of Indicator:** | Employers are required to record events that result in death, loss of consciousness, days away from work, restricted work, or medical treatment beyond first aid. They are only required to report the detailed case characteristics (e.g., nature, body part, event) when the injury or illness results in at least one day away from work. Employers do not always record all relevant events. Also, employers are often unaware of work-related conditions for which employees have obtained medical care from their personal health care providers, and conditions that have long latencies and are diagnosed long after an employee leaves their employment. With respect to injuries/illnesses involving days away from work, employers vary in their use of restricted work activity to reduce lost workdays among their employees with work-related conditions, thereby avoiding cases with days away from work. The industries for which data are available also vary among States, primarily due to the differences in industry concentration and sample size from one State to the next; as a result it is not recommended to compare numbers or rates between State or National data. |
| **Data Resources:** | Annual BLS Survey of Occupational Injuries and Illnesses (SOII) |
Limitations of Data Resources:
The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate state-specific estimates. Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details).

HP2020 Objective:
None

CSTE Positions:
None

Other Available Data:
Industry, occupation, age, gender, race/ethnicity, nature of injury, body part, type of event and source of injury, length of service. Public sector should be looked at, if available. (Details are available only for injuries/illnesses involving days away from work.)

Recommendations:
SOII has many data elements that can be used to better define patterns of work-related injuries and illnesses in the state. These include, for example, industry-specific counts and rates, and, for cases involving days away from work, counts (not rates) of illnesses and injuries by occupation, length of service, age, gender, race/ethnicity and sources of injury.
How-To Guide: Indicator #1:
Non-Fatal Work Related Injuries and Illnesses Reported By Employers

1.1 Estimated Annual Total Number of Work-Related Injuries and Illnesses

- Go to the BLS web site: http://www.bls.gov/iif/oshstate.htm.
- Select your state from the map.
- Select ‘Case counts’ under SOII for the specific year needed.
- From resulting Table 7, read across ‘Private Industry’ row and down major column ‘Total Recordable Cases.’

NOTE: Data from this same table will be used in step 1.3.
- Multiply this cell’s value by 1,000 to get the ‘Estimated annual total number of work-related injuries and illnesses’.

1.2 Estimated Annual Total Work-Related Injury and Illness Incidence Rate per 100,000 FTEs

- Go to the BLS web site: http://www.bls.gov/iif/oshstate.htm.
- Select your state from the map.
- Select ‘Incidence Rates’ under SOII for the specific year needed.
- From resulting Table 6, read across ‘Private Industry’ row and down major column ‘Total Recordable Cases.’ (Rate is provided per 100 FTEs).

NOTE: Data from this same table will be used in step 1.4.
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total work-related injury and illness incidence rate per 100,000 FTEs’.

1.3 Estimated Annual Total Number of Cases Involving Days Away from Work

- Go to the BLS web site: http://www.bls.gov/iif/oshstate.htm.
- Select your state from the map.
- Select ‘Case counts’ under SOII for the specific year needed.
- From resulting Table 7, read across ‘Private Industry’ row and down the sub-column ‘Cases with days away from work’ under the major column header ‘Cases with days away from work, job transfer, or restriction.’
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total number of cases involving days away from work’.

1.4 Estimated Annual Total Incidence Rate for Cases Involving Days Away from Work per 100,000 FTEs

- Go to the BLS web site: http://www.bls.gov/iif/oshstate.htm.
- Select your state from the map.
- Select ‘Incidence Rates’ under SOII for the specific year needed.
- From resulting Table 6, read across ‘Private Industry’ row and down sub-column ‘Cases with days away from work’ under major column header ‘Cases with days away from work, job transfer, or restriction’ (rate is provided per 100 FTEs).
- Multiply the value of this cell by 1,000 to get the ‘Estimated annual total incidence rate for cases involving days away from work per 100,000 FTEs’.

1.5 Estimated Annual Total Number of Cases involving more than 10 Days Away from Work

- Go to http://www.bls.gov/data/.
- Click on link: ‘Workplace Injuries.’
In the ‘Workplace Injuries’ table, find the row that says ‘Nonfatal cases involving days away from work: selected characteristics (2011 forward)’ and click on icon for ‘multi-screen data search.’

You should be at a page called ‘Create Customized Tables’ with a description of ‘Nonfatal cases involving days away from work: selected characteristics (2011 forward) – Area (Screen 1 of 7).’ The next steps describe making selections using this data wizard.

Under ‘Choose Area’ scroll as needed to view your state name. Click on the state name to highlight it and then click ‘Next form’ button.

Under ‘Choose Ownership’ click on ‘1 Private industry’ to highlight and then click ‘Next form’ button.

Under ‘Choose Data Type’ click on ‘6 Injury and Illness Cases’ to highlight and then click ‘Next form’ button.

Under ‘Choose Case Type’ and scroll to and click on ‘3 Selected characteristic by detailed industry’ to highlight. Then click ‘Next form’ button.

Under ‘Choose category’ hold down the shift key (to allow for multiple selections) while scrolling down and click to highlight ‘DEX DAFW (11-20 days), DFX DAFW (21-30 days), and DGX DAFW (31+ days).’ Release shift key. Verify that all three choices are highlighted, then click ‘Next form’ button.

Under ‘Choose Industry’ click on ‘00000 All workers’ to highlight. Then click ‘Next form’ button.

You should be at the screen showing ‘Nonfatal cases involving days away from work: selected characteristics (2011 forward) – Year (Screen 7 of 7).’ The data box below should contain three data series IDs. Click on the ‘Retrieve data’ button below the data box.

The results page is titled ‘Databases, Tables & Calculators by Subject.’ The results of the query will show all three data series, the identifying information, and your total number in each of the three data series. Verify that the state name and data description is correct.

DATA REMINDER: You need the result data from all three data series files shown for the final calculation of OHI 1.5.

NOTE: As additional years of data (2011 and later) are available, multiple years of data results may be shown, grouped by year. You can limit the data shown to one year if desired using the ‘Change Output Options’ function shown under the page title.

Options:

- You can write down the year’s result for each of the three data series – found under ‘annual’ for the next step in calculating OHI 1.5.
- You can print the page shown below as a reference showing the results as a reference for the next step in calculating OHI 1.5
- You can download each of the three files as a reference for the next step in calculating OHI 1.5
- Sum the annual result data from all three data sets (11-20 days, 21-30 days, and 31+ days) for the year of interest. This is the **Estimated annual total number of cases involving more than 10 days away from work.**

Data Tips: Regional BLS offices can provide revised/updated counts and rates for any year. Numbers and rates may not be available from the website if the estimate does not meet the publishable criteria of BLS. This is particularly true for small states and rare conditions.
TOPIC: OCCUPATIONAL INJURIES AND ILLNESSES COMBINED
INDICATOR # 2: WORK-RELATED HOSPITALIZATIONS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>Inpatient hospital discharges with primary payer coded as workers’ compensation</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>
| **Measures of Frequency:** | Annual number of inpatient hospitalizations for persons age 16 years or older (numerator)
Annual crude rate of inpatient hospitalizations per 100,000 employed persons age 16 years or older |
| **Time Period:** | Calendar year |
| **Significance and Background:** | In 2012, there were 3.8 million work-related injuries and illnesses reported by employers in the United States. Of those, 94.5% were recordable injuries and 5.5% were recordable illnesses. More than half of the 3.8 million injury and illness cases reported in 2012 were of a more serious nature that involved days away from work, job transfer, or restriction (DART cases). These cases occurred at a rate of 1.8 cases per 100 full-time workers (BLS, 2014). Workers’ compensation costs in the United States total more than $100 billion per year (Sengupta et al., 2013). |
| **Rationale:** | Individuals hospitalized with work-related injuries and illnesses have some of the most serious and costly work-related adverse health outcomes. Tracking of these significant adverse health effects should be undertaken to document the burden of occupational injuries and illnesses, to design, target, and evaluate the impact of prevention efforts over time, and to identify previously recognized settings in which workers may continue to be at high risk. |
| **Limitations of Indicator:** | Inpatient hospital discharge records are only available for non-federal, acute care hospitals. Individuals hospitalized for work-related injuries and illnesses represent less than 10 percent of all workers who receive workers’ compensation. The majority of individuals with work-related illnesses and many others with injuries do not file for workers’ compensation. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. Attribution of payer in hospital discharge may not be accurate. Data between states may not be comparable due to the differences in states’ workers’ compensation programs. |
| **Data Resources:** | Inpatient hospital discharge data (numerator)
BLS Current Population Survey Data (denominator) |
| **Limitations of Data Resources:** | Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients, to correctly diagnose work-related conditions, and/or to list the condition as a discharge diagnosis. Residents of one state may be hospitalized in another state and not be reflected in his/her state’s hospitalization data. All admissions are counted, including multiple admissions for a single individual. Until hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Data on race/ethnicity is not collected in some states and is incomplete and/or questionable validity in others. |
| **HP2020 Objectives:** | OHS-2 |
| **CSTE Positions:** | None |
| **Other Available Data:** | Age, gender, race/ethnicity, diagnosis, residence zip code |
| **Recommendations:** | Age, gender, race/ethnicity, zip code specific counts and rates can be used to better define the pattern of work-related hospitalizations. Proportion of all hospitalizations in the state can be examined. |
How-To Guide: Indicator #2:

Work-Related Hospitalizations

2.1 Annual number of inpatient hospitalizations for persons age 16 years or older
Obtain from the State Health Department the number of cases meeting the following criteria from the inpatient hospital discharge file:

- Primary payer = Workers’ Compensation.
- Limit age to those 16 years or older (age at admission is preferred).
- Select for state of residence = ‘your state’.
- Exclude:
 - age unknown
 - out-of-state residents and unknown residence
 - out-of-state inpatient hospitalizations
- Use unduplicated data (no exclusions for deaths, readmissions).
- Use discharge data during calendar year, not fiscal year.
- Use all cases reported on the discharge file, regardless of length of stay.
- This will yield ‘Annual number of inpatient hospitalizations for persons age 16 years or older’.

2.2 Annual crude rate of inpatient hospitalization per 100,000 employed persons age 16 years or older

a) To obtain the denominator for the rate:
 - Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons.
 - Page down to heading “TABLES CREATED BY BLS”.
 - Find table for “Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age”.
 - NOTE: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm.
 - Choose the Annual Averages for year of Interest.
 - Scroll down to find your state.
 - Read the ‘Total’ row for your state and the 4th data column- ‘Employment Number’. This is the ‘Number of employed persons age 16 years or older’ (in thousands). Multiple by 1000.

b) To calculate the rate:
 - Divide the numerator (2.1) by the denominator (2.2a).
 - Multiply this result by 100,000 to get the ‘Annual crude rate of inpatient hospitalizations per 100,000 employed persons age 16 years or older’.
TOPIC: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

INDICATOR #3: FATAL WORK-RELATED INJURIES

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>All fatal work-related injuries reported to the Census of Fatal Occupational Injuries (CFOI)</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Total hours worked by all employees</td>
</tr>
</tbody>
</table>
| **Measures of Frequency:** | Annual number of fatal work-related injuries (numerator)
Annual crude fatality rate per 100,000 full-time equivalent workers (FTEs) age 16 years or older |
| **Time Period:** | Calendar year |
| **Significance and Background:** | In 2012, 4,628 fatal work injuries were reported to the Census of Fatal Occupational Injuries (CFOI) Program administered by the Bureau of Labor Statistics (BLS). The 2012 total was the second lowest annual total since the fatal injury census was first conducted in 1992. The overall fatal work injury rate for the U.S. in 2012 was 3.4 fatal injuries per 100,000 full-time equivalent workers, down slightly from the final rate of 3.5 reported for 2011. On an average day, 13 workers die each day as a result of these injuries sustained at work. Worker fatalities have decreased approximately 20% from a decade earlier. (CFOI, 2014) |
| **Rationale:** | Multiple factors and risks contribute to work-related fatalities, including workplace/process design, work organization, worker characteristics, economics and other social factors. Surveillance of work-related fatalities can identify new hazards and case clusters, leading to the development of new interventions and development of new or revised regulations to protect workers. |
| **Limitations of Indicator:** | Fatalities of people younger than 16 may be included in the numerator but are not included in the denominator, since employment statistics are only available for those 16 years of age and older. Because the numbers of deaths among those less than 16 in any one state are small, these numbers are not broken out in the BLS tables and often do not meet the BLS publication criteria. Also CFOI reports data on work-related fatalities by the state in which the fatal incident occurred, which is not necessarily the state of death or the state of residence. The denominator data used for calculating rates is based on state of residence, thus rates may overestimate risk for a state if the fatal incidents involved victims who were out of state residents. Likewise, rates may be underestimated if fatal incidents occurred in other states. Deaths among military personnel and volunteers are included in the numerator but not the denominator. The BLS uses a different methodology to calculate fatal work-related injury rates; as a result rates calculated using this indicator methodology may differ from the BLS published rates. For more information regarding the BLS methodology please visit the BLS website at: http://www.bls.gov/iif/oshnotice10.htm |
| **Data Resources:** | Census of Fatal Occupational Injuries (numerator)
BLS Current Population Survey Data (denominator) |
| **Limitations of Data Resources:** | CFOI program states are not permitted to release occupation or industry specific data when data are sparse. Such sparse data is categorized under ‘others’. The CFOI program, although it has a data element for ICD codes, publishes findings according to the OIIC classification system rather than ICD. Therefore, data from CFOI may not be comparable to causes of death documented on death certificates. |
| **HP2020 Objectives:** | OSH-1 and OSH-5 |
| **CSTE Positions:** | None |
| **Other Available Data** | Industry and occupation, age, gender, race/ethnicity, nature, source of injury and event |
How-To Guide: Indicator #3:

Fatal Work-Related Injuries

NOTE: The denominator that the Bureau of Labor Statistics (BLS) uses to calculate fatality rates has changed over time from the number employed to hours worked. The new hours-based rates use the average number of employees at work and the average hours each employee works. To be consistent with the BLS, the denominator for fatal work-related injury rates for this indicator has changed from the number employed, as indicated in the Geographic Profiles, to the number of hours worked which is designated as Full-Time-Equivalent workers or FTEs. States may wish to calculate rates using either method to track trends over time.

3.1 Annual number of fatal work-related injuries
- Go to the BLS web site: http://www.bls.gov/iif/home.htm.
- Scroll down to “Regional Resources” on the right hand side of the page.
- Select your state and click ‘Go’.
- Under CFOI, select ‘Fatal injury counts (HTML)’ for the appropriate year.
- From resulting table (table 1), read across ‘Total’ row and down ‘Total’ column. This is the ‘Annual number of fatal work-related injuries’. A (p) notation next to the number denotes a preliminary count, subject to change at a later date (See Footnotes).
This is the ‘Annual number of work-related fatal injuries’ for your state.

3.2 Annual crude fatality rate per 100,000 Full-Time-Equivalent workers (FTEs) age 16 years or older.

NOTE: Data users can choose to obtain annual number of FTE’s using DataFerrett as described in Step a) Method 1 or NIOSH’s Employed Labor Force Tool (ELF) as described in Step a) Method 2.

a) Method 1 - To obtain the annual average number of Full-Time-Equivalent workers (FTEs) age 16 years or older (the denominator for the rate) using DataFerrett
 - Go to http://dataferrett.census.gov.
 - DataFerrett is a web-based data analysis and extraction tool to customize federal, state, and local data. Using DataFerrett, you can develop an unlimited array of customized spreadsheets that are as versatile and complex as your usage demands then turn those spreadsheets into graphs and maps without any additional software.
 - Read and follow the directions in the “What you should check before getting started” block on the homepage, including:
 - Check for and install the latest version of Java on your computer
 - Allow pop-ups in your browser
 - Run in IE or Firefox
 - On the homepage, you will find helpful information on DataFerrett in the blue box on the right hand side of the page, including a “Getting Started” tutorial, information about the data sets and user resources.
 - To initiate DataFerrett, click on “Launch DataFerrett” in the blue box on the right (If the latest version of Java still does not allow DataFerrett to launch, add the application’s URL [http://thedataweb.rm.census.gov] to Java’s Exception Site List. Instructions can be found at https://www.java.com/en/download/help/jcp_security.xml).
 - The “Launch Application” screen will pop up, then a second, gray screen will pop up that will ask if you want to run the DataFerrett application page. Click “run”. DO NOT CLOSE THE LAUNCH APPLICATION SCREEN.
 - Type your work e-mail address into the DataFerrett login pop-up box and click OK.
• Click on “Step1: Select Dataset and Variable” tab at the top of the page.
• Within the “Select Dataset(s) to Search menu on the left hand side of the screen,” click on the + sign for Current Population Survey. Then click on the + sign for Basic.
• Select the months of interest by highlighting them.
• Multiple months can be highlighted by clicking and simultaneously using the control key. (Alternatively: a range of months can quickly be selected by clicking on one month (e.g., January 2012), then clicking on another month (e.g., December 2012) while holding down the Shift key. All the months within the range should then be highlighted.) Use the right mouse key to display a drop down menu. Select “View Variables”
• Select the following topics: “Labor Force Variables”, “Geography Variables”, and “Weighting Variables” then select “Search Variables” at the bottom of that box.
• On the next screen all of the available variables for the selected topics will be displayed. Click on the heading “Name” to sort the variables alphabetically.
• Select the following variables and value ranges:
 o GESTCEN (Geography – census state code.) Click to open. Once the screen opens, at the top of the second panel, click the check box marked “Select.” Click “Deselect all values”, on the right side of the screen. Check your State code, and then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your Data Basket.
 o PEHRACT1 between 0 and 99 (Labor Force – # hours actually worked at main job). Click to open. Once the screen opens, at the top of the second panel, click the check box marked “Select.” Two options will appear in the second panel. Deselect the “-1) Not in Universe,” but leave the second option, “0-99 Range,” checked as is (0-99 Range) and then click on ‘OK’. Click on ‘OK’ to confirm and to add the variable to your Data Basket.
 o PEMLR (Labor force – employment status.) Click to open. Once the screen opens, at the top of the second panel, click the check box marked “Select.” Click “Deselect all values”, on the right side of the screen. Then check “Employed – At Work” and “Employed – Absent” then click OK. Click on ‘OK’ to confirm and to add the variable to your Data Basket.
 o PWCMPPWGT (Weight – composited final weight). Double click to open. Notice that no values appear, although a description is provided for PWCMPPWGT. Hit “Select” at the top of the second panel then click OK. Click on ‘OK’ again to confirm and to add the variable to your Data Basket.
• You will be brought back to the window with your variable list and monthly dataset selections. At the top of this page, click “Step 2: Data Basket/Download/Make a Table.”
• Click on the “Make a Table” icon to access the Ferret Tabulation table.
 o A new window will open containing your variable list in the panel on the right and data option keys across the top. Be patient once you have clicked this button…it may take 10-20 seconds for the table application to appear.
• An Excel-type spreadsheet will appear on the screen. To the far right is your variable list. Click on PEHRACT1, and while holding your left mouse button down, drag the “Hand” to Column 1. R2 X C1 will have the tag “Total PEHRACT1” and there will be values of “0 Range” to “99 Range” in rows R3-R102. These represent number of hours worked.
• Go back to the variable list and drag the variable Instances (i.e., PWCMPPWGT) to Column 2. The R1 X C2 will have the tag “Total Instances” placed in it, while R1 X C3 through R1 X C14 will have the month-year tags (e.g., Dec 2012 for R1 X C3). All other cells will have a “?” in them.
• In the upper left hand corner of the spreadsheet tool bar, locate the green shaded button “Go Get Data.” Click on this button. In a few seconds the table will be populated with the number of persons employed in your state by the range of hours worked in primary job for the week prior to interview for the CPS.
 o The selections for the query are provided in simple SAS code on the right side of the screen. Verify that you have selected your state, hours worked in the primary job between 0 and 99 hours (PEHRACT1), “PEMLR=1” and “PEMLR=2” and the correct months of interest.
• Highlight all the populated cells in the spreadsheet.
• Select Copy from the Edit dropdown menu and paste the copied cells into an Excel file.
• You are now finished with DataFerrett
• In the Excel Spreadsheet Column A is “Hours Worked Range”, and Column B is the “Number Employed in Range”. You are now ready to calculate the total FTE in your State using MS Excel. To do this you will need to delete the word “Range” from the numeric values in column A.
• You can do this in MS Excel, by using the ‘Replace’ function (labeled ‘Find and Select’ under the binoculars icon in the upper right-hand corner of Excel 2007 or typing the “Ctrl” and “F” button simultaneously).
• When the pop-up box appears, type the word “Range” into the ‘Find What’ box and leave the ‘Replace With’ box blank.
• Click on the ‘Replace All’ button. This will remove the word “Range” from the numeric values in column A. Close the Find and Replace dialog box.
• Next you must determine the number of FTEs in your state. To do this, insert a new column in column C of your spreadsheet.
• Starting with the ‘0’ hours row (row 3), paste the following Excel equation into column C “=A3*(B3*52)/(12*2000)”. This equation multiplies the “hours worked” value in column A by the instances these were estimated to have occurred for all 12 monthly surveys provided in column B. Multiplying by 52 accounts for all weeks in a year. Dividing by 12 annualizes the 12 month total provided in column B, and dividing by 2000 converts the resulting annual average number of hours to an FTE.
• Drag the equation down the length of the column by holding down the “+” in the lower right hand of the cell in which you entered the equation (C3). This will populate the remaining FTE values by the hour worked category.
• Sum all numbers in column C (C3:C102); this is the estimate of the Annual Average Number of Full-Time-Equivalent Workers (FTEs) age 16 years or older.

a) Method 2 - To obtain the annual average number of Full-Time-Equivalent workers (FTEs) age 16 years or older based on the Current Population Survey (the denominator for the rate) using NIOSH’s Employed Labor Force Tool instead of DataFerrett:

• Go to the NIOSH Employed Labor Force (ELF) Website at: http://wwwn.cdc.gov/wisards/cps/
• Link to the ELF estimates page by clicking on the CPS queries logo or selecting “ELF Estimates” from the left-hand menu.
• For Step 1 Select type of labor force estimates: Highlight (or select) ‘FTE- primary job’ only
• For Step 2: Select Query Parameters
 o For Time Period: Select ‘2012’
 o For Location: Expand the option to select your state, for example ‘Wyoming’
• For the Total FTE, leave the remaining parameters as they are, Skip step 3 and leave the weighting as ‘composite weight’
• For Step 4: select ‘Submit the Query’
• A new screen will populate and the Annual Average Number of FTEs age 16 years or older will be displayed, you can also view the data as a Microsoft Word or Microsoft Excel document.

b) To calculate the ‘Annual Crude Fatality Rate per 100,000 FTEs age 16 years and older’.
• Divide the ‘Annual number of work-related fatal injuries’ from 3.1 by the Annual average number of FTEs age 16 years or older’ from 3.2a – Method 1 or Method 2.
• Multiply the result by 100,000 to get the ‘Annual crude fatality rate per 100,000 FTEs age 16 years and older’.
NOTE: Because of data limitations, fatalities among persons less than 16 years of age may be included in the numerator (3.1) but are excluded from the denominator.

Data Tips

- CFOI publishes preliminary data approximately nine months after the close of the calendar year. A year later, CFOI publishes final, updated counts. The indicator should be based on the final counts. State contact information is provided at http://www.bls.gov/iif/oshstate.htm

- For data on fatal work-related injuries prior to 2003, go to: http://www.bls.gov/iif/osh_nwrl.htm#cfoi. Scroll down to “Prior year releases available online” and select the year of interest under the CFOI heading. Within the selected document, locate the table illustrating deaths by state.

- Numbers may not be available from the web-site if the estimate does not meet the publishable criteria of BLS. This is particularly true for small states.
TOPIC: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

INDICATOR #4: WORK-RELATED AMPUTATIONS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons in the private sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Estimated cases of work-related amputation with days away from work (OIICS 2.01 nature of condition code 1311)</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Estimated total full-time equivalents (FTEs) worked for the same calendar year</td>
</tr>
</tbody>
</table>
| **Measures of Frequency:** | Estimated annual number of work-related amputation cases with days away from work (numerator)
Estimated annual incidence rate of work-related amputation cases with days away from work per 100,000 FTEs |
| **Time Period:** | Calendar year |

Significance and Background:
In 2012, approximately 5,120 private sector workers in the United States experienced a nonfatal work-related amputation that required days away from work. Eighty-two percent of these workers were male. About 95% involve amputations to the hand (most likely the fingers) (BLS, 2014). These injuries may greatly affect a worker's job skills and reduce earnings.

Rationale:
Work-related amputations are a preventable serious injury, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers.

Limitations of Indicator:
Employers are required to record events that result in death, loss of consciousness, days away from work, restricted work, or medical treatment beyond first aid. They are only required to report the detailed nature of injury when the injury results in at least one day away from work. Employers do not always record all relevant events. Employers vary in their use of restricted work activity to reduce lost workdays among their employees with work-related conditions, thereby avoiding cases with days away from work. The industries for which data are available also vary among States, primarily due to the differences in industry concentration and sample size from one State to the next; as a result it is not recommended to compare numbers or rates between State or National data.

Data Resources:
Annual Bureau of Labor Statistics (BLS) Survey of Occupational Injuries and Illnesses (SOII)

Limitations of Data Resources:
The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate State-specific estimates. BLS does not publish rates less than 0.05 per 10,000 full-time equivalent workers. Rates under 0.05 are not considered publishable in the case and demographics system.

Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details). In addition, the SOII only collects data for the incident year, and does not capture lost work-time that may carry over to a new calendar year. For example, a
debilitating injury that occurs on the last day of the calendar year will have no lost work-time associated with it in the SOII.

<table>
<thead>
<tr>
<th>HP2020 Objectives:</th>
<th>OSH-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>Industry, occupation, age, gender, race/ethnicity, body part, type of event and source of injury. (Details are available only for injuries/illnesses involving days away from work.)</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>SOII has many data elements that can be used to better define patterns of work-related amputations in the state. These may include, for example, industry-specific counts and rates of injuries, and for cases involving days away from work, counts (not rates) by occupation, length of service, age, gender, race/ethnicity and sources of injury.</td>
</tr>
</tbody>
</table>
How-To Guide: Indicator #4:

Work-Related Amputations with Days Away From Work Reported By Employers

NOTE: BLS SOII data changes for 2011: Starting with Reference Year 2011 data, BLS began using a revised version of the Occupational Injuries and Illnesses Classification System (OIIICS) manual to code case characteristics associated with work-related injuries, illnesses and fatalities. Information about the original OIICS coding structure as well as the new OIICS 2.01 coding structure is available here: http://www.bls.gov/iif/oshioiics.htm. A summary of these changes can be found on the following link and includes information about the changes made to the Nature codes involving amputations, avulsions, and enucleations: http://www.bls.gov/iif/oiics_changes_2010.pdf. For OHI 4, this change requires the use of ‘Amputations code 1311XX’ for data from 2011 and forward, while ‘Amputations code 031XXX’ was used for 2010 and previous calculations.

- **Impact to trend analysis:** Due to the extensive revisions, BLS cautions users against directly comparing Event, Source, Secondary Source, Part, and Nature case characteristic codes from 1992-2010 and from 2011 onward. You can examine the amputation definition in the original OIICS coding structure and the OIICS 2.01 coding structure prior to deciding to continue a trend analysis over time (again, BLS cautions against this and doesn’t do it in-house as a matter of program policy). Some data users feel that the definitions of particular codes across the two systems are similar enough for their data needs. See pages 4 and 5 of the original coding structure (http://www.bls.gov/iif/oiics_manual_2007.pdf) compared to pages 17-18 of the OIICS 2.01 coding structure (http://www.bls.gov/iif/oiics_manual_2010.pdf).

4.1 Estimated Annual Number of Work-Related Amputations Involving Days Away from Work

- Select ‘Case and Demographic Numbers’ as the table type. Click on ‘Continue’.
- Select the year of interest. Click on ‘Continue’.
- Select the state of interest. **Leave ‘Beginning year:’ as ‘single year’**. Click on ‘Continue’.
- Select ‘Nature of condition’ under ‘Characteristic Type’. Leave ‘Name or description’ selected. Click on ‘Continue’.
- Select ‘Amputations 1311XX’ under ‘Subcharacteristics’. Leave ‘Private industry’ selected. Click on ‘Continue’. Then select the desired output format—HTML or Excel (for Excel, select ‘Open’ from the pop-up box to view the file. You may get a second pop-up box saying the file is in a different format than specified by the extension, and that you should verify that the file is not corrupted and from a trusted source. Click ‘Yes’ to open as an Excel file).
- Read across 1st row ‘Total’ and down 3rd column ‘Amputations (code 1311XX)’ from the resulting table. This is the ‘**Estimated annual number of work-related amputations involving days away from work**’.
- **NOTE:** For some years, BLS lists the number of amputations in hundreds. BLS includes a parenthetical note - i.e., ‘(in hundreds)’ in the table heading if this applies. If your data shows this notation, the listed figure must be multiplied by 100 to generate the total number of amputations.

4.2 Estimated Annual Incidence Rate of Amputations Involving Days Away from Work per 100,000 FTEs

- Select ‘Case and Demographic Incidence Rates’ as the table type. Click on ‘Continue’.
- Select the year of interest. Click on ‘Continue’.
- Select the state of interest. **Leave ‘Beginning year:’ as ‘single year’**. Click on ‘Continue’.
• Select ‘Nature of condition’ under ‘Characteristic Type’. Leave ‘Name or description’ selected. Click on ‘Continue’.
• Select ‘Amputations 1311XX’ under ‘Subcharacteristics’. Leave ‘Private industry’ selected. Click on ‘Continue’. Then select the desired output format—HTML or Excel (for Excel, select ‘Open’ from the pop-up box to view the file. You may get a second pop-up box saying the file is in a different format than specified by the extension, and that you should verify that the file is not corrupted and from a trusted source. Click ‘Yes’ to open as an Excel file).
• Read across 1st row ‘Total’ and down 3rd column ‘Amputations (code 1311XX)’ from the resulting table. This is the number of amputations per 10,000 FTEs. Multiply the value of this cell by 10 to get the ‘Estimated annual incidence rate of work-related amputations involving days away from work per 100,000 FTEs’.
TOPIC: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

INDICATOR #5: STATE WORKERS’ COMPENSATION CLAIMS FOR AMPUTATIONS WITH LOST WORK-TIME

<table>
<thead>
<tr>
<th>Demographic Group</th>
<th>Workers covered by state workers’ compensation system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Amputation cases with lost work-time filed with state workers’ compensation system</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Estimated number of workers covered by state workers’ compensation system for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Annual number of amputation cases with lost work-time filed with state workers’ compensation. Annual incidence rate of amputation cases with lost work-time filed with state workers’ compensation per 100,000 workers covered by state workers’ compensation system</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
</tbody>
</table>

Significance and Background:
In 2012, approximately 5,120 private sector workers in the United States experienced a nonfatal work-related amputation that required days away from work. Eighty-two percent of these workers were male. About 95% involve amputations to the hand (most likely the fingers) (BLS, 2014). These injuries may greatly affect a worker's job skills and reduce earnings. Workers' compensation costs in the United States total more than $100 billion per year (Sengupta et al., 2013).

Rationale:
Work-related amputations are preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers.

Limitations of Indicator:
Differences in the availability of data (i.e., for lost time cases only versus all medical benefits cases) and eligibility criteria between states indicate that data for this condition should be used to evaluate trends within a state but not to make state-to-state comparisons. Since the adoption of OIICS 2.01 in 2011, the BLS cautions users against directly comparing Event, Source, Secondary Source, Part, and Nature case characteristic codes from 1992-2010 and from 2011 onward. Information about the original OIICS coding structure as well as the new OIICS 2.01 coding structure is available here: http://www.bls.gov/iif/oshoiics.htm. However, some users may feel that the definitions for Nature of Injury ‘Amputations’ are similar enough between the coding structures for their needs.

Data Resources:
Workers’ compensation system (numerator)
National Academy of Social Insurance (NASI) estimate of workers covered by workers' compensation (denominator)

Limitations of Data Resources:
Workers’ compensation data are not complete, as the majority of individuals with work-related illnesses and many with work-related injuries do not file for workers’ compensation. Workers’ compensation claims may be denied. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers may not be covered by state workers’ compensation systems.

HP2020 Objective:
OSH-2

CSTE Positions:
None

Other Available Data:
Age, gender, occupation and industry, type of event and source of injury

Recommendations:
Age, gender, occupation, and industry-specific counts and rates can be used to better define the pattern of occupational injuries/illnesses. Frequency distributions by events and source of injury can highlight important causes.
How-To Guide: Indicator #5:

State Workers Compensation Claims for Amputations with Lost Work-Time

5.1 Annual Number of Amputation Cases with Lost Work-time Filed with State Workers’ Compensation

Variability in the coding systems used by state workers’ compensation (WC) systems precludes a universal method for identifying amputation injuries. Variables within state workers’ compensation data systems may be incomplete and are often not subject to quality control. Collaboration with the workers’ compensation database manager is essential for completion. Identify the terminology used within the state workers’ compensation system for amputation cases with lost work-time; typically these are considered ‘claims’. Ask the database manager what ‘claims’ are reported for data collection. Some state workers compensation agencies collect only the subset of ‘claims’ which are legally contested.

NOTE: Since the adoption of OIICS 2.01, the BLS cautions users against directly comparing Event, Source, Secondary Source, Part, and Nature case characteristic codes from 1992-2010 and from 2011 onward. Information about the original OIICS coding structure as well as the new OIICS 2.01 coding structure is available here: http://www.bls.gov/iif/oshoiics.htm. However, some users may feel that the definitions for Nature of Injury ‘Amputations’ are similar enough between the coding structures for their needs.

The following are tips for constructing the database for analysis:

- Identify cases by date of injury.
 - If date of injury is not available, use the date the claim was filed.
 - If a trend analysis is to be performed for state data, claim filing date is more appropriate to use than claim date of injury.
- Include only filed cases which result in lost workdays or ‘time loss.’
- Identify the coding system used for state workers’ compensation amputation cases.
 - Exclude claims that involve the following body parts/regions unlikely to be associated with an amputation: eye, back, chest, abdomen, and body systems (e.g., respiratory system).
 - Include claimants of all ages and those with age unknown.
 - Include out-of-state residents.
- Recognize and document state workers’ compensation laws that may affect state-to-state comparisons.
 - Number of lost workdays for claim to be considered a ‘time loss’ claim.
 - Statute of limitations for work-related injury claim filing.
 - Criteria for reporting a claim to state workers’ compensation data system.
 - Medical care delivery for work-related injury, e.g., physician choice by employee.
 - Industries/occupations excluded from mandatory workers’ compensation coverage.
 - Inclusion or exclusion of claims from self-insured employers in WC data.
 - Exclusions by employer size (e.g., exemption of compulsory workers’ compensation insurance coverage for small employers).
• This will yield the ‘Annual number of amputation cases with lost work-time filed with state workers’ compensation’

5.2 Annual Incidence Rate of Amputation Cases with Lost Work-time Filed with State Workers’ Compensation per 100,000 Workers Covered by State Workers’ Compensation System

a) To obtain the denominator for the rate:
• Go to National Academy of Social Insurance website: http://www.nasi.org/research/workers-compensation
• Identify the report entitled: "Workers’ Compensation: Benefits, Coverage, and Costs, <<YEAR>>"
• Click on pdf icon for report to download (must have Adobe Acrobat).
• Go to Table 3 titled “Workers’ Compensation Covered Workers, by State, <<YEARS>> (in thousands)”.
 • Identify your state for year of interest. Multiply number by 1,000.

b) To calculate the rate
• Divide the numerator (5.1) by the denominator (5.2a).
• Multiply the result by 100,000 to get the ‘Annual incidence rate of amputation cases with lost work-time filed with state workers’ compensation per 100,000 workers covered by state workers’ compensation system’
INDICATOR # 6: HOSPITALIZATIONS FOR WORK-RELATED BURNS

Demographic Group: Employed persons

Numerator: Inpatient hospital discharges with primary diagnosis of burn injury (ICD-9-CM code 940-949) and with primary payer coded as workers’ compensation.

Denominator: Employed population 16 years or older for the same calendar year

Measures of Frequency:
- Annual number of work-related burn inpatient hospitalizations for persons age 16 years and older (numerator)
- Annual rate of work-related burn inpatient hospitalizations per 100,000 employed persons age 16 years or older

Time Period: Calendar year

Significance and Background:
NIOSH has estimated that there are 150,000 work-related burns treated in the emergency rooms each year in the U.S. An estimated 30-40 percent of burns are work-related, with a peak incidence among younger workers, and with males affected more frequently than females. According to data from New England Regional Burn Program, 55 percent of all burns among adults are work-related (Bags, 2002; Rossignol, 1989).

Rationale: Work-related burns are some of the most devastating injuries affecting workers. Although hospitalized burns are unusual events, they are painful, disabling, and expensive to treat. Many result in significant disfigurement. In addition, burns are the most common cause of work-related hospitalization for young workers.

Limitations of Indicator: Individuals hospitalized for work-related injuries and illnesses represent less than 10 percent of all workers who receive workers’ compensation. The majority of individuals with work-related illnesses and many others with injuries do not file for workers’ compensation. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. Attribution of payer in hospital discharge may not be accurate. Data between states may not be comparable due to differences in states’ workers’ compensation programs.

Data Resources:
- Inpatient hospital discharge data (numerator)

Limitation of Data Resources
Work-related burn injuries are experienced by employed individuals less than 16 years old, but corresponding denominator data is not readily available. Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients. Residents of one state may be hospitalized in another state and not be reflected in his/her state’s hospitalization data. Until hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Data on race/ethnicity is not collected in some states and is incomplete and/or of questionable validity in others. Hospital Discharge records are only available for non-federal, acute care hospitals.

HP2020 Objectives: OSH-2

CSTE Positions: None

Other Available Data: Age, gender, race/ethnicity, and residence zip code

Recommendations: Age, gender, race/ethnicity, and zip code specific counts and rates can be used to better define the pattern of burns. Can also look at proportion of all burn hospitalizations in the state.
How-To Guide: Indicator #6:
Hospitalizations for Work-Related Burns

6.1 Annual number of inpatient hospitalizations for work-related burns for persons age 16 years or older

Obtain from State Health Department the following information from the inpatient hospital discharge file.
- Use principle diagnosis from 940 through 949 (ICD-9-CM).
- Use only primary payer = Workers’ Compensation.
- Limit age to those 16 years and older (age at admission is preferred).
- Select for state of residence = ‘your state’.
- Exclude:
 - age unknown
 - out-of-state residents and unknown residents
 - out-of-state inpatient hospitalizations.
- Use undeduplicated data (no exclusions for death, readmissions).
- Use discharge during calendar year, not fiscal year.
- Use all cases reported on the discharge file, regardless of length of stay.
- This will yield the ‘Annual number of inpatient hospitalizations for work-related burns’.

6.2 Annual rate of inpatient hospitalizations per 100,000 employed persons age 16 years or older

a) To obtain the denominator for the rate:
- Page down to heading “TABLES CREATED BY BLS”.
- Find table for “Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age

 NOTE: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm.

- Choose the Annual Averages for year of interest.
- Scroll down to find your state.
- Read the ‘Total’ row for your state and the 4th data column- ‘Employment Number’. This is the ‘Number of employed persons age 16 years or older’ (in thousands). Multiple by 1000.

b) To calculate the rate:
- Divide the numerator (2.1) by the denominator (2.2a).
- Multiply this result by 100,000 to get the ‘Annual crude rate of work-related burn inpatient hospitalizations per 100,000 employed persons age 16 years or older’.
TOPIC: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

INDICATOR #7: WORK-RELATED MUSCULOSKELETAL DISORDERS WITH DAYS AWAY FROM WORK REPORTED BY EMPLOYERS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons in the private sector</th>
</tr>
</thead>
</table>

| Numerator: | 1. Estimated cases of all musculoskeletal disorders (MSDs) involving days away from work
2. Estimated cases of MSDs of the upper extremities, neck, and shoulder involving days away from work
3. Estimated cases of carpal tunnel syndrome involving days away from work
4. Estimated cases of MSDs of the back involving days away from work |
| Denominator: | Estimated full-time equivalents (FTEs) worked for the same calendar year |

| Measures of Frequency: | Estimated annual number of incident cases
Estimated annual incidence rate per 100,000 full-time-equivalents |
| Time Period: | Calendar year |

Significance and Background: In 2012, about one-third (n=316,740) of all lost workday cases reported by private sector employers in the United States were due to musculoskeletal disorders (MSDs). This equates to a rate of 35.1 musculoskeletal disorder cases per 100,000 full-time workers. Almost half (42.2%) of all MSD cases involved an injury to the back and almost one-third (28.5%) involved injury to the upper extremities (BLS, 2014).

Rationale: Work-related musculoskeletal disorders are preventable and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking these injuries helps target prevention programs and activities. Information on reported cases can be used to identify contributory factors and develop improved or new prevention strategies or regulations to protect workers.

Limitations of Indicator: Employers are required to follow OSHA regulations for recording work-related cases of injuries and illnesses. Cases are recordable if they result in death, loss of consciousness, days away from work, restricted work activity or job transfer, or medical treatment beyond first aid. Employers are only required to report the detailed case characteristics (e.g., nature of the disabling condition, body part affected, and event and source producing the condition) when the injury or illness results in at least one day away from work beyond the day of injury or onset of illness. Employers do not always record all relevant events. Also, employers are often unaware of work-related conditions for which employees have obtained medical care from their personal healthcare providers, and conditions that have long latencies and develop or worsen long after the workplace exposure. MSD-related cases, for instance, may develop too late for inclusion in the SOII’s collection of data or may be reported less frequent to the SOII because of greater difficulty in determining whether or not they are work-related.

Data Resources: Annual Bureau of Labor Statistics (BLS) Survey of Occupational Injuries and Illnesses (SOII)
Limitations of Data Resources:	The SOII is based on a probability sample of employer establishments, not on a census of all employers. As such, SOII estimates are subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. The data are also subject to non-sampling errors such as mistakes in recording or coding the data that are not measured. SOII excludes approximately 14% of the workforce including the military, self-employed individuals, private household workers, workers on farms with 10 or fewer employees, Federal agencies and, until 2008, state and municipal workers. Although BLS has produced national estimates for state and local government since 2008, in many states, maintenance of logs of OSHA recordable injuries and illnesses by these agencies is voluntary. Therefore, generation of this indicator is limited to private sector workforce only. Some states do not participate in this Federal-State survey, and in some participating states, the sample sizes are insufficient to generate state-specific estimates. Count estimates and rates may not be published/released by BLS due to the reliability of the estimates. The SOII relies on employer reports of injuries and illnesses and is therefore subject to both willful and unintentional underreporting of cases or case details. Employers may place affected workers on restricted work activity, thereby avoiding the reporting of these cases as lost workday cases (which require reporting of additional details). In addition, the SOII only collects data for the incident year, and does not capture lost work-time that may carry over to a new calendar year. For example, a debilitating injury that occurs on the last day of the calendar year will have no lost work-time associated with it in the SOII.
HP2020 Objectives:	OSH-3
CSTE Positions:	None
Other Available Data:	Age, gender, race/ethnicity, occupation, industry, type of event, body part affected and nature/source of injury (Details are available only for injuries/illnesses involving days away from work.)
Recommendations	States can examine work-related MSDs by industry, age, gender, occupation (counts and rates) and by body part affected, and nature/source of injury/illness (counts only).
How-To Guide: Indicator #7:

Work-Related Musculoskeletal Disorders With Days Away From Work Reported By Employers

NOTE: The definition of musculoskeletal disorders (MSDs) involving days away from work used by BLS has changed over time. An early definition included all cases of overexertion and repetitive motion (OIICS event codes 220-239). The definition used from 2000 - 2010 added nature codes as well as an additional event code. In 2011, BLS adopted a new version of the Occupational Injury and Illness Classification System (OIICS v. 2.01) which affected the numbering and hierarchical ordering of codes and resulted in another modification to the MSD definition (see table below). Because of this change in the MSD definition, BLS suggests that estimates for MSD case counts and rates for 2011 should not be compared with prior years (e.g. BLS has designated a ‘break in series’ starting with the 2011 data). However, data users may decide that the MSD definitions (listed in the table below) are similar enough for analyzing trends in counts and/or rates over time (e.g. 2000 – 2011). For more detailed descriptions of the Nature and Event codes listed below, refer to the OIICS 1.01 coding structure (http://www.bls.gov/iif/oiics_manual_2007.pdf) and the new 2.01 version (http://www.bls.gov/iif/oiics_manual_2010.pdf).

<table>
<thead>
<tr>
<th>BLS MSD Definition (prior to 2011), based on OIICS v. 1.01</th>
<th>BLS MSD Definition (2011- forward), based on OIICS v. 2.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following Nature codes</td>
<td>One of the following Nature codes</td>
</tr>
<tr>
<td>021 Sprains, sprains, tears</td>
<td>123* Sprains, sprains, tears</td>
</tr>
<tr>
<td>1241 Carpal tunnel syndrome</td>
<td>2241 Carpal tunnel syndrome</td>
</tr>
<tr>
<td>153 Hernia</td>
<td>124, 253 Hernia (traumatic and non-traumatic)</td>
</tr>
<tr>
<td>17* Musculoskeletal system and connective tissue diseases and disorders</td>
<td>27* Musculoskeletal system and connective tissue diseases and disorders</td>
</tr>
<tr>
<td>0972 Back pain hurt back</td>
<td>1972 Soreness, pain, hurt—nonspecified injury</td>
</tr>
<tr>
<td>0973 Soreness, pain, hurt, except back</td>
<td>1973 Swelling, inflammation, irritation—nonspecified injury</td>
</tr>
<tr>
<td></td>
<td>1974 Numbness—nonspecified injury</td>
</tr>
<tr>
<td></td>
<td>1131 Pinched nerve</td>
</tr>
<tr>
<td></td>
<td>1211 Herniated disk</td>
</tr>
<tr>
<td></td>
<td>1221 Meniscus tear</td>
</tr>
<tr>
<td></td>
<td>2244 Tarsal tunnel syndrome</td>
</tr>
<tr>
<td></td>
<td>2371 Raynaud’s syndrome or phenomenon</td>
</tr>
<tr>
<td>AND, one of the following event codes</td>
<td>AND, one of the following event codes</td>
</tr>
<tr>
<td>211 Bodily reaction/bending, climbing, crawling, reaching, twisting</td>
<td>70 Overexertion and bodily reaction, unspecified</td>
</tr>
<tr>
<td>22 Overexertion</td>
<td>71* Overexertion involving outside sources</td>
</tr>
<tr>
<td>23 Repetition</td>
<td>72* Repetitive motion involving microtasks</td>
</tr>
<tr>
<td></td>
<td>73*, 78 Other and multiple exertions or bodily reactions</td>
</tr>
<tr>
<td></td>
<td>67* Rubbed, abraded or jarred by vibration</td>
</tr>
</tbody>
</table>

* Denotes all codes that fall in specified 2- or 3-digit series.
7.1 **Estimated Annual Number of All Musculoskeletal Disorders Involving Days Away from Work**

7.1a. To obtain the 2000 – 2012 data, do the following:

Go to BLS website: http://www.bls.gov/iif/msd_state.htm
- Scroll down the page to the state of interest
- Under each state are two rows followed by available data by year. The first row is MSD cases by NATURE of injury or illness; the second row is MSD cases by BODY PART affected.

There is an alternate way to get MSD numbers and incidence rates querying the BLS profiles on the Web. Please refer to 7.9 and 7.10 below.

7.1b Click on year of interest under row one (NATURE).
- From the Nature Table 1, read across the row (‘Private Industry’ and ‘All Selected Natures’) under the column ‘Total Cases’ to obtain the **Annual number of all musculoskeletal disorders involving days away from work**.

[NOTE: Beginning in 2003, Nature and Body Part Tables displayed MSD cases by ownership (private industry, local government, state government) in states where the BLS SOII covers state and municipal employees as well as private industry employees. This indicator is limited to private industry employees.]

7.2 **Estimated Annual Incidence Rate of All Musculoskeletal Disorders Involving Days Away from Work per 100,000 FTE**

7.2a From the Nature Table 1, read across the row (‘Private Industry’ and ‘All Selected Natures’) – under the column - ‘Incidence Rate’.

7.2b Multiply by 10 to obtain the **Estimated annual incidence rate of all musculoskeletal disorders involving days away from work per 100,000 FTE**.

[NOTE: Beginning in 2003, Nature and Body Part Tables displayed MSD cases by ownership (private industry, local government, state government) in states where the BLS SOII covers state and municipal employees as well as private industry employees. This indicator is limited to private industry employees.]

7.3 **Estimated Annual Number of Musculoskeletal Disorders of the Neck, Shoulder, and Upper Extremities Involving Days Away from Work**

7.3a Follow directions for 7.1a.

7.3b Click on year of interest under row two (BODY PART).
- **From this Table 1 (row 2 Body Part data), sum** the ‘Total Cases’ for the following two ‘Private Industry’ rows: ‘Neck, including throat’ AND ‘Upper extremities’ to obtain the **Estimated annual number of musculoskeletal disorders of the neck, shoulder and upper extremities involving days away from work**.

FOR 2000 – 2010 data, also include ‘Shoulder-including clavicle – scapula’ cases to the sum of 7.3b.

[NOTE: Beginning in 2003, Nature and Body Part Tables displayed MSD cases by ownership (private industry, local government, state government) in states where the BLS SOII covers state and municipal employees as well as private industry employees. This indicator is limited to private industry employees.]
7.4 Estimated Annual Incidence Rate of Musculoskeletal Disorders of Neck, Shoulder, and Upper Extremities Involving Days Away from Work per 100,000 FTE

7.4a From this Table 1 (row 2 Body Part data), sum the ‘Incidence Rates’ for the following two ‘Private Industry’ rows: ‘Neck, including throat’ AND ‘Upper extremities.’

[FOR 2000 – 2010 data, also include the incidence rate for ‘Shoulder-including clavicle – scapula’ cases to the sum of 7.4a.]

7.4b Multiply the sum by 10 to obtain the ‘Annual incidence rate of musculoskeletal disorders of the neck, shoulder and upper extremities involving days away from work per 100,000 FTE’.

[NOTE: Beginning in 2003, Nature and Body Part Tables displayed MSD cases by ownership (private industry, local government, state government) in states where the BLS SOII covers state and municipal employees as well as private industry employees. This indicator is limited to private industry employees.]

7.5 Estimated Annual Number of Carpal Tunnel Syndrome Cases Involving Days Away from Work

7.5a Follow directions for 7.1a.

7.5b Click on year of interest under row one (NATURE).

• From the Nature Table 1, read across the row (‘Private Industry’ and ‘Carpal Tunnel Syndrome’, under the column - ‘Total Cases’ to obtain the ‘Estimated annual number of carpal tunnel syndrome cases involving days away from work’.

7.6 Estimated Annual Incidence Rate of Carpal Tunnel Syndrome Cases Involving Days Away from Work per 100,000 FTE

7.6a From the Nature Table 1, read across the row (‘Private Industry’ and ‘Carpal Tunnel Syndrome’), under the column - ‘Incidence Rate.’

7.6b Multiply the number by 10 to get the ‘Estimated annual incidence rate of carpal tunnel syndrome cases involving days away from work per 100,000 FTE’.

7.7 Estimated Annual Number of Musculoskeletal Disorders of the Back Involving Days Away from Work

7.7a Follow directions for 7.1a.

7.7b Click on year of interest under row two (BODY PART).

• From Body Part Table 2, read across the row (‘Private Industry’ and ‘Back, including spine, spinal cord’, under the column - ‘Total Cases’ to obtain the ‘Estimated annual number of musculoskeletal disorders of the back involving days away from work’.

7.8 Estimated Annual Incidence Rate of Musculoskeletal Disorders of the Back Involving Days Away from Work per 100,000 FTE

7.8a From the Body Part Table 2, read across the row, (‘Private Industry’ and ‘Back, including spine, spinal cord’ under the column - ‘Incidence rate.’

7.8b Multiply the number by 10 to get the ‘Estimated annual incidence rate of musculoskeletal disorders of the back involving days away from work per 100,000 FTE.’

7.9 ALTERNATIVE METHOD for Estimating Annual Number of All Musculoskeletal Disorders Involving Days Away from Work ** FOR 7.1, 7.3, 7.5, & 7.7 **

1) Go to BLS website www.bls.gov/iif/data.htm
2) Under row labeled “Non-fatal Cases Involving Days Away from Work: selected characteristics (2011 forward)”, select the multi-screen option which is yellow.
3) Select your State and select Next Form.
4) Select ‘Private Industry’ and select Next Form.
5) Select ‘Injury and Illness Cases’ and select Next Form.
6) Select ‘M Industry Division or Selected Characteristic by Special Combination’ and select Next Form.
7) Depressing the CTRL key, select the following: ‘00X All Industry’, ‘P2X Part (Neck)’, ‘P4X Part (Upper Extremities)’, ‘N3A Nature (Carpal Tunnel Syndrome)’, ‘P32 Part (Back)’. Select Next Form.
 [FOR 2000 – 2010 data, also include ‘Shoulder-including clavicle – scapula’]
8) Select ‘MSDXXX Musculoskeletal Disorders.’ Select Next Form.
9) Select Retrieve Data.
10) Review the six tables displayed.

7.1 Estimated Annual Number of All Musculoskeletal Disorders Involving Days Away from Work – Read annual number from the ‘00X All Industry’ table.

7.3 Estimated Annual Number of Musculoskeletal Disorders of the Neck, Shoulder, and Upper Extremities Involving Days Away from Work - Sum annual numbers from the following tables: ‘P2X Part (Neck)’ and ‘P4X Part (Upper Extremities).’
 [FOR 2000 – 2010 data, also add ‘Shoulder-including clavicle – scapula’ cases to the sum of 7.3.]

7.5 Estimated Annual Number of Carpal Tunnel Syndrome Cases Involving Days Away from Work – Read annual number from the ‘N3A Nature (Carpal Tunnel Syndrome)’ table.

7.7 Estimated Annual Number of Musculoskeletal Disorders of the Back Involving Days Away from Work – Read annual number from the ‘P32 Part (Back)’ table.

7.10 ALTERNATIVE METHOD for Estimating Annual Incidence Rate of All Musculoskeletal Disorders Involving Days Away from Work per 100,000 FTE –

** FOR 7.2, 7.4, 7.6, & 7.8 **
1) Go to BLS website www.bls.gov/iif/data.htm
2) Under row labeled “Non-fatal Cases Involving Days Away from Work: selected characteristics (2011 forward)”, select the multi-screen option which is yellow.
3) Select your State and select Next Form.
4) Select ‘Private Industry’ and select Next Form.
5) Select ‘Injury and Illness Rate per 10,000 full-time Workers’ and select next form.
6) Select ‘M Industry Division or Selected Characteristic by Special Combination’ and select Next Form.
7) Depressing the CTRL key, select the following: ‘00X All Industry’, ‘P2X Part (Neck)’, ‘P4X Part (Upper Extremities)’, ‘N3A Nature (Carpal Tunnel Syndrome)’, ‘P32 Part (Back)’. Select Next Form.
8) Select ‘MSDXXX Musculoskeletal Disorders.’ Select Next Form.
9) Select Retrieve Data.
10) Review the six tables displayed.

7.2 Estimated Annual Incidence Rate of All Musculoskeletal Disorders Involving Days Away from Work per 100,000 FTE – Read Rate from the ‘00X All Industry’ table and multiply by 10 to obtain the Estimated Annual Incidence Rate of All Musculoskeletal Disorders Involving Days Away from Work per 100,000 FTE.

7.4 Estimated Annual Incidence Rate of Musculoskeletal Disorders of the Neck, Shoulder, and Upper Extremities Involving Days Away from Work per 100,000 FTE - Sum Rates from the ‘P2X Part (Neck)’, and ‘P4X Part (Upper Extremities)’ tables.
[FOR 2000 – 2010 data, also include the incidence rate for ‘Shoulder-including clavicle – scapula’ cases to the sum of 7.4.]

Multiply the resulting sum by 10 to obtain the Estimated Annual Incidence Rate of Musculoskeletal Disorders of the Neck, Shoulder, and Upper Extremities Involving Days Away from Work per 100,000 FTE.

7.6 Estimated Annual Incidence Rate of Carpal Tunnel Syndrome Cases Involving Days Away from Work per 100,000 FTE – Read Rate from the ‘N3A Nature (Carpal Tunnel Syndrome)’ table and multiply by 10 to obtain the Estimated Annual Incidence Rate of Carpal Tunnel Syndrome Cases Involving Days Away from Work per 100,000 FTE.

7.8 Estimated Annual Incidence Rate of Musculoskeletal Disorders of the Back Involving Days Away from Work per 100,000 FTE – Read Rate from the ‘P32 Part (Back)’ table and multiply by 10 to obtain the Estimated Annual Incidence Rate of Musculoskeletal Disorders of the Back Involving Days Away from Work per 100,000 FTE.
TOPIC: ACUTE AND CUMULATIVE OCCUPATIONAL INJURIES

INDICATOR # 8: STATE WORKERS’ COMPENSATION CLAIMS FOR CARPAL TUNNEL SYNDROME WITH LOST WORK-TIME

<table>
<thead>
<tr>
<th>Demographic Group</th>
<th>Workers covered by state workers’ compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Carpal tunnel syndrome cases with lost work-time filed with state workers’ compensation system</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Estimated number of workers covered by state workers’ compensation system for the same calendar year</td>
</tr>
</tbody>
</table>

Measures of Frequency:
- Annual number of carpal tunnel syndrome cases with lost work-time filed with state workers’ compensation
- Annual incidence rate of carpal tunnel syndrome cases with lost work-time filed with state workers’ compensation per 100,000 workers covered by state workers’ compensation system

Time Period:
Calendar year

Significance and Background:
In 2012, 7,590 cases of carpal tunnel syndrome that resulted in days away from work were reported by private sector employers in the United States. The median number of days away from work was 30 days. The Bureau Labor Statistics (BLS) estimated an annual incidence rate for carpal tunnel syndrome of 0.8 per 10,000 full-time equivalents (FTEs) in the private sector (BLS, 2014). Workers' compensation costs in the United States total more than $100 billion per year (Sengupta et al., 2013).

Rationale:
Carpal tunnel syndrome is preventable, and control of occupational hazards is the most effective means of prevention. Estimating the burden and tracking carpal tunnel syndrome can help target prevention programs and activities. Information on reported cases can be used to identify contributory factors and to develop improved or new prevention strategies or regulations to protect workers.

Limitations of Indicator:
Differences in the availability of data (i.e., for lost time cases only versus medical benefits cases) and eligibility criteria between states indicate that data for this condition should be used to evaluate trends within a state but not to make state-to-state comparisons.

Data Resources:
- Workers’ compensation system (numerator)
- National Academy of Social Insurance (NASI) estimate of workers covered by workers' compensation (denominator)

Limitations of Data Resources:
Workers’ compensation data is not complete, as the majority of individuals with work-related illnesses and many with work-related injuries do not file for workers’ compensation. Workers’ compensation claims may be denied. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. (The length of days away from work that is required before a case will be recorded in the workers' compensation system will vary by state.)

HP2020 Objectives:
OSH-3

CSTE Positions:
None

Other Available Data:
Age, gender, occupation and industry, type of event and source of injury

Recommendations:
Age, gender, occupation, and industry-specific counts and rates can be used to better define the pattern of occupational injuries/illnesses. Frequency distributions by events and source of injury can highlight important causes.
How-To Guide: Indicator #8:

State Workers Compensation Claims for Carpal Tunnel Syndrome
With Lost Work-Time

8.1 Annual Number of Carpal Tunnel Syndrome Cases with Lost Work-time Filed with State Workers’ Compensation

Variability in the coding systems used by state workers’ compensation systems precludes a universal method for identifying carpal tunnel syndrome cases. Variables within state workers’ compensation data systems may be incomplete and are often not subject to quality control. Collaboration with the workers' compensation database manager is essential for completion. Identify the terminology used within the state workers’ compensation system for carpal tunnel syndrome cases with lost work-time; typically these are considered ‘claims.’ Ask the database manager what ‘claims’ are reported for data collection. Some state workers’ compensation agencies collect only the subset of ‘claims’ which are legally contested.

NOTE: Since the adoption of OIICS 2.01, the BLS cautions users against directly comparing Event, Source, Secondary Source, Part, and Nature case characteristic codes from 1992-2010 and from 2011 onward. Information about the original OIICS coding structure as well as the new OIICS 2.01 coding structure is available here: http://www.bls.gov/iif/oshoiics.htm. However, some users may feel that the definitions for Nature of Injury ‘Carpal Tunnel Syndrome’ are similar enough between the coding structures for their needs.

The following are tips for constructing the database for analysis:

- Identify cases by date of injury.
 - If date of injury is not available, use date claim was filed.
 - If a trend analysis is to be performed for state data, claim filing date is more appropriate to use than claim date of injury.
- Include only cases which result in lost workdays or ‘time loss.’
- Identify the coding system used for state workers’ compensation carpal tunnel syndrome cases. Common coding systems encountered by states include:
 - Occupational Injury and Illness Classification System (OIICS) – Nature of Injury Code = 1241 ‘Carpal Tunnel Syndrome’; or OIICS 2.01 = 2241 ‘Carpal Tunnel Syndrome’;
 - International Classification of Diseases – 9th Revision Clinical Modification – ICD-9-CM Codes = 354.0 ‘Carpal tunnel syndrome’ and/or ICD-9-CPT code = 64721 ‘Neuroplasty; median nerve at carpal tunnel’; or
- Include claimants of all ages and those with age unknown.
- Include out-of-state residents.
- Recognize and document state workers’ compensation laws that may affect state-to-state comparisons.
 - Number of lost workdays for claim to be considered a ‘time loss’ claim.
 - Statute of limitations for work-related disease claim filing.
 - Criteria for reporting a claim to state workers’ compensation data system.
 - Medical care delivery for a work-related disease (e.g., physician choice by worker).
 - Industries poorly represented in state’s workers’ compensation data (e.g. agriculture).
 - Inclusion or exclusion of claims from self-insured employers in WC database.
− Industries/occupations excluded from mandatory workers’ compensation coverage.
− Exclusions by employer size (e.g. exemption of compulsory workers' compensation insurance coverage for small employers).

• This will yield the ‘Annual number of carpal tunnel syndrome cases with lost work-time filed with state workers’ compensation’.

8.2 Annual Incidence Rate of Carpal Tunnel Syndrome Cases with Lost Work-time Filed with State Workers’ Compensation per 100,000 Workers Covered by State Workers’ Compensation System

a) To obtain the denominator for the rate:
• Go to National Academy of Social Insurance web site: http://www.nasi.org/research/workers-compensation
• Identify report entitled: "Workers’ Compensation: Benefits, Coverage, and Costs, <<YEAR>>.
• Click on report pdf icon to download (must have Adobe Acrobat).
• Go to Table 3 titled “Workers’ Compensation Covered Workers, by State, <<YEARS>> (in thousands)”,
• Identify your state for year of interest. Multiply by 1,000.

b) To calculate the rate:
• Divide the numerator (8.1) by the denominator (8.2a)
• Multiply the result by 100,000 to get the ‘Annual incidence rate of carpal tunnel syndrome cases with lost work-time filed with state workers’ compensation per 100,000 workers covered by state workers’ compensation system’.
TOPIC: OCCUPATIONAL ILLNESSES

INDICATOR #9: HOSPITALIZATIONS FROM OR WITH PNEUMOCONIOSIS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Resident persons age 15 years or older</th>
</tr>
</thead>
</table>
| **Numerator:** | 1. Inpatient hospital discharges with a primary or contributing diagnosis of total pneumoconiosis (ICD-9-CM code 500 through 505).
2. Inpatient hospital discharges with a primary or contributing diagnosis of coal workers’ pneumoconiosis (ICD-9-CM code 500).
3. Inpatient hospital discharges with a primary or contributing diagnosis of “asbestosis” (ICD-9-CM code 501).
4. Inpatient hospital discharges with a primary or contributing diagnosis of “silicosis” (ICD-9-CM code 502).
5. Inpatient hospital discharges with a primary or contributing diagnosis of other or unspecified pneumoconiosis (ICD-9-CM code 503 through 505). |
| **Denominator:** | Midyear resident population age 15 years or older for the same calendar year |
| **Measures of Frequency:** | Annual number of inpatient hospitalizations for persons age 15 years or older (numerator)
Annual rate of inpatient hospitalizations per million residents
Annual, age-standardized, rate of inpatient hospitalization (standardized by the direct method to the Year 2000 U.S. standard population) |
| **Time Period:** | Calendar year |
| **Significance and Background:** | Nearly all pneumoconioses are attributable to occupational exposures, and millions of workers are at risk. Common types include asbestosis, coal workers’ pneumoconiosis, and silicosis. Complications of various pneumoconioses and other conditions associated with exposure to the same dusts that cause pneumoconiosis include respiratory infections (including tuberculosis); chronic bronchitis; emphysema; lung cancer; pleuritis; progressive systematic sclerosis; renal disease; and respiratory failure. |
| **Rationale:** | Pneumoconiosis frequency varies geographically being largely determined by local industrial activities and migration of affected individuals. Control of occupational dust exposure is the single most effective means of preventing pneumoconiosis. Tracking of pneumoconiosis is essential for measuring progress towards elimination of the disease, as well as for targeting prevention and disease management programs. |
| **Limitations of Indicator:** | Because pneumoconioses are typically diseases of long latency, current incidence is not necessarily indicative of current exposure, and it may be many years before reductions in occupational exposures affect the number of hospitalizations. |
| **Data Resources:** | Inpatient hospital discharge data (numerator)
State population estimates from the Bureau of the Census (denominator)
Year 2000 U.S. Standard population (for age-standardization) |
| **Limitation of Data Resources:** | The number of diagnoses listed on discharge summaries may vary by regional practice patterns and by the persons completing the summaries. Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients, to diagnose pneumoconiosis, and/or to list pneumoconiosis as a discharge diagnosis. Residents of one state may be hospitalized in another state and not be reflected in his/her state’s inpatient hospitalization data. Until inpatient hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. |
| **HP2020 Objectives:** | OSH-4 |
| **CSTE Positions:** | 1996-Env-02; 1999-ENV-04 |
| **Other Available Data:** | Age, gender, race/ethnicity, residence zip code, payer code |
| **Recommendations:** | Age, gender, race/ethnicity, and zip code-specific counts and rates can be used to better define the pattern of hospitalizations. Information on the payer can be used to provide insight on utilization of workers compensation benefits. |
How-To Guide: Indicator #9: Hospitalizations From Or With Pneumoconiosis

9.1 Inpatient hospital discharges with a primary or contributing diagnosis of ICD-9-CM code 500-505 ("total pneumoconiosis")

9.1.1 Annual number of inpatient hospital discharges
Obtain from the State Health Department the number of cases meeting the following criteria from the inpatient hospital discharge file:
- Any diagnosis between 500 and 505 (ICD-9-CM).
- Limit age to those 15 years and older (age at admission is preferred).
- Select for state of residence='your state'.
- Exclude:
 - age unknown
 - out-of-state residents
 - unknown state of residence
 - out-of-state inpatient hospitalizations
- Use unduplicated data (no exclusions for deaths, readmissions).
- Use discharge during calendar year, not fiscal year.
- For each of these categories, obtain the number of inpatient hospitalizations for each of the following age groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85 and over.
- This will yield the ‘Annual number of total pneumoconiosis inpatient hospitalizations for persons age 15 years of age and older’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.1.2 Annual rate of inpatient hospitalization per million residents
a) To obtain the denominator for the rate:
Go to the American Fact Finder webpage at: http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml?_ts=440355717799
- Click on ‘Advanced Search’
- For Step 1, enter the following in the box titled ‘topic or table name’: PEPAGESEX. Enter your state name in the box titled ‘state, county or place (optional).’ After you enter your state, click on your state name again in the screen that pops up. Click on Go.
- On the resulting page, click on the box on the left corresponding to 2012 Population Estimates. Next, click on View.
- You should now see population figures for age groups for your state for both sexes, males, and females for 2010, 2011, and 2012. Click on Download.
- In the Download box that pops up, select Microsoft Excel as the format. Click on OK.
- Once the next pop-up box indicates that your file is complete, click on Download, then open.
- Use the figures under Both Sexes for 2012 to calculate the number of residents ages 15 and older and to populate the Excel spreadsheet you will use to perform age adjusting.

b) To calculate the crude inpatient hospitalization rate:
- Divide the sum of all age groups (numerator 9.1.1.) by the denominator (9.1.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual rate of total pneumoconiosis inpatient hospitalizations per million residents’.
9.1.3 Annual, age-standardized, rate of inpatient hospitalization per million residents

- Use table below to perform the calculations. A spreadsheet such as Excel works well for these calculations.
- In Column C (State Pop), enter the state’s census population (found using population data referenced in 9.1.2) by age group for the relevant year (e.g., population estimates for 2005 if generating rates for 2005).
- In Column B (# Inpatient Hospitalizations), enter number of inpatient hospitalizations obtained in 9.1.1, by age groups for all pneumoconioses.

- Column D = Column B / Column C
 \[(\text{Inpatient Hospitalizations/Pop}) = \frac{(\# \text{ Inpatient Hospitalizations})}{(\text{State Pop})}\]
- Column F = Column D * Column E
 \[(\# \text{ Expected Inpatient Hospitalizations}) = \frac{(\text{Inpatient Hospitalizations/Pop})}{(\text{US 2000 Standard Pop})}\]
- The ‘Annual age-adjusted total pneumoconiosis inpatient hospitalization rate per million residents’ = \(\frac{(F10 / E10)}{1,000,000}\)
 (The sum (\(\sum\)) of all expected total pneumoconiosis inpatient hospitalizations) / (the sum of US 2000 Standard Pop) multiplied by 1,000,000

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Column B</th>
<th>Column C</th>
<th>Column D</th>
<th>Column E</th>
<th>Column F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Inpatient Hospitalizations, [year] State Pop</td>
<td>Inpatient Hospitalizations/Pop</td>
<td>US 2000 Std Pop</td>
<td># Expected Inpatient Hospitalizations</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15-24</td>
<td>B2/C2</td>
<td>38,077,000</td>
<td>D2*E2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25-34</td>
<td>B3/C3</td>
<td>37,233,000</td>
<td>D3*E3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35-44</td>
<td>B4/C4</td>
<td>44,659,000</td>
<td>D4*E4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45-54</td>
<td>B5/C5</td>
<td>37,030,000</td>
<td>D5*E5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>55-64</td>
<td>B6/C6</td>
<td>23,961,000</td>
<td>D6*E6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65-74</td>
<td>B7/C7</td>
<td>18,136,000</td>
<td>D7*E7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>75-84</td>
<td>B8/C8</td>
<td>12,315,000</td>
<td>D8*E8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>85+</td>
<td>B9/C9</td>
<td>4,259,000</td>
<td>D9*E9</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Total</td>
<td></td>
<td>215,670,000</td>
<td>(\sum(F2:F9))</td>
<td></td>
</tr>
</tbody>
</table>

9.2 Inpatient hospital discharges with a primary or contributing diagnosis of ICD-9 code 500 (‘Coal Workers’ Pneumoconiosis)

9.2.1 Annual number of coal workers’ pneumoconiosis inpatient hospital discharges
Follow directions for 9.1.1 using any diagnosis = ‘500’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.2.2 Annual rate of coal workers’ pneumoconiosis inpatient hospitalizations per million residents

a) To obtain the denominator for the rate:
 - Follow directions for 9.1.2a.

b) To calculate the crude inpatient hospitalization rate:
 - Divide the sum of all ages (numerator 9.2.1) by the denominator (9.2.2a).
9.2.3 Annual, age-standardized, rate of inpatient hospitalization per million residents

- Follow directions for 9.1.3 using inpatient hospitalizations from 9.2.1.

9.3 Inpatient hospital discharges with a primary or contributing diagnosis of ICD-9 code 501 ("Asbestosis")

9.3.1 Annual number of asbestosis inpatient hospital discharges

- Follow directions for 9.1.1 using any diagnosis = ‘501’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.3.2 Annual rate of asbestosis inpatient hospitalizations per million residents

a) To obtain the denominator for the rate:

- Follow directions for 9.1.2a.

b) To calculate the crude inpatient hospitalization rate:

- Divide the sum of all ages (numerator 9.3.1) by the denominator (9.3.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual rate of asbestosis inpatient hospitalizations per million residents’.

9.3.3 Annual, age-standardized, rate of asbestosis inpatient hospitalizations per million residents

- Follow directions for 9.1.3 using inpatient hospitalizations from 9.3.1.

9.4 Inpatient hospital discharges with a primary or contributing diagnosis of ICD-9 code 502 ("Silicosis")

9.4.1 Annual number of silicosis inpatient hospital discharges

- Follow directions for 9.1.1 using any diagnosis = ‘502’.

NOTE: If less than 5 events, the number may be too small to produce reliable estimates or may violate confidentiality requirements. Rates should not be calculated.

9.4.2 Annual rate of silicosis inpatient hospitalizations per million residents

a) To obtain the denominator for the rate:

- Follow directions for 9.1.2a.

b) To calculate the crude inpatient hospitalization rate:

- Divide the sum of all ages (numerator 9.4.1) by the denominator (9.4.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual rate of silicosis inpatient hospitalizations per million residents’.

9.4.3 Annual, age-standardized, rate of silicosis inpatient hospitalizations per million residents

- Follow directions for 9.1.3 using inpatient hospitalizations from 9.4.1.

9.5 Inpatient hospital discharges with a primary or contributing diagnosis of ICD-9 code 503, 504 or 505 ("Other and Unspecified Pneumoconiosis")

9.5.1 Annual number of other and unspecified pneumoconiosis inpatient hospital discharges

- Follow directions for 9.1.1 using any diagnosis = ‘503’, ‘504’ or ‘505’.

9.5.2 Annual rate of other and unspecified pneumoconiosis inpatient hospitalizations per million residents

a) To obtain the denominator for the rate:
b) To calculate the crude inpatient hospitalization rate:
 - Divide the sum of all ages (numerator 9.5.1) by the denominator (9.5.2a).
 - Multiply this result by 1,000,000 to yield the ‘Annual rate of other and unspecified pneumoconiosis inpatient hospitalizations per million residents’.

9.5.3 Annual, age-standardized, rate of other and unspecified inpatient hospitalizations per million residents
 - Follow directions for 9.1.3 using inpatient hospitalizations from 9.5.1.

NOTE: The sum of 9.2.1, 9.3.1, 9.4.1 and 9.5.1 may be more than 9.1.1 because cases could be hospitalized with more than one type of pneumoconiosis.
<table>
<thead>
<tr>
<th>TOPIC: OCCUPATIONAL ILLNESSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICATOR # 10: MORTALITY FROM OR WITH PNEUMOCONIOSIS</td>
</tr>
<tr>
<td>Demographic Group:</td>
</tr>
</tbody>
</table>
| Numerator: | 1. Deaths with ICD-10 code of J60-J66 (ICD-9 code 500-505) as the underlying or contributing cause of death (“total pneumoconiosis”)
2. Deaths with ICD-10 code of J60 (ICD-9 code 500) as the underlying or contributing cause of death (“coal workers’ pneumoconiosis”)
3. Deaths with ICD-10 code of J61 (ICD-9 code 501) as the underlying or contributing cause of death (“asbestosis”)
4. Deaths with ICD-10 code of J62 (ICD-9 code 502) as the underlying or contributing cause of death (“silicosis”)
5. Deaths with ICD-10 code in the range J63 – J66 (ICD-9 code range 503 – 505) (“other and unspecified pneumoconiosis”) |
| Denominator: | Midyear resident population age 15 years or older for the same calendar year |
| Measures of Frequency: | Annual number of deaths (numerator)
Annual death rate (deaths per million residents)
Annual age-standardized death rate (standardized by the direct method to the Year 2000 U.S. Standard population) (deaths per million residents) |
| Time Period: | Calendar year |
| Significance and Background: | Nearly all pneumoconioses are attributable to occupational exposure, and millions of workers are at risk. Common types include asbestosis, coal workers' pneumoconiosis, and silicosis. Pneumoconiosis is more commonly listed as a contributing cause of death than as the underlying cause of death. Consequently, this indicator monitors all listed causes of death on the death certificate. |
| Rationale: | Pneumoconiosis frequency varies geographically being largely determined by local industrial activities and migration of affected individuals. Control of occupational dust exposure is the single most effective means of preventing pneumoconiosis. Tracking of pneumoconiosis is essential for tracking progress towards elimination of the disease, as well as for targeting prevention and disease management programs. |
| Limitations of Indicator: | Because pneumoconioses are typically chronic diseases with a long latency (pre-clinical period), current incidence is not necessarily indicative of current exposures, and it may be several years before reductions in exposures affect mortality. State of residence of the decedent may not have been the state of exposure. |
| Data Resources: | Death certificate records from vital statistics agency (numerator)
State population estimates from the U.S. Bureau of the Census (denominator)
Year 2000 U.S. Standard Population (for age-standardization) |
| Limitations of Data Resources: | Causes of death listed on the death certificate and coding of those causes may be inaccurate. The number of contributing cases of death listed on the death certificate may vary by person completing the death certificate and geographic region. Death certificates identify only a small percentage of the individuals who develop pneumoconiosis. Data on race/ethnicity is not collected in some states and is incomplete and/or of questionable validity in others. The state of residence upon death may not be the state of exposure. |
| HP2020 Objectives: | OSH-4 |
| CSTE Positions: | 1996-Env-02; 1999-Env-04 |
| Other Available Data: | Age, gender, race/ethnicity, county of residence, usual occupation and industry |
| Recommendations: | Age, gender, race/ethnicity, and county-specific counts and rates can be used to better define the pattern of pneumoconiosis mortality. Because usual occupation and usual industry information is not necessarily indicative of the setting in which the causative exposure occurred, industry- and occupation-specific measures should be interpreted and reported with caution. |
How-To Guide: Indicator #10:

Mortality From Or With Pneumoconiosis

10.1 Deaths with an ICD-10 code in the range J60-J66 as an underlying or contributing cause of death (“Total Pneumoconiosis”)

10.1.1 Annual number of total pneumoconiosis deaths
Obtain from State Health Department’s Office of Vital Records the following information:

- Number of deaths with ICD-10 code of J60 – J66.8 as the underlying or contributing cause of death. Make sure that you emphasize that you want these counts based on contributing causes of death in addition to underlying cause. Obtaining counts based on underlying cause only will result in a significant undercount of cases.
- Limit age to those 15 years and older.
- Select for state of residence='your state'.
- Exclude:
 - age unknown
 - out-of-state residents or unknown state of residence
 - out-of-state deaths
- Obtain the number of deaths for each of the following age groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85 and over.
- This will yield the ‘Annual number of total pneumoconiosis deaths’.

NOTE: If less than 5 events, the number will be too small to produce reliable estimates. Rates should not be calculated.

10.1.2 Annual total pneumoconiosis death rate (deaths per million residents)
a) To obtain the denominator for the rate:
- Go to: http://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml?ts=440355717799
- Click on Advanced Search.
- For Step 1, enter the following in the box titled ‘topic or table name’: PEPAGESEX. Enter your state name in the box titled ‘state, county or place (optional).’ After you enter your state, click on your state name again in the screen that pops up. Click on Go.
- On the resulting page, click on the box on the left corresponding to 2012 Population Estimates. Next, click on View.
- You should now see population figures for age groups for your state for both sexes, males, and females for 2010, 2011, and 2012. Click on Download.
- In the Download box that pops up, select Microsoft Excel as the format. Click on OK.
- Once the next pop-up box indicates that your file is complete, click on Download, then open.
- Use the figures under Both Sexes for 2012 to populate the Excel spreadsheet you will use to perform age adjusting.

b) To calculate the crude annual death rate:
- Divide the number of deaths for those aged 15 and older (numerator 10.1.1) by the population aged 15 and older for that year (10.1.2a).
- Multiply this result by 1,000,000 to yield the ‘Annual total pneumoconiosis death rate (deaths per million residents)’.

10.1.3 Annual age-standardized total pneumoconiosis death rate (deaths per million residents)
• Use the US 2000 Standard population (provided in column E in table below) found at: http://www.cdc.gov/nchs/data/statnt/statnt20.pdf (listed as Distribution #1 on page 3 of that document)
• Use table below to perform the calculations. A spreadsheet such as Excel works well for these calculations.
• In Column C (State Population), enter the state’s census population (found using the downloaded Excel file described in 10.1.2) by age group for the relevant year (e.g., population estimates for 2011 if generating death rates for 2011).
• In Column B (# Deaths), enter number of deaths obtained in 10.1.1 by age group for all pneumoconioses.
• Column D = Column B / Column C
 (Deaths/Pop) = (# Deaths) / (State Population)
• Column F = Column D * Column E
 (# Expected Deaths) = (Deaths/Pop) * (US 2000 Standard Pop)
• Age-standardized total pneumoconiosis death rate = (F10 / E10) * 1,000,000
 [(The sum (Σ) of all expected deaths) / (the US 2000 Standard Population ages 15 and older)] multiplied by 1,000,000

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Column B</th>
<th>Column C</th>
<th>Column D</th>
<th>Column E</th>
<th>Column F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Deaths [year] State Population</td>
<td>Deaths/Pop</td>
<td>US 2000 Std Pop</td>
<td># Expected Deaths</td>
<td></td>
</tr>
<tr>
<td>2 15-24</td>
<td>B2/C2</td>
<td>38,077,000</td>
<td>D2*E2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 25-34</td>
<td>B3/C3</td>
<td>37,233,000</td>
<td>D3*E3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 35-44</td>
<td>B4/C4</td>
<td>44,659,000</td>
<td>D4*E4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 45-54</td>
<td>B5/C5</td>
<td>37,030,000</td>
<td>D5*E5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 55-64</td>
<td>B6/C6</td>
<td>23,961,000</td>
<td>D6*E6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 65-74</td>
<td>B7/C7</td>
<td>18,136,000</td>
<td>D7*E7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 75-84</td>
<td>B8/C8</td>
<td>12,315,000</td>
<td>D8*E8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 85+</td>
<td>B9/C9</td>
<td>4,259,000</td>
<td>D9*E9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Total</td>
<td></td>
<td>215,670,000</td>
<td>Σ(F2:F9)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.2 Deaths with ICD-10 code J60 as an underlying or contributing cause of death (“Coal Workers’ Pneumoconiosis”)
10.2.1 Annual number of coal workers’ pneumoconiosis deaths
• Follow directions for 10.1.1 using any cause of death = ‘J60’.
 NOTE: If less than 5 events, the number will be too small to produce reliable estimates. Rates should not be calculated.

10.2.2 Annual coal workers’ pneumoconiosis death rate (deaths per million residents)
a) To obtain the denominator for the rate:
• Follow directions for 10.1.2a.

b) To calculate the crude annual death rate:
• Divide the number of deaths for those aged 15 and older (numerator 10.2.1) by the population aged 15 and older for that year (10.2.2a).
• Multiply this result by 1,000,000 to yield the ‘Annual coal workers’ pneumoconiosis death rate (deaths per million residents)’.

10.2.3 Annual, age-standardized, coal workers’ pneumoconiosis death rate (deaths per million residents)
• Follow directions for 10.1.3 using deaths from 10.2.1.

10.3 Deaths with ICD-10 code J61 as an underlying or contributing cause of death (“Asbestosis”)

10.3.1 Annual number of asbestosis deaths
• Follow directions for 10.1.1 using any cause of death = ‘J61’.
 NOTE: If less than 5 events, the number will be too small to produce reliable estimates. Rates should not be calculated.

10.3.2 Annual asbestosis death rate (deaths per million residents)
a) To obtain the denominator for the rate:
• Follow directions for 10.1.2a.
b) To calculate the crude annual death rate:
• Divide the number of deaths for those aged 15 and older (numerator 10.3.1) by the population aged 15 and older for that year (10.3.2a).
• Multiply this result by 1,000,000 to yield the ‘Annual asbestosis death rate (deaths per million residents)’.

10.3.3 Annual, age-standardized, asbestosis death rate (deaths per million residents)
• Follow directions for 10.1.3 using deaths from 10.3.1.

10.4 Deaths with ICD-10 code J62 as an underlying or contributing cause of death (“Silicosis”)

10.4.1 Annual number of silicosis deaths
Follow directions for 10.1.1 using any cause of death = ‘J62.0’ – ‘J62.8’.
 NOTE: If less than 5 events, the number will be too small to produce reliable estimates. Rates should not be calculated.

10.4.2 Annual silicosis death rate (deaths per million residents)
a) To obtain the denominator for the rate:
• Follow directions for 10.1.2a.
b) To calculate the crude annual death rate:
• Divide the number of deaths for those aged 15 and older (numerator 10.4.1) by the population aged 15 and older for that year (10.4.2a).
• Multiply this result by 1,000,000 to yield the ‘Annual silicosis death rate (deaths per million residents)’.

10.4.3 Annual, age-standardized death rate (deaths per million residents)
• Follow directions for 10.1.3 using deaths from 10.4.1.

10.5 Deaths with an ICD-10 code in the range J63, J64, J65, or J66 as an underlying or contributing cause of death (“Other and Unspecified Pneumoconiosis”)

10.5.1 Annual number of other and unspecified pneumoconiosis deaths
 NOTE: If less than 5 events, the number will be too small to produce reliable estimates. Rates should not be calculated.

10.5.2 Annual other and unspecified pneumoconiosis death rate (deaths per million residents)
a) To obtain the denominator for the rate:
• Follow directions for 10.1.2a.
b) To calculate the crude annual death rate:
• Divide the number of deaths for those aged 15 and older (numerator 10.5.1) by the population aged 15 and older for that year (10.5.2a).
• Multiply this result by 1,000,000 to yield the ‘Annual other and unspecified pneumoconiosis death rate (deaths per million residents)’.

10.5.3 Annual, age-standardized other and unspecified pneumoconiosis death rate (deaths per million residents)
• Follow directions for 10.1.3 using deaths from 10.5.1.

NOTE: The sum of 10.2.1, 10.3.1, 10.4.1 and 10.5.1 may be greater than 10.1.1 because cases could have more than one type of pneumoconiosis listed on the death certificate.
TOPIC: OCCUPATIONAL ILLNESSES

INDICATOR # 11: ACUTE WORK-RELATED PESTICIDE-ASSOCIATED ILLNESS AND INJURY REPORTED TO POISON CONTROL CENTERS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Reported cases of work-related pesticide poisoning</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years and older for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Annual number of reported cases of work-related pesticide poisoning (numerator) Annual incidence rate of reported cases of work-related pesticide poisoning per 100,000 employed persons age 16 years or older</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
</tbody>
</table>

Significance and Background: Pesticides are among the few chemicals produced that are specifically designed to kill and cause harm. In the United States, approximately one billion pounds of pesticide active ingredient are used annually, and over 20,000 pesticide products are being marketed (Grube et al., 2011). The Environmental Protection Agency (EPA) estimates 20,000 to 40,000 work-related pesticide poisonings per year (Blondell, 1997).

Rationale: Workers who handle pesticides are at increased risk for exposure. Poison Control Centers (PCCs) are important sources of reports of acute poisonings and chemical exposures. These data can be useful to target prevention. The type of data collected is comparable across states due to the uniformity in case handling by PCCs.

Limitations of Indicator: PCCs capture only a small proportion of acute occupational pesticide-related illness cases, an estimated 10%. PCCs do not systematically collect information on industry and occupation; however, cases associated with occupational exposures can be identified.

Data Resources: Poison Control Center data (numerator) BLS Current Population Survey Data (denominator)

Limitations of Data Resources: Not all states have poison control centers. State health agencies may have to enter into an agreement with their state-based PCC to obtain local data, or may obtain less timely PCC data from the Toxic Exposure Surveillance System, which is administered by the American Association of Poison Control Centers.

HP2020 Objectives: None

CSTE Positions: 1996-Env-16; 1999-Env-3

Other Available Data: Age, gender, pesticide active ingredient, signs/symptoms arising from the pesticide exposures, illness severity, and whether hospitalization/ICU treatment was provided.

Recommendations: Age, gender, pesticide chemical class, and severity-specific counts and rates can be used to better define the pattern of acute occupational pesticide-related illness. Industry and occupation should be analyzed where available.
How-To Guide: Indicator #11:

Acute Work-Related Pesticide Associated Illness And Injury Reported To Poison Control Centers

11.1 **Annual number of reported work-related pesticide poisoning cases**

- NIOSH will routinely distribute state data for the current Occupational Health Indicator development year prior to the June 30 submission due date by means of the Consortium of Occupational State Surveillance Listserv (OCC-HLTH-STATE-SURV@LISTSERV.CDC.GOV). Contact Patricia Schleiff at NIOSH at pls1@cdc.gov or 304.285.5874 with questions regarding data needs for this indicator.

11.2 **Annual incidence rate of reported work-related pesticide poisoning cases per 100,000 employed persons age 16 years or older**

a) To obtain the denominator for the rate:

- Go to: http://www.bls.gov/gps/home.htm to access the Geographic Profile of Employment and Unemployment which contains Current Population Survey estimates for state-specific numbers of employed persons.
- Scroll down to “TABLES CREATED BY BLS.”
- Select year of interest.
- Within the pdf document, find your state.
- The heading in the first column “Population group” should be “TOTAL.”
- The value under “Employment Number” (4th data column) represents the number of employed persons age 16 and older in thousands.
- Multiply the value for Total Employment by 1,000.

b) To calculate the rate:

- Divide the numerator (11.1) by the denominator (11.2a).
- Multiply this result by 100,000 to get the ‘Annual incidence rate of reported work-related pesticide poisonings per 100,000 employed persons age 16 years or older.’

The criteria utilized by NIOSH/AAPCC for identifying work-related pesticide poisonings are provided below:

1. Reason for the call (ExpReason) = 3 (occupational) OR Exposure Site (ExpSite) = 3 (workplace)

2 These data are derived from data provided by the American Association of Poison Control Centers (AAPCC) using the case definition listed in this guide. There may be a discrepancy between the number of incident cases provided by EPA/NIOSH/AAPCC and the number of cases derived from your local PCC.

States are encouraged to contact their local Poison Control Center (PCC) to share the data obtained through AAPCC and to discuss plans to disseminate it. Contact information can be obtained from AAPCC http://www.aapcc.org/director2.htm. Some states have more than one PCC.
2. Medical outcome (MedicalOutcome) =
 201=minor effect
 202=moderate effect
 203=major effect
 204=death
 206=not followed, minimal clinical effects possible
 207=unable to follow, judged as a potentially toxic exposure

3. Exclude cases where Exposure Site (ExpSite) = 3 (workplace) AND (ExpReason) = 9 (suspected suicide), 11 (intentional abuse), 12 (intentional action but specific intention unknown), 14 (malicious), or 18 (unknown reason).

4. Include only cases exposed to one substance (The variable to make this assessment changed in 1999. Before 1999, cases exposed to only one substance had Multiple=missing (if Multiple=1 then the case was exposed to more than one substance). Beginning in 1999, cases exposed to only one substance had Noofsubs=1 (if Noofsubs > 1 then the case was exposed to more than one substance).

5. Remove children less than 16 years of age. This can be handled by using the variables age (Age) and patient age unit variable (PatAgeUnit). Age must be greater than or equal to 16. If PatAgeUnit equals 1 (<=5 years), 2 (6-12 years), 16 (months) or 17 (days) then delete.

6. Include only cases with in-state residence or unknown residence.

7. Exposure to an agent included in one of the pesticide generic categories
 Disinfectants
 0201008 disinfectant industrial cleaner
 0201055 bromine water/shock treatment
 0201056 chlorine water/shock treatment
 0042281 hypochlorite disinfectant: hypochlorite, non-bleach product
 0040280 phenol disinfectant: phenol (eg, lysol)
 0039282 pine oil disinfectant
 0077286 other/unknown disinfectant

 Fungicides (non-medicinal)
 0243566 carbamate fungicide
 0201033 copper compound fungicide
 0077564 mercurial fungicide
 0077565 non-mercurial (inactive) fungicide
 0253000 phthalimide fungicide
 0254371 wood preservative
 0077566 other/unknown (inactive) non-medicinal fungicide
 0201034 other non-medicinal fungicide
 0201035 unknown non-medicinal fungicide

 Fumigants
 0201036 aluminum phosphide fumigant
 0201037 metam sodium (fumigant, fungicide, or herbicide)
 0201038 methyl bromide (fumigant, fungicide, or herbicide)
 0201039 sulfuryl fluoride fumigant
 0201040 other fumigant
 0201041 unknown fumigant

 Herbicides (includes algicides, defoliants, dessicants, plant growth regulators)
 0201054 algicide
0254370 anti-algae paint: anti-algae
0243561 carbamate herbicide
0017000 2,4-d or 2,4,5-t (inactive)
0201042 chlorophenoxy herbicide
0049562 diquat
0201043 glyphosate
0049000 paraquat
0049561 paraquat/diquat combination
0077121 plant hormone
0213000 triazine herbicide
0215000 urea herbicide
0077561 other herbicide
0077567 unknown herbicide

Insecticides (includes insect growth regulators, molluscicides, nematicides)
0004562 arsenic pesticide
0062562 borate/boric acid pesticide
0070000 carbamate only (alone)
0070560 carbamate with other insecticide
0050000 chlorinated hydrocarbon only (alone)
0050560 chlorinated hydrocarbon with other insecticide
0201043 insect growth regulator
0172000 metaldehyde(molluscicide)
0208560 nicotine(excluding tobacco products)
0038000 organophosphate
0038560 organophosphate/carbamate combined
0038561 organophosphate/chlorinated hydrocarbon (inactive)
0038562 organophosphate/other insecticide
0038563 organophosphate/carbamate/chlorinated hydrocarbon (inactive)
0176000 piperonyl butoxide only (inactive)
0144000 piperonyl butoxide/pyrethrin (inactive) (without carbamate or o.p.)
0144001 pyrethrins only (inactive)
0201045 pyrethrin
0201046 pyrethroid
0145000 rotenone
0077568 veterinary insecticide (inactive) (for pets-flea collars, etc.)
0077562: other type of insecticide/pesticide
0077569: unknown type of insecticide/pesticide

Repellents
0201047 bird, dog, deer or other mammal repellent
0201048 insect repellent with deet
0201049 insect repellent without deet
0218000 insect repellent: unknown (inactive) insect repellents: unknown
0033000 naphthalene moth repellent
0050430 paradichlorobenzene moth repellent
0077431 other mothball or moth repellent
0077430 unknown mothball or moth repellent
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0174000</td>
<td>antu</td>
</tr>
<tr>
<td>0048563</td>
<td>anticoagulant: warfarin-type anticoagulant rodenticide</td>
</tr>
<tr>
<td>0048564</td>
<td>anticoagulant: long-acting, superwarfarin anticoagulant rodenticide</td>
</tr>
<tr>
<td>0244577</td>
<td>barium carbonate barium carbonate containing rodenticides</td>
</tr>
<tr>
<td>0201050</td>
<td>bromethalin</td>
</tr>
<tr>
<td>0201051</td>
<td>cholecalciferol rodenticide</td>
</tr>
<tr>
<td>0012563</td>
<td>cyanide rodenticide (excluding industrial or misc. Chemical)</td>
</tr>
<tr>
<td>0162000</td>
<td>monofluoroacetate 1080/monofluoroacetate/smfa</td>
</tr>
<tr>
<td>0043000</td>
<td>strychnine rodenticide</td>
</tr>
<tr>
<td>0197000</td>
<td>vacor/pnu</td>
</tr>
<tr>
<td>0201052</td>
<td>zinc phosphide</td>
</tr>
<tr>
<td>0217000</td>
<td>thallium</td>
</tr>
<tr>
<td>0077563</td>
<td>other rodenticide</td>
</tr>
<tr>
<td>0077577</td>
<td>unknown rodenticide</td>
</tr>
<tr>
<td>TOPIC: OCCUPATIONAL ILLNESSES</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>INDICATOR # 12: INCIDENCE OF MALIGNANT MESOTHELIOMA, AGES 15 AND OLDER</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Resident persons age 15 years or older</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Incident cases with mesothelioma</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Midyear resident population age 15 years or older for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Annual number of incident mesothelioma cases (numerator)</td>
</tr>
<tr>
<td></td>
<td>Annual mesothelioma incidence rate (cases per million residents)</td>
</tr>
<tr>
<td></td>
<td>Annual, age-standardized, mesothelioma incidence rate (standardized by the direct method to the Year 2000 U.S. Standard population) (cases per million residents)</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
<tr>
<td>Significance and Background:</td>
<td>About 3,000 deaths with malignant mesothelioma occur each year in the United States (North American Association of Central Cancer Registries, 2012). The only well-established risk factor for malignant mesothelioma is exposure to asbestos and related fibers. It has been estimated that as much as 90 percent of cases are caused by exposure to asbestos.</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Malignant mesothelioma, while relatively rare, is a fatal cancer largely attributable to workplace exposure to asbestos. Tracking of malignant mesothelioma should be undertaken to document the burden of occupational disease, to design, target, and evaluate the impact of prevention efforts over time, and to identify previously unrecognized settings in which workers may continue to be at risk of asbestos exposure.</td>
</tr>
<tr>
<td>Limitations of Indicator:</td>
<td>Not all cases of malignant mesothelioma are caused by occupational exposures. Because cancer is a disease of long latency, current incidence is not indicative of current exposures and it may be many years before reductions in occupational exposures affect incidence. State of residence of the decedent may not have been the state of exposure.</td>
</tr>
<tr>
<td>Data Resources:</td>
<td>State-wide Cancer Registry data (numerator)</td>
</tr>
<tr>
<td></td>
<td>State population estimates from the U.S. Bureau of the Census (denominator)</td>
</tr>
<tr>
<td></td>
<td>Year 2000 US Standard population (for age-standardization)</td>
</tr>
<tr>
<td>Limitations of Data Resources:</td>
<td>Data from some existing statewide central cancer registries do not yet meet standards for data completeness and quality. Until complete cancer registry data are available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Because CSTE uses a different methodology, the state specific incidence rates calculated using this Guidance Document may differ from those published by State Cancer Registries.</td>
</tr>
<tr>
<td>HP2020 Objectives:</td>
<td>None</td>
</tr>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>Age, gender, race/ethnicity, county of residence, usual occupation and industry</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>Age, gender, race/ethnicity, county counts and rates can be used to better define patterns of malignant mesothelioma. Because usual occupation and usual industry information is not necessarily indicative of the setting in which the causative exposure occurred, industry- and occupation-specific measures should be interpreted and reported with caution.</td>
</tr>
</tbody>
</table>
How-To Guide: Indicator #12: Incidence Of Malignant Mesothelioma

12.1 **Annual number of incident mesothelioma cases**

Obtain from the State Cancer Registry the number of incident cases meeting the following criteria:

- ICD-O histology code of 9050-9053.
- Limit age to those 15 years and older
- Select for state of residence = ‘your state’
- Exclude:
 - age unknown
 - out-of-state residents and unknown state of residence
- Obtain the number of cases for each of the following age groups: 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85 and over.
- This will yield the ‘Annual number of incident mesothelioma cases’.

NOTE: If less than 5 events, the number will be too small to produce reliable estimates. Rates should not be calculated.

12.2 **Annual mesothelioma incidence rate (cases per million residents)**

a) To obtain the denominator for the rate:

- Click on Advanced Search.
- For Step 1, enter the following in the box titled ‘topic or table name’: PEPAGESEX. Enter your state name in the box titled ‘state, county or place (optional).’ After you enter your state, click on your state name again in the screen that pops up. Click on Go.
- On the resulting page, click on the box on the left corresponding to 2012 Population Estimates. Next, click on View.
- You should now see population figures for age groups for your state for both sexes, males, and females for 2010, 2011, and 2012. Click on Download.
- In the Download box that pops up, select Microsoft Excel as the format. Click on OK.
- Once the next pop-up box indicates that your file is complete, click on Download, then open.
- Use the figures under Both Sexes for 2012 to populate the Excel spreadsheet you will use to perform age adjusting.

b) To calculate the annual incidence rate:

- Divide the number of cases for those aged 15 and older (numerator 12.1) by the population aged 15 and older for that year (12.2a).
- Multiply this result by 1,000,000 to obtain the ‘Annual mesothelioma incidence rate (cases per million residents)’.

12.3 **Annual, age-standardized mesothelioma incidence rate (cases per million residents)**

- Use the US 2000 Standard population (provided in column E in table below) found at: http://www.cdc.gov/nchs/data/statnt/statnt20.pdf. Use table below to calculate the age-standardized incidence rate. A spreadsheet such as Excel works well for these calculations.
- In Column C (State Population), enter the state’s census population (found using population referenced in 12.2a) by age group for the relevant year (e.g., population estimates for 2011 if generating rates for 2011).
- In Column B (# Mesothelioma Cases), enter the number of mesothelioma cases, obtained in 12.1, by age group.
- Column D = Column B / Column C
 (Mesothelioma Cases/Pop = # Mesothelioma Cases / State Population)
- Column F = Column D * Column E
 (# Expected Mesothelioma Cases = (Mesothelioma Cases/Pop) * (US 2000 Standard Pop))
- **Age-standardized incidence rate for mesothelioma = (F10 / E10) * 1,000,000**
 [(The sum (Σ) of all expected mesothelioma cases) / (the US 2000 Standard Population ages 15 and older)] multiplied by 1,000,000

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Column B</th>
<th>Column C</th>
<th>Column D</th>
<th>Column E</th>
<th>Column F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>State Resident Mesothelioma Cases, ages 15 and older, [year]</td>
<td># Mesothelioma Cases</td>
<td>[year] State Population</td>
<td>Mesothelioma Cases/Pop</td>
<td>US 2000 Std Pop</td>
</tr>
<tr>
<td>2</td>
<td>15-24</td>
<td>B2/C2</td>
<td>38,077,000</td>
<td>D2*E2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25-34</td>
<td>B3/C3</td>
<td>37,233,000</td>
<td>D3*E3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35-44</td>
<td>B4/C4</td>
<td>44,659,000</td>
<td>D4*E4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45-54</td>
<td>B5/C5</td>
<td>37,030,000</td>
<td>D5*E5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>55-64</td>
<td>B6/C6</td>
<td>23,961,000</td>
<td>D6*E6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65-74</td>
<td>B7/C7</td>
<td>18,136,000</td>
<td>D7*E7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>75-84</td>
<td>B8/C8</td>
<td>12,315,000</td>
<td>D8*E8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>85+</td>
<td>B9/C9</td>
<td>4,259,000</td>
<td>D9*E9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Total</td>
<td></td>
<td>215,670,000</td>
<td>Σ(F2:F9)</td>
<td></td>
</tr>
</tbody>
</table>
Indicator #13: Elevated Blood Lead Levels (BLL) Among Adults

Demographic Group:
Employed persons

Numerators:
1. All reported state residents age 16 years or older, with a blood lead level of \(\geq 10 \, \mu g/dL \)
2. All reported state residents age 16 years or older, with a blood lead level of \(\geq 25 \, \mu g/dL \)
3. All reported state residents age 16 years or older, with a blood lead level of \(\geq 40 \, \mu g/dL \)

Denominator:
Employed population age 16 years or older for the same calendar year

Measures of Frequency:
- Annual number of residents with elevated blood lead levels (numerator)
- Annual prevalence rate per 100,000 employed persons age 16 years or older
- Annual number of incident cases of residents with elevated blood lead levels
- Annual incidence rate per 100,000 employed persons age 16 years or older

Time Period:
Calendar year

Significance and Background:
The current surveillance case definition for an elevated blood lead level (BLL) used by the Centers for Disease Control and Prevention (CDC) and National Institute of Occupational Safety and Health (NIOSH) includes workers age 16 and older, with blood lead concentrations of greater than or equal to 10 \(\mu g/dL \). In 2010, the CDC included, for the first time, elevated BLLs defined by the same blood lead concentration (greater than or equal to 10 \(\mu g/dL \)), as a Nationally Notifiable Non-Infectious Condition. In 2006, reporting systems operating in 38 states enumerated 24,291 adults with BLLs greater than or equal to 10 \(\mu g/dL \). Among these 24,291 adults, about 39.4 percent had levels greater than or equal to 25 \(\mu g/dL \), and 6.0 percent had levels greater than or equal to 40 \(\mu g/dL \).

Lead adversely affects multiple organ systems and can cause permanent damage. There is increasing concern over the toxicity of lead at low doses and its association with hypertension, adverse effects on renal function, cognitive dysfunction, and adverse female reproductive outcome. Children also suffer the adverse effects of lead and about 24,000 United States children with BLLs of 10 \(\mu g/dL \) or greater are estimated to be exposed from lead unintentionally brought home by a parent from the workplace. Pediatric effects include neurologic damage, learning disabilities, and behavior problems.

Rationale:
Among adults, lead poisoning is a persistent, mainly occupational, health issue that continues to be an important public health problem. The most widely available test for exposure is the BLL. The Federal Occupational Safety and Health Administration (OSHA) lead standards to protect workers from lead-associated health effects include requirements for monitoring BLLs among employees who meet certain exposure criteria. The standards are based on medical information that is now more than 30 years old and are not protective against the adverse health effects of lead. Lower medical removal recommendations have been proposed to protect workers against the adverse health effects of both acute and cumulative lead exposures. It is important to note that the average BLL for the general population is less than 1.5 \(\mu g/dL \).
Limitations of Indicator:	BLLs reflect the contributions of acute external exposure to lead as well as the release of internal bone lead stores into the blood. For persons without significant lead body burden, a BLL is a good indicator of recent (preceding 3-5 weeks) external lead exposure. For persons with significant body burden, a single BLL may not be an accurate indicator of recent external exposure, as lead is also being released into the blood from bone stores.
Data Resources:	Reports of elevated BLLs from laboratories (numerator) BLS Current Population Survey Data (denominator)
Limitations of Data Resources:	Some states do not require laboratories to report all BLLs, or have no BLL reporting requirement in place. Even with a reporting requirement, data from laboratories are frequently incomplete. Many workers with significant occupational lead exposure are not appropriately tested. An individual’s lead exposure and BLL testing may be done in the same or in different states (which may not be the individual’s state of residence). Approximately 10-15% of elevated BLLs among adults can be caused by non-occupational exposures. Not all states may be able to distinguish occupationally exposed individuals from non-occupationally exposed individuals. Not all states may be able to determine both state of employment/exposure and state of residence of their reported cases.
HP2020 Objectives:	OSH-7
CSTE Positions:	1990-Env-9; 1995-Env-14; 1999-Env-02; 2000-Occ-01; 2001-Occ-01; 2010-Occ-02
Other Available Data:	Age, gender, industry, occupation, individual BLL, and all lead test reports (i.e., not just those exceeding the specified criteria)
Recommendations:	Because adverse health effects can begin at BLLs below 10 µg/dL, it is recommended that states also calculate the number and rate of elevated BLLs at 5 µg/dL. In addition, many states have data elements that can be used to better define the pattern of elevated blood lead levels. Report numbers and rates for occupational cases only, rather than including both occupationally and non-occupationally exposed persons in the numerator. Include occupationally exposed cases working in your state (e.g., employer is based in your state, or, if able to determine, worksite is in your state), regardless of their state of residence. Age, gender, and race/ethnicity specific counts and rates can be used to better define the pattern of elevated BLLs. Industry and occupation information can be used to provide additional insight. Individual BLLs can help identify particularly egregious exposures. Follow-up of selected cases and/or clusters can help identify where/how individuals with high BLLs were exposed. Obtaining reports on all BLLs can provide insight about the overall frequency of BLL testing, and allow follow-up of employers not doing required testing.
How-To Guide: Indicator #13:

Elevated Blood Lead Levels among Adults

13.1 Persons age 16 years or older with a blood lead level of >= 10 µg/dL

13.1.1 Annual number of residents with elevated blood lead levels (>=10 µg/dL)

- Contact state Adult Blood Lead Epidemiology Surveillance (ABLES) program: www.cdc.gov/niosh/ables.html
- Request data according to the following criteria for the calendar year:
 - Blood lead level (BLL) >= 10 µg/dL
 - Age 16 years and older
 - Earliest date of either draw date, date laboratory received sample, or date laboratory analyzed sample
 - If a person is reported more than once during the time period, count that person one time only, at his/her highest BLL
 - Include all cases, both occupationally and non-occupationally exposed
 - Include all residents of state and unknown residence
 - Exclude out-of-state residents

- This will yield the ‘Annual number of residents with blood lead levels >= 10 µg/dL’.

13.1.2 Annual prevalence rate per 100,000 employed persons

a) To obtain the denominator for the rate:

- Follow directions for 13.1.2.

b) To calculate the rate:

- Divide the numerator (13.1.1) by the denominator (13.1.2a).
- Multiply this result by 100,000 to get the ‘Annual prevalence rate per 100,000 employed persons age 16 years or older’.

13.1.3 Annual number of incident cases

- Use the ABLES definition of an incident case: Case with a BLL of >=10 µg/dL reported in the calendar year, but was not reported in the immediately preceding year with a BLL of >=10 µg/dL (may appear in earlier years with a BLL of 10 µg/dL or greater).

13.1.4 Annual incidence rate per 100,000 employed persons

a) To obtain the denominator for the rate:

- Follow directions for 13.1.2.

b) To calculate the rate:
• Divide the numerator (13.1.3) by the denominator (13.1.2a)
• Multiply this result by 100,000 to get the ‘Annual incidence rate per 100,000 employed persons age 16 years or older’.

13.2 Persons age 16 years or older with a blood lead level of >= 25 µg/dL

13.2.1 Annual number of residents with elevated blood lead levels (>=25 µg/dL)

• Contact state Adult Blood Lead Epidemiology Surveillance (ABLES) program: www.cdc.gov/niosh/ables.html
• Request data according to the following criteria for the calendar year:
 o Blood lead level (BLL) >= 25 µg/dL
 o Age 16 years and older
 o Earliest date of either draw date, date laboratory received sample, or date laboratory analyzed sample
 o If a person is reported more than once during the time period, count that person one time only, at his/her highest BLL
 o Include all cases, both occupationally and non-occupationally exposed
 o Include all residents of state and unknown residence
 o Exclude out-of-state residents
• This will yield the ‘Annual number of residents with blood lead levels >= 25 µg/dL’.

13.2.2 Annual prevalence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
 • Follow directions for 13.1.2.

b) To calculate the rate:
 • Divide the numerator (13.2.1) by the denominator (13.2.2a).
 • Multiply this result by 100,000 to get the ‘Annual prevalence rate per 100,000 employed persons age 16 years or older’.

13.2.3 Annual number of incident cases
• Use the ABLES definition of an incident case: Case with a BLL of >= 25 µg/dL reported in the calendar year, but was not reported in the immediately preceding year with a BLL of >= 25 µg/dL (may appear in earlier years with a BLL of 25 µg/dL or greater).

13.2.4 Annual incidence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
 • Follow directions for 13.2.2.

b) To calculate the rate:
 • Divide the numerator (13.2.3) by the denominator (13.2.2a).
 • Multiply this result by 100,000 to get the ‘Annual incidence rate per 100,000 employed persons age 16 years or older’.

13.3 Persons age 16 years or older with a blood lead level of >= 40 µg/dL

13.3.1 Annual number of residents with blood lead levels >= 40 µg/dL
Follow data request from 13.1.1 for BLL >= 40 µg/dL

13.3.2 Annual prevalence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
 • Follow directions for 13.1.2. (Leave as is)
b) To calculate the rate:
 • Divide the numerator (13.3.1) by the denominator (13.3.2a).
 • Multiply this result by 100,000 to get the ‘Annual prevalence rate per 100,000 employed persons age 16 years or older’.

13.3.3 Annual number of incident cases
 • Use the ABLES definition of an incident case: Case with a BLL of >= 40 µg/dL reported in the calendar year, but was not reported in the immediately preceding year with a BLL of >= 40 µg/dL (may appear in earlier years with a BLL of 40 µg/dL or greater).

13.3.4 Annual incidence rate per 100,000 employed persons
a) To obtain the denominator for the rate:
 • Follow directions for 13.1.2.

b) To calculate the rate:
 • Divide the numerator (13.3.3) by the denominator (13.3.2a).
 • Multiply this result by 100,000 to get the ‘Annual incidence rate per 100,000 employed persons age 16 years or older’.
<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Employed workers, 16 years of age and older, in private sector industries at high-risk for occupational morbidity</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older in all private sector industries for same calendar year</td>
</tr>
</tbody>
</table>
| Measures of Frequency: | Number of employed persons in high morbidity risk NAICS industries*
Percentage of employed persons in high morbidity risk North American Industry Classification System (NAICS) industries. |
| Time Period: | Calendar year |
| Significance and Background: | In 2012, there were over 3 million work-related injuries and illnesses reported by employers in the private industry sector in the United States. Of those, 94.8% were recordable injuries and 5.2% were recordable illnesses. Over half of the more than 3 million injury and illness cases reported in 2012 were of a more serious nature that involved days away from work, job transfer, or restriction (DART cases). These cases occurred at a rate of 1.8 cases per 100 full-time workers (BLS, 2014).
In 2008, 55 industries had occupational injury and illness rates of more than double the national rate, or 7.8 cases per 100 full-time workers or higher. For this indicator, these industries are classified as high risk industries and they accounted for 7.96 million workers in the United States (6.6% of the private sector non-farm wage and salary employment), and 16% of the Occupational Safety and Health Administration (OSHA) reportable injuries and illnesses in 2008 (BLS, 2010). |
<p>| Rationale: | Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Concentrating on high-risk industries for non-fatal injuries and illnesses helps prioritize limited resources. |
| Limitations of Indicator: | It is possible that some new employers are not counted in the County Business Patterns mid-March survey. In addition, differences in regional industrial practices may cause the ranking of high-risk industries within a specific State to differ from those identified from national data. The industries for which data are available also vary among States, primarily due to the differences in industry concentration and sample size from one State to the next; as a result it is not recommended to compare numbers or rates between State or National data. |
| Data Resources: | U.S. Census Bureau County Business Patterns (CBP) (numerator and denominator) |</p>
<table>
<thead>
<tr>
<th>Limitations of Data Resources:</th>
<th>The SOII is a function of BLS using a probability sample and not a census of all employers. It is based on injury and illness data maintained by employers and is subject to sampling error. There is a potential for additional sampling error if an employer has more than 30 cases with days away from work as an employer is only required to report on 30 such cases. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. In some states, the survey does not cover the state and municipal employees. Therefore, the recommended measures of frequency are limited to private sector workforce only. Some states do not participate in the Federal-State survey, and in some participating states, the sample sizes are insufficient to generate State-specific estimates. Numbers and rates may not be published/released by BLS due to the reliability of the estimates. Employers vary with respect to how much they may reduce their potential reporting burden by placing affected workers on restricted work activity, thereby avoiding the reporting of lost workday cases (which require reporting of additional details). In addition, the SOII only collects data for the incident year, and does not capture lost work-time that may carry over to a new calendar year. For example, a debilitating injury that occurs on the last day of the calendar year will have no lost work-time associated with it in the SOII. The CBP is based on mid-March payrolls of all employers in the United States, but does not cover farms, public administration, or the self-employed. Exact employment counts for a particular NAICS may not be provided within a State because of confidentiality issues.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP2020 Objectives:</td>
<td>OSH-2</td>
</tr>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>None</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>States could additionally identify their own State-specific high-risk industries and associated employment patterns.</td>
</tr>
</tbody>
</table>
How-To Guide: Indicator #14:

Percentage of Workers Employed In Industries At High Risk For Occupational Morbidity

14.1 Number of employed persons in high morbidity risk North American Industry Classification System (NAICS) industries

The following are the high risk morbidity industries based on Bureau of Labor Statistics “total reportable cases incidence rates” for private sector workers for the year 2008. So that states may collect trend data for this indicator, this list will be used through 2012. CSTE will review and update this list every 5 years thereafter.

Table 1. NAICS codes and Industry Titles for High Morbidity Risk Industries

<table>
<thead>
<tr>
<th>2007 NAICS</th>
<th>Industry Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>115111</td>
<td>Cotton Ginning</td>
</tr>
<tr>
<td>311311</td>
<td>Sugarcane Milling</td>
</tr>
<tr>
<td>311511</td>
<td>Fluid Milk Manufacturing</td>
</tr>
<tr>
<td>311611</td>
<td>Animal Slaughtering Except Poultry</td>
</tr>
<tr>
<td>311613</td>
<td>Rendering and Meat Byproduct Processing</td>
</tr>
<tr>
<td>311711</td>
<td>Seafood Canning</td>
</tr>
<tr>
<td>31211</td>
<td>Soft Drink and Ice Manufacturing</td>
</tr>
<tr>
<td>31611</td>
<td>Leather and Hide Tanning and Finishing</td>
</tr>
<tr>
<td>321214</td>
<td>Truss manufacturing</td>
</tr>
<tr>
<td>32192</td>
<td>Wood Container and Pallet Manufacturing</td>
</tr>
<tr>
<td>32199</td>
<td>All Other Wood Product Manufacturing</td>
</tr>
<tr>
<td>326212</td>
<td>Tire Retreading</td>
</tr>
<tr>
<td>327113</td>
<td>Porcelain Electrical Supply Manufacturing</td>
</tr>
<tr>
<td>327332</td>
<td>Concrete Pipe Manufacturing</td>
</tr>
<tr>
<td>32739</td>
<td>Other Concrete Product Manufacturing</td>
</tr>
<tr>
<td>33122</td>
<td>Rolling and Drawing of Purchased Steel</td>
</tr>
<tr>
<td>331314</td>
<td>Secondary Smelting and Alloying of Aluminum</td>
</tr>
<tr>
<td>3315</td>
<td>Foundries</td>
</tr>
<tr>
<td>3321</td>
<td>Forging and Stamping</td>
</tr>
<tr>
<td>332214</td>
<td>Kitchen Utensil, Pot, and Pan Manufacturings* Use your 2011 number as a proxy for this industry</td>
</tr>
<tr>
<td>3323</td>
<td>Architectural and Structural Metals Manufacturing</td>
</tr>
<tr>
<td>332439</td>
<td>Other Metal Container Manufacturing</td>
</tr>
<tr>
<td>332618</td>
<td>Other Fabricated Wire Product Manufacturing</td>
</tr>
<tr>
<td>332721</td>
<td>Precision Turned Product Manufacturing</td>
</tr>
<tr>
<td>332997</td>
<td>Industrial Pattern Manufacturing</td>
</tr>
<tr>
<td>332999</td>
<td>All Other Miscellaneous Fabricated Metal Product Man.</td>
</tr>
<tr>
<td>33311</td>
<td>Agricultural Implement Manufacturing</td>
</tr>
<tr>
<td>33321</td>
<td>Sawmill and Woodworking Machinery Manufacturing</td>
</tr>
<tr>
<td>333291</td>
<td>Paper Industry Machinery Manufacturing</td>
</tr>
<tr>
<td>333294</td>
<td>Food Product Machinery Manufacturing</td>
</tr>
<tr>
<td>333312</td>
<td>Commercial Laundry, Dry Cleaning, and Pressing</td>
</tr>
<tr>
<td>333412</td>
<td>Industrial and Commercial Fan and Blower Manufacturing</td>
</tr>
<tr>
<td>Code</td>
<td>Industry Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>333923</td>
<td>Overhead Traveling Crane, Hoist, and Monorail System</td>
</tr>
<tr>
<td>33612</td>
<td>Light Truck and Utility Vehicle Manufacturing</td>
</tr>
<tr>
<td>33612</td>
<td>Heavy Duty Truck Manufacturing</td>
</tr>
<tr>
<td>3362</td>
<td>Motor Vehicle Body and Trailer Manufacturing</td>
</tr>
<tr>
<td>33636</td>
<td>Motor Vehicle Seating and Interior Trim Manufacturing</td>
</tr>
<tr>
<td>33637</td>
<td>Motor Vehicle Metal Stamping</td>
</tr>
<tr>
<td>3366</td>
<td>Ship and Boat Building</td>
</tr>
<tr>
<td>337124</td>
<td>Metal Household Furniture Manufacturing</td>
</tr>
<tr>
<td>337127</td>
<td>Institutional Furniture Manufacturing</td>
</tr>
<tr>
<td>4248</td>
<td>Beer, Wine, and Distilled Alcoholic Beverage Wholesalers</td>
</tr>
<tr>
<td>45391</td>
<td>Pet and Pet Supplies Stores</td>
</tr>
<tr>
<td>481</td>
<td>Air Transportation</td>
</tr>
<tr>
<td>48832</td>
<td>Marine Cargo Handling</td>
</tr>
<tr>
<td>4889</td>
<td>Other Support Activities for Transportation</td>
</tr>
<tr>
<td>492</td>
<td>Couriers and Messengers</td>
</tr>
<tr>
<td>49312</td>
<td>Refrigerated Warehousing and Storage</td>
</tr>
<tr>
<td>54194</td>
<td>Veterinary Services</td>
</tr>
<tr>
<td>6219</td>
<td>Other Ambulatory Health Care Services</td>
</tr>
<tr>
<td>6223</td>
<td>Specialty Hospitals Except Psychiatric and Substance Abuse</td>
</tr>
<tr>
<td>623</td>
<td>Nursing and Residential Care Facilities</td>
</tr>
<tr>
<td>7112</td>
<td>Spectator Sports</td>
</tr>
<tr>
<td>71392</td>
<td>Skiing Facilities</td>
</tr>
<tr>
<td>7223</td>
<td>Special Food Services</td>
</tr>
</tbody>
</table>

Important Note: County Business Patterns implemented the 2012 NAICS codes for data year 2012. However, the high risk industries for this indicator were identified using 2008 SOII data which was based on 2007 NAICS codes. This has resulted in a data gap in which nine of the industries identified in 2008 no longer had unique codes in 2012. The nine industries, with their respective NAICS codes, are in bold text and are highlighted in Table 1. For your 2012 data submission, you will need to use 2011 numbers as proxies for eight of the nine bolded industries, with the **exception of code 332997**. For 332997, do not include a value from 2011 as it is accounted for within the total for industry code 332999. You will leave code 332997 blank or enter “0” (zero). For all other codes, record the 2012 value.

- To facilitate tracking and calculating number of employed persons, it is recommended that you copy and paste Table 1 into an excel spreadsheet.
- Go to http://censtats.census.gov/cbpnaic/cbpnaic.shtml
- Select your state from the drop-down window in the County Business Patterns section and click on “Go”.
- To choose a different year, select year from pull-down menu and click on “Go”.
- Find the first two digits of a code of interest in the column labeled “Industry Code” (or if not listed, find the two digits that are closest without going higher), and click the “Detail” button to the left. Find the code in the detailed list and read the 3rd column, “Paid employees for pay period including March 12.” This is the number of employed persons in that industry.
- Copy and paste the number into an Excel spreadsheet.
- Find the employment number for each code of interest. If the first two digits in a code are different than in the previous code, you may need to click the “back” arrow to return to the full list, then click the “Detail” button corresponding to the first two digits of the new code. If you cannot find the exact code, enter 0. For some codes, a letter will be entered. This letter refers to the range of employees for that particular industry. Refer to the table below for number ranges associated with each letter. Use the midpoint of the range.
Reminder: For your 2012 data submission, you will use 2011 numbers as proxies for codes 311311, 311711, 327113, 33321, 333291, 333294, 333312, 333412, and enter ‘0’ for code 332997. You should now have a 2012 value, a 2011 proxy, or a zero assigned to each high-risk occupation.

- Add the numbers of employees from each industry (using midpoints where necessary). This is the “Number of workers employed in high-risk industries”.

14.2 Percentage of employed persons in high morbidity risk North American Industry Classification System (NAICS) industries

a) To obtain the denominator for the percentage:
 - Go to http://censtats.census.gov/cbnpaic/cbnpaic.shtml
 - Select your state from the drop-down window in the County Business Patterns section and click on “Go”.
 - To choose a different year, select year from pull-down menu and click on “Go”.
 - To get data on the total employed population, read the top row and the 3rd column “Number of Employees for week including March 12”.

b) To calculate the percentage:
 - Divide the number of workers employed in high-risk industries (14.1) by the number of employed persons (14.2a).
 - Multiply this result by 100 to get the “Percentage of employed persons in high morbidity risk industries”.

<table>
<thead>
<tr>
<th></th>
<th>0-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>20-99</td>
</tr>
<tr>
<td>C</td>
<td>100-249</td>
</tr>
<tr>
<td>D</td>
<td>250-499</td>
</tr>
<tr>
<td>F</td>
<td>500-999</td>
</tr>
<tr>
<td>G</td>
<td>1,000-2,499</td>
</tr>
<tr>
<td>H</td>
<td>2,500-4,999</td>
</tr>
<tr>
<td>I</td>
<td>5,000-9,999</td>
</tr>
<tr>
<td>J</td>
<td>10,000-24,999</td>
</tr>
<tr>
<td>K</td>
<td>25,000-49,999</td>
</tr>
<tr>
<td>L</td>
<td>50,000-99,999</td>
</tr>
</tbody>
</table>
OCCUPATIONAL HAZARDS

INDICATOR # 15: PERCENTAGE OF WORKERS EMPLOYED IN OCCUPATIONS AT HIGH RISK FOR OCCUPATIONAL MORBIDITY

Demographic Group:
- Employed persons

Numerator:
- Employed persons age 16 years or older, in private sector occupations at high risk for occupational morbidity

Denominator:
- Employed persons age 16 years or older, in all private sector industries for the same calendar year

Measures of Frequency:
- Average number of employed persons in high morbidity risk 2010 Bureau of the Census occupations*
- Percentage of employed persons in high morbidity risk 2010 Bureau of the Census occupations

* The occupations comprising “high morbidity risk” will be reviewed and updated every five years.

Time Period:
- Calendar year

Significance and Background:
In 2012, there were over 3 million work-related injuries and illnesses reported by employers in the private industry sector in the United States. Of those, 94.8% were recordable injuries and 5.2% were recordable illnesses. Over half of the more than 3 million injury and illness cases reported in 2012 were of a more serious nature that involved days away from work, job transfer, or restriction (DART cases). These cases occurred at a rate of 1.8 cases per 100 full-time workers (BLS, 2014).

In 2008, 61 occupational categories had "days away from work" injury and illness rates higher than 226.2 cases per 10,000 full-time-equivalent workers. These occupations accounted for approximately 18.4 million private sector workers in the United States (16.1% of the private sector employment, excluding self-employed and unpaid workers), but 44.1% of Occupational Safety and Health Administration (OSHA) "days away from work" cases in 2008 (BLS, 2010).

Rationale:
Work-related injuries and illnesses are preventable, and control of occupational hazards is the most effective means of prevention. Concentrating on high-risk occupations for non-fatal injuries and illnesses helps prioritize limited resources.

Limitations of Indicator:
Differences in regional industrial practices may cause the ranking of high-risk occupations within a specific state or industry to differ from those identified from national data. The industries for which data are available also vary among States, primarily due to the differences in industry concentration and sample size from one State to the next; as a result it is not recommended to compare numbers or rates between State or National data.

Data Resources:

Limitations of Data Resources:
The BLS annual Survey of Occupational Injuries and Illnesses (SOII) is based on injury and illness data maintained by employers and is subject to sampling error, a function of BLS using a probability sample and not a census of all employers. Excluded from the survey are the military, self-employed individuals, farms with fewer than 11 employees, and Federal agencies. The CPS can be used to estimate the private sector employment in the US, excluding the self-employed, but may not match perfectly those workers covered in the SOII.

HP2020 Objectives:
- OSH-2

CSTE Positions:
- None
<table>
<thead>
<tr>
<th>Other Available Data:</th>
<th>The BLS SOII and the CPS provide occupation data for some states.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendations:</td>
<td>States could additionally identify their own state-specific high-risk occupations and assess associated employment patterns.</td>
</tr>
</tbody>
</table>
How-To Guide: Indicator #15:

Percentage of Workers Employed In Occupations At High Risk For Occupational Morbidity

15.1 Number of Employed Persons in High Morbidity Risk 2010 Bureau of Census Occupations

The following are the high risk morbidity occupations based on Bureau of Labor Statistics “days away from work” cases and employment estimates for private sector workers for the year 2008. So that states may collect trend data for this indicator, this list will be used through 2012. CSTE will review and update this list every 5 years thereafter.

Table 1. List of high risk occupations for occupational morbidity (N = 63)

<table>
<thead>
<tr>
<th>2010 Census Occupation Code</th>
<th>2010 Census Occupation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2720 Athletes, coaches, umpires, and related workers</td>
<td></td>
</tr>
<tr>
<td>3400 Emergency medical technicians and paramedics</td>
<td></td>
</tr>
<tr>
<td>3600 Nursing, psychiatric, and home health aides</td>
<td></td>
</tr>
<tr>
<td>3700 First-line supervisors/managers of correctional officers</td>
<td></td>
</tr>
<tr>
<td>3850 Police and sheriff patrol officers</td>
<td></td>
</tr>
<tr>
<td>3860 Transit and railroad police</td>
<td></td>
</tr>
<tr>
<td>3900 Animal control workers</td>
<td></td>
</tr>
<tr>
<td>4120 Food servers, non-restaurant</td>
<td></td>
</tr>
<tr>
<td>4210 First-line supervisors/managers of landscaping, lawn service, and grounds keeping</td>
<td></td>
</tr>
<tr>
<td>4220 Janitors and building cleaners</td>
<td></td>
</tr>
<tr>
<td>4230 Maids and housekeeping cleaners</td>
<td></td>
</tr>
<tr>
<td>4350 Nonfarm animal caretakers</td>
<td></td>
</tr>
<tr>
<td>5410 Reservation and transportation ticket agents and travel clerks</td>
<td></td>
</tr>
<tr>
<td>5530 Meter readers, utilities</td>
<td></td>
</tr>
<tr>
<td>6120 Forest and conservation workers</td>
<td></td>
</tr>
<tr>
<td>6210 Boilermakers</td>
<td></td>
</tr>
<tr>
<td>6220 Brick masons, block masons, and stonemasons</td>
<td></td>
</tr>
<tr>
<td>6230 Carpenters</td>
<td></td>
</tr>
<tr>
<td>6260 Construction laborers</td>
<td></td>
</tr>
<tr>
<td>6310 Pile-driver operators</td>
<td></td>
</tr>
<tr>
<td>6360 Glaziers</td>
<td></td>
</tr>
<tr>
<td>6440 Pipe layers, plumbers, pipefitters, and steamfitters</td>
<td></td>
</tr>
<tr>
<td>6500 Reinforcing iron and rebar workers</td>
<td></td>
</tr>
<tr>
<td>6515 Roofers</td>
<td></td>
</tr>
<tr>
<td>6530 Structural iron and steel workers</td>
<td></td>
</tr>
<tr>
<td>6730 Highway maintenance workers</td>
<td></td>
</tr>
<tr>
<td>6765 Miscellaneous construction and related workers</td>
<td></td>
</tr>
<tr>
<td>6840 Mining machine operators</td>
<td></td>
</tr>
<tr>
<td>6910 Roof bolters, mining</td>
<td></td>
</tr>
<tr>
<td>7140 Aircraft mechanics and service technicians</td>
<td></td>
</tr>
<tr>
<td>7160 Automotive glass installers and repairers</td>
<td></td>
</tr>
<tr>
<td>7200 Automotive service technicians and mechanics</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Occupation Description</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
</tr>
<tr>
<td>7210</td>
<td>Bus and truck mechanics and diesel engine specialists</td>
</tr>
<tr>
<td>7315</td>
<td>Heating, air conditioning, and refrigeration mechanics and installers</td>
</tr>
<tr>
<td>7330</td>
<td>Industrial and refractory machinery mechanics</td>
</tr>
<tr>
<td>7420</td>
<td>Telecommunications line installers and repairers</td>
</tr>
<tr>
<td>7510</td>
<td>Coin, vending, and amusement machine servicers and repairers</td>
</tr>
<tr>
<td>7855</td>
<td>Food processing workers</td>
</tr>
<tr>
<td>8140</td>
<td>Welding, soldering, and brazing workers</td>
</tr>
<tr>
<td>8160</td>
<td>Lay-out workers, metal and plastic</td>
</tr>
<tr>
<td>8520</td>
<td>Model makers and patternmakers, wood</td>
</tr>
<tr>
<td>8530</td>
<td>Sawing machine setters, operators, and tenders, wood</td>
</tr>
<tr>
<td>8610</td>
<td>Stationary engineers and boiler operators</td>
</tr>
<tr>
<td>8850</td>
<td>Cementing and gluing machine operators and tenders</td>
</tr>
<tr>
<td>8860</td>
<td>Cleaning, washing, and metal pickling equipment operators and tenders</td>
</tr>
<tr>
<td>8900</td>
<td>Cooling and freezing equipment operators and tenders</td>
</tr>
<tr>
<td>8910</td>
<td>Etchers and engravers</td>
</tr>
<tr>
<td>8920</td>
<td>Molders, shapers, and casters, except metal and plastic</td>
</tr>
<tr>
<td>8930</td>
<td>Paper goods machine setters, operators, and tenders</td>
</tr>
<tr>
<td>8940</td>
<td>Tire builders</td>
</tr>
<tr>
<td>8950</td>
<td>Helpers—production workers</td>
</tr>
<tr>
<td>8965</td>
<td>Production workers, all other</td>
</tr>
<tr>
<td>9050</td>
<td>Flight attendants</td>
</tr>
<tr>
<td>9120</td>
<td>Bus drivers</td>
</tr>
<tr>
<td>9130</td>
<td>Driver/sales workers and truck drivers</td>
</tr>
<tr>
<td>9140</td>
<td>Taxi drivers and chauffeurs</td>
</tr>
<tr>
<td>9240</td>
<td>Railroad conductors and yardmasters</td>
</tr>
<tr>
<td>9260</td>
<td>Subway, streetcar, and other rail transportation workers</td>
</tr>
<tr>
<td>9300</td>
<td>Sailors and marine oilers</td>
</tr>
<tr>
<td>9415</td>
<td>Transportation attendants, except flight attendants</td>
</tr>
<tr>
<td>9560</td>
<td>Hoist and winch operators</td>
</tr>
<tr>
<td>9620</td>
<td>Laborers and freight, stock, and material movers, hand</td>
</tr>
<tr>
<td>9730</td>
<td>Shuttle car operators</td>
</tr>
</tbody>
</table>

Important Note: In May 2012, the Current Population Survey collapsed several occupation codes and three industry codes. This was done because the CPS disclosure board mandated that occupations with fewer than 10,000 persons as reported by the American Community Survey should be collapsed. The 2012 industry and occupation codes in this system have been updated to be consistent throughout the year. As a result, there are seven high-risk occupations that no longer have a unique code for 2012 in its entirety. These occupations are in bold text and are highlighted in Table 1. For your 2012 data submission, use 2011 numbers as proxies for six of these eight occupations, with the exception of code 3860. Consequently, 3860 is now accounted for within the total for occupation code 3850. Record “0” (zero) for 3860 and record the 2012 result for 3850. Occupation codes 6310, 6910, 8160, 8520, 8900, and 9730 are grayed out for 2012, indicating they cannot be selected. Record the 2011 values for each of these codes. For all other codes, record the 2012 value.

Please note that the National Institute for Occupational Safety and Health (NIOSH)’s Division of Safety Research (DSR) has excluded occupation code 6540—“Solar photovoltaic installers” for 2012, due to the code’s inclusion of five different occupations, including roofers. Inclusion of this category may have resulted in an overestimation of 2011 data for this indicator; please keep this in mind when comparing data for years 2011 and 2012.

For the 2012 data submission, NIOSH’s Employed Labor Force (ELF) query system will be used to calculate the number and percentage of workers employed in occupations at high risk for occupational morbidity instead of
DataFerrett. ELF is a simpler and faster method, and it uses a single screen with pull-down menus and checkboxes to select data analysis options. Output is available in Excel, Word or Pdf.

- To facilitate tracking and calculating number of employed persons, it is recommended that you copy and paste Table 1 into an excel spreadsheet.

a) To obtain the Number of Employed Persons in High Morbidity Occupations using ELF

 - Go to http://wwwn.cdc.gov/wisards/cps/
 - Employed Labor Force (ELF) is a web-based query system designed by NIOSH. It provides employed worker population estimates, for workers at least 15 years of age, from 1980 to the present.
 - Click on Elf Estimates under the Queries tab on the upper left side of the screen.
 - Step 1: Select type of labor estimates- Make sure “Number of employees” is checked.”
 - Step 2: Select query parameters:
 - Time Period- select the year of interest
 - Location- Click on the Expand Options Button and select your state.
 - Demographics- Click on Expand Options-> Under “Age By”, select Individual Year-> Highlight “All”
 - Nativity- Do not select anything for this variable.
 - Workforce- Click on Expand Options-> Keep CPS groups selected. -> Using the Ctrl button, select both “Private, For Profit” and “Private, Nonprofit.”
 - Industry/Occupation- Click on Expand Options-> Go to “B.O.C. Occupation (Primary Job 2013)” -> Click on the Select button next to the box labeled “All Occupation Codes”. -> Click on the “+” button next to each major occupation category. Click the “+” button again next to the occupation subgroups and check the boxes for the occupation codes of interest from Table 1. Click on “Hide” (the options are still selected, but less space is taken up on the screen). To check the occupation codes that you’ve selected already, click the “View” button next to “B.O.C. Occupation (Primary Job 2013).” To add or delete selected codes, double-click on “Selected Codes.”
 - Reminder: For your 2012 data submission, you will use 2011 numbers as proxies for codes 6310, 6910, 8160, 8520, 8900, and 9730 and enter ‘0’ for code 3860. Use the 2012 ELF result for code 3850. You should now have a 2012 value, a 2011 proxy, or a zero assigned to each high-risk occupation.
 - Step 3: Select report variables (optional)- Click on the arrow next to “Column Variable (1-Major Group).” -> Scroll down to “State” and select it. -> Click on the arrow next to “Row Variable (2-Major Group).” Scroll down to “Occupation Code (Primary Job 2011+)” and choose that option.
 - Advanced Option: Leave “Composite Weight” selected.
 - Step 4: Submit the Query- Click the button marked “Submit Query” to process the data.
 - Output: Results can be exported in Word, Excel or Pdf. Export in Excel to copy and paste results into your spreadsheet. All of the values together make up the “Average number of employed persons in high morbidity risk occupations.”

15.2 Percentage of Employed Persons In High Morbidity Risk 2010 Bureau Of Census Occupations

a) To obtain the average annual number of employed persons using ELF:

 - Step 1: Select type of labor estimates- Make sure “Number of employees” is checked.”
• Step 2: Select query parameters:
 o Time Period- select the year of interest
 o Location- Click on the Expand Options Button and select your state.
 o Demographics- Click on Expand Options-> Under “Age By”, select Individual Year-> Highlight “All”
 o Nativity- Do not select anything for this variable.
 o Workforce- Click on Expand Options-> Scroll down to “Class of Worker (Primary Job 1994-2013).” -> Keep CPS groups selected. -> Using the Ctrl button, select both “Private, For Profit” and “Private, Nonprofit.”

• Step 3: Select report variables (optional)- Click on the arrow next to “Column Variable (1-Major Group).” -> Scroll down to “State” and select it. -> Click on the arrow next to “Row Variable (2-Major Group).” Scroll down to “Labor Force Status” and choose that option.
• Advanced Option: Leave “Composite Weight” selected.
• Step 4: Submit the Query- Click the button marked “Submit Query” to process the data.
• The total number includes the “Employed-At Work” and the “Employed-Absent.” This is the “Average number of employed persons”.

To calculate the percentage:
• Divide the number of workers employed in high-risk occupations (15.1a) by the number of employed persons (15.2a).

Multiply this result by 100 to get the “Percentage of workers employed in occupations at high risk for occupational morbidity.”
TOPIC: OCCUPATIONAL HAZARDS

INDICATOR # 16: PERCENTAGE OF WORKERS EMPLOYED IN INDUSTRIES AND OCCUPATIONS AT HIGH RISK FOR OCCUPATIONAL MORTALITY

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Employed persons age 16 years or older, in private sector industries and occupations at high risk for occupational mortality</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older, in all private industries for the same calendar year</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
<tr>
<td>Significance and Background:</td>
<td>Each year, over 4,500 cases of work-related fatalities are reported to the Census of Fatal Occupational Injuries (CFOI) Program administered by the Bureau of Labor Statistics (BLS). On an average day, 13 workers die each day as a result of injuries sustained at work. The risks for these occupational fatalities are significantly higher in certain industries and occupations (CFOI, 2013). In 2008, forty industries have fatality rates of 7.5 deaths per 100,000 workers or higher, and employed approximately 20.6 million workers (16.6% of the private sector employment), but account for 64% of the occupational fatalities in 2008. There are also 62 occupations that have fatality rates of 7.5 deaths per 100,000 workers or higher. These occupations account for approximately 16.1 million workers in the U.S. (13% of the private sector employment), but 66% of the occupational fatalities in 2008 (CFOI,2010a).</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Multiple factors and risks contribute to work-related fatalities, including workplace and process design, work organization, worker characteristics, economics and other social factors. Surveillance of work-related fatalities can identify new hazards and case clusters, leading to the development of new interventions and development of new or revised regulations to protect workers. Concentrating on high-risk occupations and industries for fatalities helps prioritize limited resources.</td>
</tr>
<tr>
<td>Limitations of Indicator:</td>
<td>Differences in regional industrial practices may cause the ranking of high-risk occupations and industries within a specific State to differ from those identified from national data. State industry rates are not comparable to other states because of the large differences in the industry composition of employment by state.</td>
</tr>
<tr>
<td>Limitations of Data Resources:</td>
<td>The CFOI program counts suicides at work as work-related fatalities, even when the cause of death may not be due to factors at work. CFOI does not count military deaths. To be consistent with Indicators #14 and #15, this indicator has been limited to private sector workers. Although, unlike Indicators #14 and #15, the self-employed are included.</td>
</tr>
<tr>
<td>HP2020 Objectives:</td>
<td>OSH-1</td>
</tr>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>The BLS CFOI and the CPS provide industry and occupation data for most States.</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>States could report their own high-risk industries and occupations and associated employment patterns.</td>
</tr>
</tbody>
</table>
How-To Guide: Indicator #16:

Percentage of Workers Employed In Industries and Occupations
At High Risk for Occupational Mortality

16.1 Average Number of Employed Persons in High Mortality Risk Industries

The following are the high mortality risk industries based on Bureau of Labor Statistics’ Census of Fatal Occupational Injuries (CFOI). So that states may collect trend data for this indicator, this list will be used through 2012. CSTE will review and update this list every 5 years thereafter.

Table 1. List of high risk private sector industries for occupational mortality (N=40)

<table>
<thead>
<tr>
<th>2010 Census Industry Code</th>
<th>2010 Census Industry Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0170</td>
<td>Crop Production</td>
</tr>
<tr>
<td>0180</td>
<td>Animal Production</td>
</tr>
<tr>
<td>0190</td>
<td>Forestry, Except Logging</td>
</tr>
<tr>
<td>0270</td>
<td>Logging</td>
</tr>
<tr>
<td>0280</td>
<td>Fishing, Hunting, Trapping</td>
</tr>
<tr>
<td>0290</td>
<td>Support Activities for Agriculture and Forestry</td>
</tr>
<tr>
<td>0370</td>
<td>Oil and Gas Extraction</td>
</tr>
<tr>
<td>0380</td>
<td>Coal Mining</td>
</tr>
<tr>
<td>0390</td>
<td>Metal Ore Mining</td>
</tr>
<tr>
<td>0470</td>
<td>Nonmetallic Mineral Mining and Quarrying</td>
</tr>
<tr>
<td>0490</td>
<td>Support Activities for Mining</td>
</tr>
<tr>
<td>0770</td>
<td>Construction</td>
</tr>
<tr>
<td>1070</td>
<td>Animal Food, Grain, and Oilseed milling</td>
</tr>
<tr>
<td>1080</td>
<td>Sugar and Confectionery Products</td>
</tr>
<tr>
<td>2090</td>
<td>Miscellaneous Petroleum and Coal Products</td>
</tr>
<tr>
<td>2570</td>
<td>Cement, Concrete, Lime, and Gypsum Product Mfg.</td>
</tr>
<tr>
<td>2670</td>
<td>Iron and Steel Mills and Steel Product Mfg.</td>
</tr>
<tr>
<td>2690</td>
<td>Nonferrous Metal Production and Processing (Except Aluminum)</td>
</tr>
<tr>
<td>2770</td>
<td>Foundries</td>
</tr>
<tr>
<td>3680</td>
<td>Ship and Boat Building</td>
</tr>
<tr>
<td>3770</td>
<td>Sawmills and Wood Preservation</td>
</tr>
<tr>
<td>3780</td>
<td>Veneer, Plywood, and Engineered Wood Product Mfg.</td>
</tr>
<tr>
<td>4280</td>
<td>Recyclable Material Wholesalers</td>
</tr>
<tr>
<td>4480</td>
<td>Farm Product Raw Materials Wholesalers</td>
</tr>
<tr>
<td>4570</td>
<td>Farm supplies wholesalers</td>
</tr>
<tr>
<td>4585</td>
<td>Wholesale Electronic Markets, Agents, and Brokers</td>
</tr>
<tr>
<td>6080</td>
<td>Rail Transportation</td>
</tr>
<tr>
<td>6090</td>
<td>Water Transportation</td>
</tr>
<tr>
<td>6170</td>
<td>Truck Transportation</td>
</tr>
<tr>
<td>6190</td>
<td>Taxi and Limousine Service</td>
</tr>
<tr>
<td>6270</td>
<td>Pipeline Transportation</td>
</tr>
<tr>
<td>6280</td>
<td>Scenic and Sightseeing Transportation</td>
</tr>
<tr>
<td>6290</td>
<td>Services Incidental to Transportation</td>
</tr>
<tr>
<td>6590</td>
<td>Sound Recording Industries</td>
</tr>
</tbody>
</table>
Important Note: The Current Population Survey collapsed select industry and occupation codes in May of 2012. This was done because the CPS disclosure board mandated that occupations with fewer than 10,000 persons identified through the American Community Survey be collapsed. The 2012 industry and occupation codes in this system have been updated to be consistent throughout the year. However, high mortality risk industries for this indicator were not impacted by the change.

For the 2012 data submission, the National Institute for Occupational Safety and Health (NIOSH)’s Employed Labor Force (ELF) query system will be used to calculate the number and percentage of workers employed in industries at high risk for occupational mortality instead of DataFerrett. ELF is a simpler and faster method, and it uses a single screen with pull-down menus and checkboxes to select data analysis options. Output is available in Excel, Word, or Pdf.

To facilitate tracking and calculating number of employed persons, it is recommended that you copy and paste Table 1 into an excel spreadsheet.

16.1a Number of Persons Employed in High Mortality Risk Industries

a) To obtain the Number of Employed Persons in High Mortality Industries using ELF

- Go to http://www.cdc.gov/wisards/cps/
 - Employed Labor Force (ELF) is a web-based query system designed by NIOSH. It provides employed worker population estimates, for workers at least 15 years of age, from 1980 to the present.
 - Click on Elf Estimates under the Queries tab on the upper left side of the screen.
 - Step 1: Select type of labor estimates- Make sure “Number of employees” is checked.”
 - Step 2: Select query parameters:
 - Time Period- select the year of interest
 - Location- Click on the Expand Options Button and select your state.
 - Demographics- Click on Expand Options-> Under “Age By”, select Individual Year-> Highlight “All”
 - Nativity- Do not select anything for this variable.
 - Workforce- Click on Expand Options-> Scroll down to “Class of Worker (Primary Job 1994-2013).” -> Keep CPS groups selected. -> Using the Ctrl button, select “Private, For Profit”, “Private, Nonprofit”, “Self-Employed, Incorporated” and “Self-Employed, Unincorporated.”
 - Industry/Occupation- Click on Expand Options-> Go to “B.O.C. Industry (Primary Job 2009-2013)” -> Click on the Select button next to the box labeled “All Industry Codes”. -> Click on the “+” button next to each major industry category. Click the “+” button again next to the industry subgroups and check the boxes for the industry codes of interest from Table 1. Click on “Hide” (the options are still selected, but less space is taken up on the screen). To check the industry codes that you’ve selected already, click the “View” button next to “B.O.C.”
Industry (Primary Job 2009-2013).” To add or delete selected codes, double-click on “Selected Codes.”

- Step 3: Select report variables (optional)- Click on the arrow next to “Column Variable (1-Major Group).” > Scroll down to “State” and select it. -> Click on the arrow next to “Row Variable (2-Major Group).” Scroll down to “B.O.C. Industry (Primary Job 2009-2013)” and choose that option.
- Advanced Option: Leave “Composite Weight” selected.
- Step 4: Submit the Query- Click the button marked “Submit Query” to process the data.
- Output: Results can be exported in Word, Excel or Pdf. Export in Excel to copy and paste results into your spreadsheet. All of the values together make up the “Average number of employed persons in high mortality risk industries” for Indicator 16.

16.2 Percentage of Employed Persons in High Mortality Risk Industries

a) To obtain the average annual number of employed persons using ELF:
- Step 1: Select type of labor estimates- Make sure “Number of employees” is checked.”
- Step 2: Select query parameters:
 o Time Period- select the year of interest
 o Location- Click on the Expand Options Button and select your state.
 o Demographics- Click on Expand Options-> Under “Age By”, select Individual Year-> Highlight “All”
 o Nativity- Do not select anything for this variable.
 o Workforce- Click on Expand Options-> Scroll down to “Class of Worker (Primary Job 1994-2013).” -> Keep CPS groups selected. -> Using the Ctrl button, select “Private, For Profit”, “Private, Nonprofit”, “Self-Employed, Incorporated” and “Self-Employed, Unincorporated.”
- Step 3: Select report variables (optional)- Click on the arrow next to “Column Variable (1-Major Group).” > Scroll down to “State” and select it. -> Click on the arrow next to “Row Variable (2-Major Group).” Scroll down to “Labor Force Status” and choose that option.
- Advanced Option: Leave “Composite Weight” selected.
- Step 4: Submit the Query- Click the button marked “Submit Query” to process the data.
- The total number includes the “Employed-At Work” and the “Employed-Absent.” This is the “Average number of employed persons.”

To calculate the percentage:
- Divide the number of workers employed in high-risk mortality industries (16.1a) by the number of employed persons (16.2a).

Multiply this result by 100 to get the “Percentage of workers employed in industries at high risk for occupational mortality.”

16.3 Number of Employed Persons in High Mortality Risk Occupations

The following are the high risk mortality occupations based on Bureau of Labor Statistics’ Census of Fatal Occupational Injuries (CFOI) and employment estimates for private sector workers for the year 2010.

86
Table 2. List of high risk private sector occupations for occupational mortality (n=65).

<table>
<thead>
<tr>
<th>2010 Census Occ. Codes</th>
<th>2010 Occupation Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>0205</td>
<td>Farm, ranch, and other agricultural managers</td>
</tr>
<tr>
<td>2720</td>
<td>Athletes, Coaches, Umpires, and Related Workers</td>
</tr>
<tr>
<td>2800</td>
<td>Announcers</td>
</tr>
<tr>
<td>3740</td>
<td>Fire Fighters</td>
</tr>
<tr>
<td>3930</td>
<td>Security guards and gaming surveillance officers</td>
</tr>
<tr>
<td>3940</td>
<td>Crossing Guards</td>
</tr>
<tr>
<td>4210</td>
<td>First-line supervisors/managers of landscaping, lawn service, & groundskeeping workers</td>
</tr>
<tr>
<td>4240</td>
<td>Pest Control Workers</td>
</tr>
<tr>
<td>4250</td>
<td>Grounds Maintenance Workers</td>
</tr>
<tr>
<td>4540</td>
<td>Tour and Travel Guides</td>
</tr>
<tr>
<td>6005</td>
<td>First-line Supervisors/Managers of Farming, Fishing, and Forestry Workers</td>
</tr>
<tr>
<td>6050</td>
<td>Miscellaneous Agricultural Workers</td>
</tr>
<tr>
<td>6100</td>
<td>Fishers and Related Fishing Workers</td>
</tr>
<tr>
<td>6130</td>
<td>Logging Workers</td>
</tr>
<tr>
<td>6200</td>
<td>First-line Supervisors/Managers of Construction Traders and Extraction Workers</td>
</tr>
<tr>
<td>6210</td>
<td>Boilermakers</td>
</tr>
<tr>
<td>6220</td>
<td>Brick masons, Block masons, and Stonemasons</td>
</tr>
<tr>
<td>6250</td>
<td>Cement Masons, Concrete Finishers, and Terrazzo Workers</td>
</tr>
<tr>
<td>6260</td>
<td>Construction Laborers</td>
</tr>
<tr>
<td>6300</td>
<td>Paving, Surfacing, and Tamping Equipment Operators</td>
</tr>
<tr>
<td>6320</td>
<td>Operation Engineers and Other Construction Equip. Ops.</td>
</tr>
<tr>
<td>6355</td>
<td>Electricians</td>
</tr>
<tr>
<td>6360</td>
<td>Glaziers</td>
</tr>
<tr>
<td>6400</td>
<td>Insulation Workers</td>
</tr>
<tr>
<td>6420</td>
<td>Painters, Construction and Maintenance</td>
</tr>
<tr>
<td>6515</td>
<td>Roofers</td>
</tr>
<tr>
<td>6530</td>
<td>Structural Iron and Steel Workers</td>
</tr>
<tr>
<td>6600</td>
<td>Helpers, Construction Trades</td>
</tr>
<tr>
<td>6730</td>
<td>Highway Maintenance Workers</td>
</tr>
<tr>
<td>6765</td>
<td>Miscellaneous Construction and Related Workers</td>
</tr>
<tr>
<td>6800</td>
<td>Derrick, Rotary Drill, and Service Unit Operators, Oil, Gas, and Mining</td>
</tr>
<tr>
<td>6820</td>
<td>Earth Drillers, Except Oil and Gas</td>
</tr>
<tr>
<td>6840</td>
<td>Mining Machine Operators</td>
</tr>
<tr>
<td>6920</td>
<td>Roustabouts, Oil and Gas</td>
</tr>
<tr>
<td>6940</td>
<td>Other Extraction Workers</td>
</tr>
<tr>
<td>7000</td>
<td>First-line Supervisors/Managers of Mechanics, Installers, and Repairers</td>
</tr>
<tr>
<td>7210</td>
<td>Bus and Truck Mechanics and Diesel Engine Specialists</td>
</tr>
<tr>
<td>7220</td>
<td>Heavy Vehicle and Mobile Equipment Service Technicians and Mechanics</td>
</tr>
<tr>
<td>7340</td>
<td>Maintenance and Repair Workers, General</td>
</tr>
<tr>
<td>7350</td>
<td>Maintenance Workers, Machinery</td>
</tr>
<tr>
<td>7360</td>
<td>Millwrights</td>
</tr>
<tr>
<td>7410</td>
<td>Electronic Power-line Installers and Repairers</td>
</tr>
<tr>
<td>7560</td>
<td>Riggers</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>8100</td>
<td>Molders and Molding Machine Setters, Operators, and Tenders, Metal and Plastic</td>
</tr>
<tr>
<td>8140</td>
<td>Welding, Soldering, and Brazing Workers</td>
</tr>
<tr>
<td>8640</td>
<td>Chemical Processing Machine Setters, Operators, and Tenders</td>
</tr>
<tr>
<td>9030</td>
<td>Aircraft Pilots and Flight Engineers</td>
</tr>
<tr>
<td>9130</td>
<td>Driver/Sales Workers and Truck Drivers</td>
</tr>
<tr>
<td>9140</td>
<td>Taxi Drivers and Chauffeurs</td>
</tr>
<tr>
<td>9150</td>
<td>Motor Vehicle Operators, All Other</td>
</tr>
<tr>
<td>9200</td>
<td>Locomotive Engineers and Operators</td>
</tr>
<tr>
<td>9230</td>
<td>Railroad Brake, Signal, and Switch Operators</td>
</tr>
<tr>
<td>9240</td>
<td>Railroad Conductors and Yardmasters</td>
</tr>
<tr>
<td>9300</td>
<td>Sailors and Marine Oilers</td>
</tr>
<tr>
<td>9310</td>
<td>Ship and Boat Captains and Operators</td>
</tr>
<tr>
<td>9330</td>
<td>Ship Engineers</td>
</tr>
<tr>
<td>9360</td>
<td>Service Station Attendants</td>
</tr>
<tr>
<td>9500</td>
<td>Conveyor Operators and Tenders</td>
</tr>
<tr>
<td>9510</td>
<td>Crane and Tower Operators</td>
</tr>
<tr>
<td>9600</td>
<td>Industrial Truck and Tractor Operators</td>
</tr>
<tr>
<td>9720</td>
<td>Refuse and Recyclable Material Collectors</td>
</tr>
<tr>
<td>9750</td>
<td>Material Moving Workers, All Other</td>
</tr>
</tbody>
</table>

Important Note: The Current Population Survey collapsed select industry and occupation codes in May of 2012. This was done because the CPS disclosure board mandated that occupations with fewer than 10,000 persons identified through the American Community Survey be collapsed. The 2012 occupation codes in this system have been updated to be consistent throughout the year. As a result, three high-risk occupations in indicator 16 no longer have unique codes for 2012. These occupations are in bold text and are highlighted in Table 2. For your 2012 data submission, use the 2011 number for 9500 as a proxy for the bolded occupation. Code 9230 is now included in previously identified high-risk occupation 9240, and code 9330 is now included in a code previously identified as high-risk occupation 9300. **For 9230 and 9330, do not include values** because they are now accounted for in other existing high-risk occupation codes in 2012. You will enter “0” (zero) for codes 9230 and 9330. For all other codes, record the 2012 value.

Please note that the National Institute for Occupational Safety and Health (NIOSH)’s Division of Safety Research (DSR) has excluded the following 3 occupation codes for 2012 data: 1) 0630- “Human resource workers”, which includes additional workers from code 0620; 2) 3945- “Transportation security screeners”, which includes additional workers from codes 0560 and 3950; and 3) 6540- “Solar photovoltaic installers”, which includes five different occupations, e.g., roofers. Inclusion of these categories may have resulted in an overestimation of 2011 data for this indicator; please keep this in mind when comparing data for years 2011 and 2012.

For the 2012 data submission, NIOSH’s Employed Labor Force (ELF) query system will be used to calculate the number and percentage of workers employed in occupations at high risk for occupational mortality instead of DataFerrett. ELF is a simpler and faster method, and it uses a single screen with pull-down menus and checkboxes to select data analysis options. Output is available in Excel, Word or Pdf.

a) To obtain the Number of Employed Persons in High Mortality Occupations using ELF
 - Employed Labor Force (ELF) is a web-based query system designed by NIOSH. It provides employed worker population estimates, for workers at least 15 years of age, from 1980 to the present.
• Click on Elf Estimates under the Queries tab on the upper left side of the screen.
• Step 1: Select type of labor estimates- Make sure “Number of employees” is checked.”
• Step 2: Select query parameters:
 o Time Period- select the year of interest
 o Location- Click on the Expand Options Button and select your state.
 o Demographics- Click on Expand Options-> Under “Age By”, select Individual Year-> Highlight “All”
 o Nativity- Do not select anything for this variable.
 o Workforce- Click on Expand Options-> Scroll down to “Class of Worker (Primary Job 1994-2013).” -> Keep CPS groups selected. -> Using the Ctrl button, select “Private, For Profit”, “Private, Nonprofit”, “Self-Employed, Incorporated” and “Self-Employed, Unincorporated.”
 o Industry/Occupation- Click on Expand Options-> Go to “B.O.C. Occupation (Primary Job 2011+)” -> Click on the Select button next to the box labeled “All Occupation Codes”. -> Click on the “+” button next to each major occupation category. Click the “+” button again next to the occupation subgroups and check the boxes for the occupation codes of interest from Table 1. Click on “Hide” (the options are still selected, but less space is taken up on the screen). To check the occupation codes that you’ve selected already, click the “View” button next to “B.O.C. Occupation (Primary Job 2011+)” To add or delete selected codes, double-click on “Selected Codes.”
• Reminder: For your 2012 data submission, you will use your 2011 number as a proxy for 9500, and enter ‘0’ for codes 9230 and 9330. You should now have a 2012 value, a 2011 proxy, or a zero assigned to each high-risk occupation.
• Step 3: Select report variables (optional)- Click on the arrow next to “Column Variable (1-Major Group).” -> Scroll down to “State” and select it. -> Click on the arrow next to “Row Variable (2-Major Group).” Scroll down to “B.O.C. Occupation (Primary Job 2011+)” and choose that option.
• Advanced Option: Leave “Composite Weight” selected.
• Step 4: Submit the Query- Click the button marked “Submit Query” to process the data.
• Output: Results can be exported in Word, Excel or Pdf. Export in Excel to copy and paste results into your spreadsheet. All of the values together make up the “Average number of employed persons in high mortality risk occupations” for Indicator 16.

16.4 Percentage of Employed Persons in High Mortality Risk Occupations

a) To obtain the average annual number of employed persons using ELF:
• Step 1: Select type of labor estimates- Make sure “Number of employees” is checked.”
• Step 2: Select query parameters:
 o Time Period- select the year of interest
 o Location- Click on the Expand Options Button and select your state.
 o Demographics- Click on Expand Options-> Under “Age By”, select Individual Year-> Highlight “All”
 o Nativity- Do not select anything for this variable.
 o Workforce- Click on Expand Options-> Scroll down to “Class of Worker (Primary Job 1994-2013).” -> Keep CPS groups selected. -> Using the Ctrl button, select “Private, For Profit”, “Private, Nonprofit”, “Self-Employed, Incorporated” and “Self-Employed, Unincorporated.”
• Step 3: Select report variables (optional)- Click on the arrow next to “Column Variable (1-Major Group).” -> Scroll down to “State” and select it. -> Click on the arrow next to “Row Variable (2-Major Group).” Scroll down to “Labor Force Status” and choose that option.
• Advanced Option: Leave “Composite Weight” selected.
• Step 4: Submit the Query- Click the button marked “Submit Query” to process the data.

To calculate the percentage:
• Divide the number of workers employed in high-risk mortality occupations (16.3a) by the number of employed persons (16.4a).

Multiply this result by 100 to get the “Percentage of workers employed in occupations at high risk for occupational mortality.”
<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Number of board-certified occupational medicine physicians</td>
</tr>
<tr>
<td>2.</td>
<td>Number of members of the American College of Occupational and Environmental Medicine (ACOEM)</td>
</tr>
<tr>
<td>3.</td>
<td>Number of board-certified occupational health nurses</td>
</tr>
<tr>
<td>4.</td>
<td>Number of members of the American Association of Occupational Health Nurses (AAOHN)</td>
</tr>
<tr>
<td>5.</td>
<td>Number of board-certified industrial hygienists</td>
</tr>
<tr>
<td>6.</td>
<td>Number of members of the American Industrial Hygiene Association (AIHA)</td>
</tr>
<tr>
<td>7.</td>
<td>Number of board certified safety health professionals (BCSP)</td>
</tr>
<tr>
<td>8.</td>
<td>Number of members of the American Society of Safety Engineers (ASSE)</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Number of board-certified occupational medicine physicians.</td>
</tr>
<tr>
<td>2.</td>
<td>Rate of board-certified occupational medicine physicians per 100,000 employees.</td>
</tr>
<tr>
<td>3.</td>
<td>Number of members of ACOEM.</td>
</tr>
<tr>
<td>4.</td>
<td>Rate of ACOEM membership per 100,000 employees.</td>
</tr>
<tr>
<td>5.</td>
<td>Number of board-certified occupational health nurses.</td>
</tr>
<tr>
<td>6.</td>
<td>Rate of board-certified occupational health nurses per 100,000 employees.</td>
</tr>
<tr>
<td>7.</td>
<td>Number of members of AAOHN.</td>
</tr>
<tr>
<td>8.</td>
<td>Rate of AAOHN membership per 100,000 employees.</td>
</tr>
<tr>
<td>9.</td>
<td>Number of board-certified industrial hygienists.</td>
</tr>
<tr>
<td>10.</td>
<td>Rate of board-certified industrial hygienists per 100,000 employees.</td>
</tr>
<tr>
<td>11.</td>
<td>Number of members of AIHA.</td>
</tr>
<tr>
<td>12.</td>
<td>Rate of AIHA membership per 100,000 employees.</td>
</tr>
<tr>
<td>13.</td>
<td>Number of BCSP.</td>
</tr>
<tr>
<td>14.</td>
<td>Rate of board certified safety health professionals per 100,000 employees.</td>
</tr>
<tr>
<td>15.</td>
<td>Number of members of ASSE.</td>
</tr>
<tr>
<td>16.</td>
<td>Rate of ASSE membership per 100,000 employees.</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year.</td>
</tr>
<tr>
<td>Significance and Background:</td>
<td>Physicians with training and/or special interest in occupational medicine provide both primary, secondary and tertiary occupational health preventive services. In 1989, the American Medical Association recommended that there be one physician per 1,000 employees. Occupational health nurses provide a great deal of the onsite occupational health care. Industrial hygienists and safety professionals are typically the primary individuals responsible for evaluating workplaces and making recommendations to prevent occupational injuries and illnesses.</td>
</tr>
<tr>
<td>Rationale:</td>
<td>Work-related injuries and illnesses are preventable. It is important to determine if there are sufficient trained personnel to implement occupational health preventive services.</td>
</tr>
<tr>
<td>Limitations of Indicator:</td>
<td>Other important occupational health specialties such as fire prevention, health physicists, ergonomists are not included.</td>
</tr>
<tr>
<td>Data Resources:</td>
<td>American Board of Preventive Medicine (ABPM) diplomates database (www.abprevmed.org). (#1,2)</td>
</tr>
<tr>
<td></td>
<td>Annual roster of members of the ACOEM (www.acoem.org). (#3,4)</td>
</tr>
<tr>
<td></td>
<td>American Board of Occupational Health Nurses Directory (www.abohn.org). (#5,6)</td>
</tr>
<tr>
<td></td>
<td>Annual roster of members of the AAOHN member directory (www.aaohn.org). (#7,8)</td>
</tr>
<tr>
<td></td>
<td>American Board of Industrial Hygiene (www.abih.org). (#9,10)</td>
</tr>
<tr>
<td></td>
<td>AIHA member directory (www.aiha.org). (#11,12)</td>
</tr>
<tr>
<td></td>
<td>BCSP member directory (www.bcsp.org). (#13,14)</td>
</tr>
<tr>
<td></td>
<td>ASSE member directory (www.asse.org). (#15,16)</td>
</tr>
<tr>
<td>Limitations of Data Resources:</td>
<td>The numerator data include retired individuals and individuals who may devote the majority of their time to research and limited or no time to provision of actual preventive services. An individual may practice part-time or even full-time in the field of occupational health and not be board certified or a member of the organization representing occupational health professionals. The completeness and frequency of updating addresses varies by each organization. Members are often listed in a database by a preferred address, which may not be the address where they practice. Due to privacy concerns, individuals may opt out of being listed in membership rolls.</td>
</tr>
<tr>
<td>HP2020 Objectives:</td>
<td>None</td>
</tr>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>None</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>States could contact the occupational health specialists in the state to confirm address and assess status and nature of activity.</td>
</tr>
</tbody>
</table>
How-To Guide: Indicator #17:

Occupational Safety and Health Professionals

17. 1 To obtain the number of occupational safety and health professionals in each category for years prior to 2011:

- NIOSH will routinely distribute state data for the current Occupational Health Indicator development year prior to the June 30 submission due date by means of the Consortium of Occupational State Surveillance Listserv (OCC-HLTH-STATE-SURV@LISTSERV.CDC.GOV). Contact Patricia Schleiff at NIOSH at pls1@cdc.gov or 304.285.5874 with questions regarding data needs for this indicator.

NOTE: This is administrative data that changes over time. Therefore, these data are collected at the same time each year.

To obtain the denominator for the rate:

- Go to: http://www.bls.gov/gps/home.htm to access the Geographic Profile of Employment and Unemployment which contains Current Population Survey estimates for state-specific numbers of employed persons.
- Scroll down to “TABLES CREATED BY BLS.”
- Select year of interest.
- Within the pdf document, find your state.
- The heading in the first column “Population group” should be “TOTAL.”
- The value under “Employment Number” (4th data column) represents the number of employed persons age 16 and older in thousands.
- Multiply the value for Total Employment by 1,000.

To calculate the rate for years prior to 2011:

- Divide the number of occupational safety and health professionals by the denominator.
- Multiply this result by 100,000 to get the ‘Rate of occupational health and safety professionals per 100,000 employed persons age 16 years or older’

NOTE: 2012 Data for American Board of Occupational Health Nurses is not available.
TOPIC: INTERVENTION RESOURCES FOR OCCUPATIONAL HEALTH

INDICATOR # 18: OSHA ENFORCEMENT ACTIVITIES

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Total number of OSHA inspections</td>
</tr>
<tr>
<td></td>
<td>Total number of employed persons covered by OSHA inspections</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Estimated number of establishments under OSHA jurisdiction</td>
</tr>
<tr>
<td></td>
<td>Estimated number of employees under OSHA jurisdiction for the same calendar year</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Annual number of establishments inspected by OSHA</td>
</tr>
<tr>
<td></td>
<td>Estimated percentage of all establishments under OSHA jurisdiction inspected by OSHA</td>
</tr>
<tr>
<td></td>
<td>Annual number of employees whose work areas were inspected by OSHA</td>
</tr>
<tr>
<td></td>
<td>Estimated percentage of all employees under OSHA jurisdiction whose work areas were inspected</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
</tbody>
</table>

Significance and Background:
In 1970, Congress established the Occupational Safety and Health Administration (OSHA). The OSHA mission is to “assure safe and healthful conditions for working men and women by setting and enforcing standards and providing training, outreach, education and compliance assistance.” Under the OSHA law, employers are responsible for providing a safe and healthful workplace for their workers. To this end, OSHA targets with inspections workplaces in high-risk industries and employers with the highest injury and illness rates. Inspections can also be triggered by a fatality, hospitalization of three or more workers, worker complaint or referral (including outside health/safety agency or media). Comprehensive information about inspections is found in the OSHA Field Operations Manual CPL 02-00-150, available on the OSHA web-site (http://www.osha.gov/OshDoc/Directive_pdf/CPL_02-00-150.pdf).

Rationale:
The measures of frequency for this indicator may approximate the added health and safety benefits and protections felt by workers as a result of their worksites being inspected.

Limitations of Indicator:
This indicator only measures enforcement activity and not other measures of OSHA activity such as education and compliance assistance. Because OSHA may conduct multiple inspections of the same establishment during the calendar year, the % of establishments inspected may be slightly overestimated. In addition, if OSHA conducts multiple inspections of the same worksite during the year, the number of workers covered by OSHA inspections may be over counted. In federal OSHA states and some OSHA state plan states, OSHA does not inspect farms with 10 or fewer employees. Agricultural establishments were excluded from the denominator in this indicator except for California and North Carolina; therefore, the percentages of establishments and employees covered may be overestimated in states that do inspect smaller farms.

Data Resources:
- OSHA annual reports of total inspections conducted and the number of workers covered by these inspections (numerators).
- Bureau of Labor Statistics' data on Covered Employers and Wages (commonly referred to as the ES-202/QCEW data http://www.bls.gov/cen/home.htm) for the number of workers employed and establishments in the public and private sectors (denominators).

Limitations of Data Resources:
Employers participating in an OSHA Voluntary Protection Program (VPP) or the Safety and Health Achievement and Recognition Program (SHARP) are exempted from routine inspections. Excluding workers from these programs will reduce the numerator, resulting in an underestimate of the protective function. In CEW data, individuals holding more than one job are counted multiple times.

HP2020 Objectives:
None

CSTE Positions:
None
Other Available Data:
Other indicators can be generated from the VPP and SHARPS program, the local emphasis programs and the participants of the 21D consultation program. Other data that can be generated from the inspections include type of violations and penalties, the number of all workers at the work-site inspected, union affiliation, inspection type, local or national emphasis initiatives, inspection and investigation reports by industrial classification and employer’s name.

Recommendations:
Collaborate with state or regional OSHA Office to obtain more detailed information on the above.
How-To Guide: Indicator #18
OSHA Enforcement Activities

18.1 Annual number of establishments inspected by OSHA in all OSHA-covered sectors

- NIOSH will routinely distribute state data for the current Occupational Health Indicator development year prior to the June 30 submission due date by means of the Consortium of Occupational State Surveillance Listserv (OCC-HLTH-STATE-SURV@LISTSERV.CDC.GOV). Contact Patricia Schleiff at NIOSH pls1@cdc.gov or 304.285.5874 with questions regarding data needs for indicator.
- From the data provided, obtain the number for TOTAL INSPECTIONS. This is the “annual number of employer establishments inspected by OSHA.”

NOTE: These data will need to be collected for future years for all states from OSHA at one point in time each year. The procedure for doing so is detailed below. Please skip to section 18.2 if you have already obtained the data from NIOSH.

OR

- Contact your federal or regional OSHA office to obtain OSHA Inspection reports with criteria #5 and 9 (also called INSP-5 and INSP-9 (state-plan states only)), which contain summary data on OSHA inspections and number of employees covered by these inspections for the calendar year. Specify that you want the report for all sectors (private and/or public) over which OSHA has jurisdiction. Regional office contact information can be found on the OSHA web site at www.osha.gov by scrolling to the bottom of the page and clicking on “OSHA Offices,” then “Regional, Area Offices” and then selecting your region.
- In your request, specify that you would like the following:
 - The total number of OSHA inspections of establishments conducted within your state for the calendar year.
 - The total number of employees covered by inspections in all covered sectors (i.e., private and federal only for federal states and all sectors for state-plan states).
- On page 1 of the INSP-5 report, obtain the number for TOTAL INSPECTIONS. If your state has an INSP-9 report as well, add the total inspections from each report for a grand total. This will yield the “Annual number of establishments inspected by OSHA”.
- On page 2 of the INSP-5/INSP-9 report under ”Employee information,” obtain the number for EMPLOYMENT COVERED. This will yield the “Annual number of employees whose work areas were inspected by OSHA”.

NOTE: OSHA sometimes conducts inspections that are limited to reviewing OSHA logs at the worksites. These are called "Records Inspections" and are included in the number of Total Inspections. Typically the number of records inspections will be small relative to total inspections, so including these as part of the total should not have any substantial effect on the estimates.

Useful state data on OSHA inspections is also available at http://www.osha.gov/oshstats/index.html. However the numbers of inspections for states may differ slightly from those included in the INSP-5 and INSP-9 reports, which are to be used in generating this indicator. The OSHA web site does not include information about number of employees covered.

18.2A Number of OSHA-Covered Establishments that are Eligible for OSHA Inspections

PLEASE NOTE: For OHI #18, the BLS is now providing quarterly census estimates rather than yearly estimates. To obtain the numbers need for OHI #18, you must average the totals from the four quarters.
• Go to the BLS web site http://www.bls.gov/ces/data.htm.

• Access your state’s ES-202/QCEW statistics. Next to “State and County Wages” click the yellow box “Multi-screen Data Search.”

[For 2000 and prior years, find “Discontinued Data Series.” Under the heading “Create Customized Tables (multiple screens)”, click on “Industry Data – (SIC basis).” Select “OZ All Industries” and follow from 4) below.]

• In the first screen select the first option “Total, all Industries,” then select next form

• Select state. For example, “25000- Massachusetts- Statewide,” then select next form.

• Select the relevant ownership sector(s) for your search (i.e. federal government and private for federal OSHA states; all options “Total Covered” for state-plan OSHA states.) Depress the CTRL key to select more than 1 sector then select next form.

• Select “Number of Establishments,” then select next form.

• Select “All Establishment Sizes,” then select next form.

• Review the form and select “Retrieve Data.”

• Compute the average for the four quarterly estimates given to obtain the sum of the Annual Number of establishments for the year of interest for all resulting tables. This is the average number of OSHA-covered establishments in your state that are eligible for OSHA inspection.

• Go to 18.2B to exclude mines and farms from this denominator

18.2B Number of OSHA-Covered Establishments that are Eligible for OSHA Inspections (EXCLUDING MINES AND FARMS)

• Adjust denominator (18.2A) for exclusion of mines and farms in the numerator (18.1).

NOTE: Mines are not covered by OSHA. For states that know their OSHA inspects all farms including farms with less than 10 employees, don’t exclude agriculture from the denominator. Include this in a footnote when you submit your data.

• Follow 1) and 2) in 18.2A above. In the first screen, depress the CTRL key to select the NAICS industry (codes) 111,112,212,213) (Crop Production, Animal Production and Aquaculture, Mining except Oil and Gas, and Support Activities for Mining), then select next form.

• [For 2000 and prior years, select only the following SIC codes: SIC 01 (Agricultural Production Crops), SIC 02 (Agricultural Production Livestock), SIC 10 (Metal Mining), SIC 12 (Coal Mining), and SIC 14 (Nonmetallic Minerals exc. Fuels),]

• Select state. (ex. 25000 - Massachusetts – Statewide)

• Select the relevant ownership sector(s)

• Select, “Number of Establishments”

• Select, “All Establishment Sizes”

• Select, “Retrieve Data”

• Compute the average for the four quarterly estimates given to obtain the sum of the annual number of establishments for the year of interest for all resulting tables (NAICS 111, 112, 212, 213).

• Subtract this sum from the number of establishments in18.2A to get the final denominator, “Average number of OSHA-covered establishments in the state (excluding mines and farms) that are eligible for inspection”. [18.2A – total # of mines & farms = final denominator (18.2B)]

18.3 Percentage of OSHA-Covered Establishments Eligible for Inspection that were Inspected by OSHA

To calculate the percentage:

• Divide the numerator (18.1) by the final denominator adjusted for mines and farms (18.2B).
• Multiply by 100 to obtain the “Percentage of all OSHA-covered establishments eligible for inspection that were inspected by OSHA”.

18.4 Annual Number of Employees Whose Work Areas were Inspected by OSHA

• NIOSH will routinely distribute state data for the current Occupational Health Indicator development year prior to the June 30 submission due date by means of the Consortium of Occupational State Surveillance Listserv (OCC-HLTH-STATE-SURV@LISTSERV.CDC.GOV). Contact Patricia Schleiff at NIOSH at pls1@cdc.gov or 304.285.5874.with questions regarding data needs for this indicator.
• From the data provided, obtain the number for EMPLOYMENT COVERED. This is the “annual number of employees whose work areas were inspected by OSHA”.

18.5A Number of OSHA-Covered Employees in the State that are Eligible for Inspection

• Go to the BLS web site http://www.bls.gov/cew/data.htm.
• Access your state’s ES-202/QCEW statistics. Next to “State and County Wages” click the yellow box “Multi-screen Data Search.”

[For 2000 and prior years, find “Discontinued Data Series.” Under the heading “Create Customized Tables (multiple screens)”, click on “Industry Data – (SIC basis).” Select “OZ All Industries” and follow from 4) below.]

• In the first screen select the first option “Total, all Industries,” then select next form
• Select state. For example, “25000- Massachusetts- Statewide,” then select next form.
• Select the relevant ownership sector(s) for your search (i.e. federal and private for federal OSHA states; all options “Total Covered” for state-plan OSHA states.) Depress the CTRL key to select more than 1 sector.
• Select “All Employees,” then select next form.
• Select “All Establishment Sizes.” then select next form
• Review the form and select “Retrieve Data.”
• Compute the average for the four quarterly estimates given to obtain the sum of the annual number of employees for the year of interest for all resulting tables. This is the average total number of OSHA-covered employees in the state.
• Go to 18.5B to exclude mines and farms from this denominator

18.5B Number of OSHA-Covered Employees in the State that are Eligible for Inspection (EXCLUDING MINERS AND FARMERS)
Adjust denominator (18.5A) for exclusion of miners and farmers in the numerator (18.4).

NOTE: Mines are not covered by OSHA. For states that know their OSHA inspects all farms including farms with less than 10 employees, don’t exclude agriculture from the denominator. Include this in a footnote when you submit your data.

• Follow 1) and 2) in 18.5A above. In the first screen, depress the CTRL key to select the NAICS (industry) codes 111,112,212,213) (Crop Production, Animal Production and Aquaculture, Mining except Oil and Gas, and Support Activities for Mining), then select next form
• [For 2000 and prior years, select only the following SIC codes: SIC 01 (Agricultural Production Crops), SIC 02 (Agricultural Production Livestock), SIC 10 (Metal Mining), SIC 12 (Coal Mining), and SIC 14 (Nonmetallic Minerals exc. Fuels).]
• Select state. (ex. 25000- Massachusetts – Statewide)
• Select the relevant ownership sector(s)
• Select, “All Employees”
• Select, “All Establishment Sizes”
• Select, “Retrieve Data”
• Compute the average for the four quarterly estimates given to obtain the sum of the Annual Number of establishments for the year of interest for all resulting tables (NAICS 111, 112, 212, 213).
• Subtract this sum from the number of employees in 18.5A to get the final denominator, “Average number of OSHA-covered employees in the state (excluding miners and farmers) that are eligible for inspection”. [18.5A – total # of miners & farmers = final denominator (18.5B)]

18.6 Percentage of OSHA-Covered Employees Eligible for Inspection Whose Work Areas were Inspected by OSHA

c) To calculate the percentage:
• Divide the numerator (18.4) by the denominator adjusted for miners and farmers (18.5B).
• Multiply by 100 to obtain the “Percentage of all OSHA-covered employees eligible for inspection whose work areas were inspected by OSHA.”
INDICATOR # 19: WORKERS’ COMPENSATION AWARDS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Total amount of workers’ compensation benefits paid</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Number of workers with workers’ compensation coverage for the same calendar year</td>
</tr>
<tr>
<td></td>
<td>Total employed civilians 16 years and older</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Total amount of workers’ compensation benefits paid</td>
</tr>
<tr>
<td></td>
<td>Average amount of workers’ compensation benefits paid per covered worker</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
</tbody>
</table>

Significance and Background:

In 2012, $61.9 billion in workers’ compensation total benefits were paid to workers occupational injuries or illnesses. Workers’ compensation employer costs increased by 6.9 percent in 2012, to $83.2 billion. In 2012 medical payments to providers increased by 0.9 percent, to $30.8 billion, and cash benefits to injured workers increased by 1.8 percent, to $31.0 billion. (Sengupta, 2014).

Rationale:

Workers’ compensation awards are reviewed to establish whether the reported medical condition is work-related. Accepted awards represent known work-related injuries and illnesses, and often more severe cases. The total and average amounts of benefits paid estimate the burden of these events, which can help justify prevention programs and activities.

Limitations of Indicator:

This is a gross indicator of the burden of occupational injury and illness. It does not include human, noneconomic costs nor all the economic costs associated with occupational injuries and illnesses. These data are more appropriate for evaluating trends within a state rather than comparisons between states because of differences in wages and medical costs, the compensation determination, industry types and risks, and policies on permanent disability payments. Even within a state, changes in policies, wages and medical care expenses must be considered.

Data Resources:

Limitations of Data Resources:

Workers’ compensation data is not complete, as many individuals with work-related illnesses do not file for workers’ compensation. Self-employed individuals (e.g., farmers, independent contractors and small business owners), corporate executives, domestic and agricultural workers may be exempt from coverage. Additionally, federal employees, railroad, long shore and maritime workers are not covered by state workers’ compensation systems. Compensation award payments are frequently made over time, thus annual awards may not reflect the full cost of injuries and illnesses for a given year.

HP2020 Objectives:

OSH-2

CSTE Positions:

None

Other Available Data:

NASI tables with state-specific data have included:

- Number of Workers Covered by Workers’ Compensation and Total Covered Wages
- Workers’ Compensation Benefits by Type of Insurer and Medical Benefits

Recommendations:

NASI also provides the employers’ costs for workers’ compensation. State workers’ compensation system and state employment data may provide additional information about incidence and costs that would increase the usefulness of these data for prevention efforts. States may supply industry- and occupation-specific counts, costs and rates of accepted workers’ compensation claims. Age and gender can also be used to better define the burden of occupational injuries/illnesses. Many states report data collected for the subset of accepted time-loss claims—those involving days away from work—which are likely to have the highest costs to and affects upon workers and employers.
How-To Guide: Indicator #19:

Workers’ Compensation Awards

19.1 Total amount of workers’ compensation benefits paid
 • Go to National Academy of Social Insurance web site: http://www.nasi.org/research/workers-compensation
 • Click on report entitled: "Workers' Compensation: Benefits, Coverage, and Costs, <<YEAR>>."
 • Click on 'Download the report' (must have Adobe Acrobat).
 • Go to Table titled "Workers’ Compensation Total Benefits Paid and Five-Year Percent Change, by State, <<YEARS>>".
 • Identify state and read ‘Total Benefits (thousands)’ column for appropriate year. Multiply by 1,000.

19.2 Average amount of workers’ compensation paid per covered worker
 • Go to National Academy of Social Insurance web site: http://www.nasi.org/research/workers-compensation
 • Click on report entitled: "Workers' Compensation: Benefits, Coverage, and Costs, <<YEAR>>."
 • Click on 'Download' (must have Adobe Acrobat).
 • Go to Table 3 titled “Workers’ Compensation Covered Workers, by State, <<YEARS>> (in thousands)".
 • Identify your state for year of interest. Multiply by 1,000.

b) To calculate the average amount of workers’ compensation benefits paid per covered worker:
 • Divide the numerator (19.1) by the denominator (19.2) – expresses the result in dollars per covered worker.
TOPIC: CUMULATIVE OCCUPATIONAL INJURY

INDICATOR #20: WORK-RELATED LOW BACK DISORDER HOSPITALIZATIONS

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Hospital discharges for low back disorders with primary payer coded as workers’ compensation</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>

Measures of Frequency:
- Annual number of work-related surgical low back disorder hospitalizations for persons age 16 years or older (numerator)
- Annual rate of work-related surgical low back disorder hospitalization per 100,000 employed persons age 16 years or older
- Annual number of work-related low back disorder hospitalizations for persons age 16 years or older (numerator)
- Annual rate of work-related low back disorder hospitalization per 100,000 employed persons age 16 years or older

Time Period: Calendar year

Significance and Background:
Each year 15-20% of Americans report back pain, resulting in over 100 million workdays lost and more than 10 million physician visits. National Health Interview survey data estimates that two-thirds of all low back pain cases are attributable to occupational activities. The cost of back pain is also disproportionate, as it represents about 20% of workers’ compensation claims, but nearly 40% of the costs. In 2003, 3.2% of the total U.S. workforce experienced a loss in productive time due to back pain. The total cost of this productive time lost to back pain is estimated to be in excess of $19.8 billion dollars (Stewart, 2003; Ricci, 2003).

Rationale:
Hospitalizations for work-related back disorders have serious and costly effects including: high direct medical costs, significant functional impairment and disability, high absenteeism, reduced work performance, and lost productivity. Well-recognized prevention efforts can be implemented for high risk job activities and reduce the burden of work-related low back disorders.

Limitations of Indicator:
Hospital discharge records are only available for non-federal, acute care hospitals. Many individuals with work-related injuries do not file for workers’ compensation or fail to recognize work as the cause of their injury. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. The expected payer on hospital discharge records may not be accurate and reflect the actual payer. Data between states may not be comparable due to differences in benefit adequacy in states’ workers’ compensation programs. Trends in the use of outpatient surgical centers may limit the interpretation of this indicator. The indicator utilizes only the first seven diagnosis and four procedure code fields to include and exclude cases. Many states have more diagnosis and procedure code fields that could be used to include and exclude cases. The indicator excludes patients hospitalized outside their state of residence.

Data Resources:
- Hospital discharge data (numerator)
- BLS Current Population Survey Data (denominator)

Limitations of Data Resources:
Practice patterns and benefit payment systems may affect decisions by health care providers to hospitalize patients, to correctly diagnose work-related conditions, authorize surgery and/or to list the condition as a discharge diagnosis. All admissions are counted, including multiple admissions for a single individual. Until hospital discharge data are available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Data on race/ethnicity are not collected or may be incomplete in some states.

HP2020 Objectives:
- OSH-2 and OSH-3

CSTE Positions:
None

Other Available Data:
- Age, gender, race/ethnicity, diagnosis, residence zip code, hospitalization cost
| Recommendations: | Age, gender, race/ethnicity, zip code specific counts and rates can be used to better define the pattern of work-related hospitalizations. States that have access to statewide outpatient surgery data can compare trends of outpatient surgery for low back disorders to data from this indicator. |
How-To Guide: Indicator #20:

Hospitalizations for Work-Related Low Back Disorders*

This indicator has two measures: 1) Surgical low back disorder hospitalizations; and 2) all low back disorder hospitalizations. Initially surgical cases are identified. Then to obtain all low back disorder hospitalizations, non-surgical cases are identified and added to the surgical cases. Certain hospitalizations – those listed in Table 3 – are excluded because the conditions are likely related to trauma or a non-occupational disease.

A generic SAS program has been developed that will generate values for X.1 and X.3 below. The program requires minor modifications: state-specific variable names and value ranges must be inserted where indicated. The program is available separately.

20.1 Annual number of work-related surgical low back disorder hospitalizations for persons age 16 years and over

Obtain from the hospital discharge data file the number of cases meeting the following criteria:
- Definite surgical low back disorder hospitalizations are identified with a relevant diagnostic code (Table 1) in any of the first seven diagnosis fields in combination with a relevant surgical procedure code (Table 2) in any of the first four procedure fields. You must then exclude cases that have an exclusion criteria listed in Table 3, A or B.
- Primary payer = Workers’ Compensation.
- Limit age to those 16 years or older (age at admission is preferred).
- Select for state of residence = ‘your state.’
- Exclude:
 - age unknown or <16 years old
 - out-of-state residents and unknown state of residence
 - out-of-state hospitalizations
- Use un-deduplicated data (no exclusions for deaths, readmissions).
- Use discharge during calendar year, not fiscal year.
- Use all cases reported on the discharge file, regardless of length of stay.
- This will yield the ‘Total annual number of work-related surgical low back hospitalizations for persons age 16 years or older.’

20.2 Annual crude rate of hospitalization for low back surgery per 100,000 employed persons age 16 years or older

a) To obtain the denominator for the rate:
- Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons.
- Scroll down to the heading “Tables created by BLS”
- Select the year of interest below the heading “Employment status of the civilian noninstitutional population…”

- Scroll down to your state.
• Read the ‘Total’ row for your state and the 4th data column – “Employment Number”. This is the ‘Number of Employed Persons 16 years of age or older’ (in thousands). Multiply by 1000.

b) To calculate the rate:
• Divide numerator (X.1) by the denominator (X.2a).
• Multiply this result by 100,000 to get the ‘Annual crude rate of hospitalization for low back surgery per 100,000 employed persons age 16 years or older’

20.3 Annual number of work-related low back disorder hospitalizations for persons age 16 years and over
In order to generate the total number of low back hospitalizations you first need to generate the number of non-surgical hospitalizations. This result is then added to the number of surgical hospitalizations (X.1). The procedure below generates the number of low back non-surgical hospitalizations.

Obtain from the hospital discharge data file the number of cases meeting the following criteria:
• Definite non-surgical low back disorder hospitalizations are identified with a relevant diagnostic code from Table 1 in any of the first seven diagnosis fields excluding cases identified by codes in Table 3, A or C.
 • Primary payer = Workers’ Compensation.
 • Limit age to those 16 years and older (age at admission is preferred).
 • Select for state of residence = ‘your state.’
 • Exclude:
 - age unknown
 - out-of-state residents and unknown state of residence
 - out-of-state hospitalizations
 • Use un-deduplicated data (no exclusions for deaths, readmissions).
 • Use discharge during calendar year, not state or federal fiscal year.
 • Use all cases reported on the discharge file, regardless of length of stay.
 • This will yield the total annual number of work-related non-surgical low back hospitalizations for persons age 16 years or older. = “NON-SURGICAL CASES”
 • Add “NON-SURGICAL CASES” and results from X.1 from the preceding step.
 • This will yield the ‘Total annual number of work-related low back hospitalizations for persons age 16 years or older.’

20.4 Annual crude rate of hospitalization for work-related low back disorder per 100,000 employed persons age 16 years or older
To calculate the rate:
• Divide numerator (X.3) by the denominator (X.2a).
• Multiply this result by 100,000 to get the ‘Annual crude rate of hospitalization for work-related low back disorders per 100,000 employed persons age 16 years or older’
Table 1. Diagnostic categories and ICD-9-CM codes that are associated with low back disorders.

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>ICD-9-CM Codes</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herniated Disc</td>
<td>722.10</td>
<td>Lumbar disc displacement without myelopathy</td>
</tr>
<tr>
<td></td>
<td>722.73</td>
<td>Lumbar disc disorder with myelopathy</td>
</tr>
<tr>
<td>Probable degenerative changes</td>
<td>721.3</td>
<td>Lumbosacral spondylosis without myelopathy</td>
</tr>
<tr>
<td></td>
<td>722.52</td>
<td>Lumbar or lumbosacral disc degeneration</td>
</tr>
<tr>
<td></td>
<td>722.93</td>
<td>Other or unspecified lumbar disc disorder</td>
</tr>
<tr>
<td>Spinal stenosis</td>
<td>721.42</td>
<td>Lumbar spinal cord spondylogenic compression</td>
</tr>
<tr>
<td></td>
<td>724.02</td>
<td>Lumbar stenosis</td>
</tr>
<tr>
<td>Possible instability</td>
<td>724.6</td>
<td>Sacral disorders including lumbosacral instability</td>
</tr>
<tr>
<td></td>
<td>738.4</td>
<td>Acquired spondylolisthesis</td>
</tr>
<tr>
<td></td>
<td>756.11</td>
<td>Lumbosacral spondylysis</td>
</tr>
<tr>
<td></td>
<td>756.12</td>
<td>Spondylolisthesis</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>722.32</td>
<td>Schmorl’s node, Lumbar Region</td>
</tr>
<tr>
<td></td>
<td>722.83</td>
<td>Lumbar postlaminectomy synd.</td>
</tr>
<tr>
<td></td>
<td>724.2</td>
<td>Lumbago</td>
</tr>
<tr>
<td></td>
<td>724.3</td>
<td>Sciatica</td>
</tr>
<tr>
<td></td>
<td>739.3</td>
<td>Non-allopathic lesions, lumbar region.</td>
</tr>
<tr>
<td></td>
<td>739.4</td>
<td>Non-allopathic lesions, sacral region.</td>
</tr>
</tbody>
</table>

Table 2. Procedural Categories and ICD-9-CM codes for identifying possible cases of low back surgery.

<table>
<thead>
<tr>
<th>Procedural Category</th>
<th>ICD-9-CM Procedure Codes</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminectomy</td>
<td>03.02, 03.09</td>
<td>Spinal cord exploration and decompression</td>
</tr>
<tr>
<td>Discectomy</td>
<td>80.50, 80.51, 80.59</td>
<td>Intervertebral disc excision or destruction</td>
</tr>
<tr>
<td></td>
<td>80.52</td>
<td>Intervertebral chemonucleolysis</td>
</tr>
<tr>
<td>Fusion</td>
<td>81.00, 81.04-7, 81.09</td>
<td>Spinal fusion</td>
</tr>
<tr>
<td></td>
<td>81.08</td>
<td>Spinal refusion</td>
</tr>
<tr>
<td>Other</td>
<td>03.6</td>
<td>Lysis of spinal cord or nerve root adhesion</td>
</tr>
<tr>
<td></td>
<td>78.69</td>
<td>Removal of internal fixation device</td>
</tr>
</tbody>
</table>
Table 3. Exclusion criteria for surgical and non-surgical low back disorder cases

A. Exclusions from both surgical and non-surgical cases

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>ICD-9 CM Diagnosis Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoplasms</td>
<td>140.0 - 239.9</td>
</tr>
<tr>
<td>Intraspinal abscess and osteomyelitis</td>
<td>324.1, 730.0 - 730.99</td>
</tr>
<tr>
<td>Inflammatory spondyloarthopathies</td>
<td>720.0 – 720.9</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>630 – 676</td>
</tr>
<tr>
<td>Vertebral fractures with spinal cord injury, open vertebral fractures, and vertebral dislocations</td>
<td>805 – 806.9, 839-839.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedural Category</th>
<th>ICD-9 CM Procedure Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordotomy</td>
<td>03.20-0.3.29</td>
</tr>
</tbody>
</table>

B. Exclusions from surgical cases only

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>ICD-9 CM Diagnosis Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathological fractures</td>
<td>733.1, 733.13</td>
</tr>
<tr>
<td>Closed vertebral fractures without spinal cord injury</td>
<td>805.0, 805.2, 805.4, 805.6, 805.8</td>
</tr>
</tbody>
</table>

Cervical and thoracic disorders (First diagnosis field only)

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>ICD-9 CM Diagnosis Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>353.2-353.3, 721.0-721.2, 721.41, 722.0, 722.11, 722.72, 722.81, 722.82, 722.91-722.92, 723.0, 723.4, 724.01</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedural Category</th>
<th>ICD-9 CM Procedure Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical spinal fusions</td>
<td>81.01-81.03</td>
</tr>
</tbody>
</table>

C. Exclusions from non-surgical cases only

<table>
<thead>
<tr>
<th>Procedural Category</th>
<th>ICD-9 CM Procedure Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back surgery</td>
<td>03.01-03.09, 03.1, 03.4-03.8, 03.93-03.94, 03.97-03.98, 80.5-80.59, 81.00, 81.04-81.09</td>
</tr>
</tbody>
</table>

| Possible Back surgery | 78.59, 78.69 |

TOPIC: OCCUPATIONAL ILLNESSES

INDICATOR #21: ASTHMA AMONG ADULTS CAUSED OR MADE WORSE BY WORK

<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Ever-employed adults with current asthma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Ever-employed adults (18 years or older) with current asthma</td>
</tr>
<tr>
<td>Measures of Frequency:</td>
<td>Weighted estimate of the number of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work. Estimated percent of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work (i.e. among ever-employed adults with current asthma, x% report that their asthma was caused or made worse by exposures at work).</td>
</tr>
<tr>
<td>Time Period:</td>
<td>Calendar year</td>
</tr>
</tbody>
</table>

Significance and Background:

Asthma is a chronic inflammatory disease of the airways that affects more than 18 million adults in the United States (Centers for Disease Control and Prevention [CDC] & National Center for Health Statistics [NCHS], 2010). Work-related asthma is a term used to describe asthma that has a temporal association between asthma symptoms and the work environment (Vandenplas & Malo, 2003; Tarlo et al., 2008). It has been estimated that approximately 36% to 58% of adult asthma is caused or made worse by workplace exposures, which translates to approximately 9.7 million adults in the United States (Knoeller, Mazurek, & Moorman, 2011). However, work-related asthma continues to be underdiagnosed (Tarlo et al., 2008; Henneberger et al., 2008; Balmes et al., 2003). If diagnosed early, work-related asthma may be partially or completely reversible if exposures can be identified and properly stopped or controlled (Tarlo et al., 2008).

The Asthma Call-Back Survey (ACBS) contains multiple questions related to the work-relatedness of a respondent's asthma and these questions are administered to adults 18 years or older. Four of the questions ask about asthma caused or made worse by the respondent's current or previous jobs. Two other questions ask about whether the respondent was told by or ever told their health care provider that their asthma was work related. The latter two questions require that the respondent both encountered a healthcare professional and that a discussion took place about work-relatedness of their asthma. This occurs in approximately 22 to 25% of respondents who report their asthma is caused or aggravated by work (Lutzker et al., 2010). The two questions on whether the respondent was told by or ever told their healthcare provider that their asthma was work related may also underestimate the true burden of work-related asthma because work-related asthma is often under-diagnosed. Physicians document asking about work-related asthma in only 15% of medical charts of asthma patients, suggesting under-diagnosis of work-related asthma (Milton et al., 1998). Additionally, the American Thoracic Society estimates that as much as 58% of asthma is attributable to work (Balmes et al., 2003), a measure much closer to that which can be obtained by using the four questions on asthma caused or made worse by work.
| **Rationale:** | Work-related asthma is preventable but often goes undiagnosed by physicians. Research has shown that work-related asthma can have adverse effects on the worker, including increased morbidity, adverse socioeconomic impacts and difficulty getting and sustaining work. Estimating the burden of asthma caused or made worse by work can help target prevention programs and activities. |
| **Limitations of Indicator:** | The data represents a population-based estimate of asthma caused or made worse by work and are subject to measurement, nonresponse and sampling errors. The indicator does not distinguish between new-onset asthma and work-aggravated asthma. The Asthma Call Back Survey began new weighting methods in 2011 and the wording and order of questions changed in 2012, therefore any trend analysis would need to be restricted to 2012 forward. States using landline only versus landline and cellphone methodology do not have comparable estimates. |
| **Data Resources:** | Asthma Call-Back Survey (numerator)
Asthma Call-Back Survey (denominator) |
Limitations of Data Resources:	The Asthma Call-back Survey (ACBS) is an in-depth asthma survey conducted among Behavioral Risk Factor Surveillance System (BRFSS) respondents who report an asthma diagnosis and agree to participate. BRFSS is a cross-sectional telephone health survey of non-institutionalized adults being collected on a monthly basis in all 50 states, the District of Columbia, Puerto Rico, the U.S. Virgin Islands, and Guam. Not all states participate in the ACBS. In 2010, 39 States participated in the ACBS, 40 in 2011 and 42 in 2012. Because it is a telephone health survey, individuals must have a telephone to participate. It is also only conducted in select languages which can vary by State; therefore it does not include individuals who speak all languages. The data is subject to the bias of self-reported data. Additional limitations in estimation methods (i.e., measurement, nonresponse, and sampling errors) are described in the “BRFSS Operational and User’s Guide.” ftp://ftp.cdc.gov/pub/Data/Brfss/userguide.pdf
HP2010 Objectives:	None
CSTE Positions:	None
Other Available Data:	There are other data available in the BRFSS and ACBS that can be used for analysis, including:
BRFSS: Age, gender, race/ethnicity, education level, household income, industry and occupation (some states)	
ACBS: Age of asthma diagnosis, cost-barriers, health insurance, health care use, asthma symptoms, asthma control.	
Recommendations:	State programs may want to cross-tabulate by variables mentioned above. If you are interested in analyzing data by different subgroups do not subset your data to create these subgroups and analyze separately. Creating a new dataset will result in incorrect confidence intervals, standard errors, and tests of significance. If you are interested in testing for significance, presenting confidence intervals, or presenting standard errors, you must use the whole dataset and then perform a domain analysis.
How-To-Guide: Indicator #21:

Asthma among Adults Caused or Made Worse By Work

This indicator uses data from the Asthma Call Back Survey (ACBS). Contact your Behavioral Risk Factor Surveillance System (BRFSS) coordinator or your State Asthma Program to obtain the data or for assistance analyzing this data, if necessary. A list of BRFSS State Coordinators can be found here: http://www.cdc.gov/brfss/state_info/coordinators.htm The data is also available on the CDC website at http://www.cdc.gov/BRFSS/acbs/index.htm.

The ACBS uses a complex sample design. Computer programs that take such complex sample designs into account are available. SAS, SUDAAN, Epi Info, SPSS and STATA are among those suitable for analyzing these data. When using these software products, users must specify that the sample design is “With Replacement” and also specify the stratum variable (/_STSTR), the cluster or primary sampling unit variable (/_PSU), and the record weight (LLCPWT_F). In 2012, some states did not implement the Asthma Call-back Survey using both landline telephone and cellphone sampling. Data from these states should be weighted using the landline sample weight (LANDWT_F). State estimates using the landline only methodology are not comparable to state estimates using landline and cellphone methodology. For more information, speak to your BRFSS Coordinator or see http://www.cdc.gov/brfss/acbs/2012/pdf/ACBS_2012.pdf.

Sample SAS code is included for this indicator; however the other software packages named above can be used as well. There are also other methods within SAS that may be used. If you do not have access to the statistical software you need, you may want to reach out to your State Asthma Epidemiologist or BRFSS Coordinator for assistance.

21.1 and 21.2 Weighted frequency and proportion of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work

a) To create a dataset variable selecting for ever-employed adults with current asthma: (Do not create a new dataset based on selected variables because this will negatively alter the weighting and provide inaccurate results.)

- Select for respondents that were ever employed outside the home using the variable EMP_EVER and values “1” and “6”. (Question from survey: Have you ever been employed outside the home?).

NOTE: The question on whether a respondent has ever been employed outside the home is only asked of adult respondents who indicated not being currently employed. Therefore, if they were previously employed but not currently employed they will have a value of “1”. Those who are currently employed (EMP_STAT values “1” or “2”) are auto-filled into this variable with a value of “6” because of skip patterns.

- Select for respondents with current asthma by using the variable _CUR_ASTH_C with the value of “1”.

NOTE: The variable _CUR_ASTH_C is a calculated variable in the ACBS data file and is not identical to the BRFSS asthma variables ASTHNOW and ASTHMA2. This is because at the time of the call-back interview, the respondent is asked to confirm the responses to the two asthma questions from the BRFSS interview. Not all respondents agree with the responses that were recorded from the initial interview. The combined call-back variable _CUR_ASTH_C uses the responses at the time of the call-back interview.
Sample SAS code:

```sas
if _cur_asth_c = 1 and EMP_EVER in (1 6) then curastheveremp = 1;
else curastheveremp = 9;
```

b) Within the dataset, create a calculated variable called WRA_4Q (asthma caused or made worse by exposures at work)

- To define WRA_4Q combine the following four questions from the ACBS:
 - WORKENV5: Are your asthma symptoms MADE WORSE by chemicals, smoke, dust, or mold in your CURRENT job
 - WORKENV6: Was your asthma first CAUSED by things like chemicals, smoke, dust or mold in your CURRENT job
 - WORKENV7: Were your asthma symptoms MADE WORSE by things like chemicals, smoke, dust, or mold in any PREVIOUS job you ever had?
 - WORKENV8: Was your asthma first CAUSED by things like chemicals, smoke, dust, or mold in any PREVIOUS job you ever had?

- If any of these four variables has a yes response (value of “1”) then the calculated variable (WRA_4Q) has a “yes” response and coded as 1.

- If all of the four variables have a no response then the calculated variable (WRA_4Q) has a “no” response and coded as 2. For purposes of this indicator, values “2” and “10” should be considered a “no” response for variables WORKENV5 and WORKENV6. Value “2” should be considered a “no” response for variables WORKENV7 and WORKENV8.

- All other responses are coded to 9 for the calculated variable (WRA_4Q).

NOTE: Be aware of complex skip patterns that auto fill responses into variables if you use this data for other analyses.

Sample SAS code:

```sas
if WORKENV5=1 or WORKENV6=1 or WORKENV7=1 or WORKENV8=1 then WRA_4Q=1;
else if WORKENV5 in (2 10) and WORKENV6 in (2 10) and WORKENV7 in (2) and WORKENV8 in (2) then WRA_4Q=2;
else WRA_4Q=9;
```

c) Calculate the weighted frequency and proportion of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work. Be sure to specify the stratum variable (_STSTR), the cluster or primary sampling unit variable (_PSU), and the record weight. In states using the landline telephone only sample, use LANDWT_F as the record weight. In states using the landline telephone and cellphone sample, use LLCPWT_F as the record weight. To determine if your state used the landline or landline and cellphone sample, see http://www.cdc.gov/brfss/acbs/2012/pdf/ACBS_2012.pdf.
Sample SAS code for states using landline telephone only sample:

```sas
proc surveyfreq;
strata _ststr;
cluster _psu;
weight landwt_f;
table curastheveremp*wra_4Q/row cl; run;
```

Sample SAS code for states using landline telephone and cell phone sample:

```sas
proc surveyfreq;
strata _ststr;
cluster _psu;
weight llcpwt_f;
table curastheveremp*wra_4Q/row cl; run;
```

d) To determine the weighted estimate of the number of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work and the estimated proportion of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work” Go to your output

- Only look at the results where curastheveremp=1 and WRA_4Q = 1.
 - 21.1 - The Weighted Frequency is the “Weighted estimate of the number of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work.”
 - 21.2 - The Row Percent is the “Estimated proportion of ever-employed adults with current asthma who report that their asthma was caused or made worse by exposures at work”.

NOTE: You can also obtain the 95% CIs.
<table>
<thead>
<tr>
<th>Demographic Group:</th>
<th>Employed persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator:</td>
<td>Inpatient hospital discharges with (1) primary payer coded as workers’ compensation, AND (2) first-listed diagnosis contained in the specified list of severe traumatic injuries</td>
</tr>
<tr>
<td>Denominator:</td>
<td>Employed persons age 16 years or older for the same calendar year</td>
</tr>
</tbody>
</table>
| Measures of Frequency: | Annual number of work-related inpatient hospitalizations for severe traumatic injury for persons age 16 years or older (numerator)
Annual crude rate of work-related inpatient hospitalizations for severe traumatic injury per 100,000 employed persons age 16 years or older |
| Time Period: | Calendar year |
| Significance and Background: | Acute work-related trauma is a leading cause of death and disability for U.S. workers. In 2010, more than 4,500 U.S. workers died from occupational injuries [NIOSH, 2012]. Severe traumatic injury can lead to long-term pain and disability and is very costly for workers’ compensation systems and society as a whole. The total national medical and productivity cost for occupational injuries was recently estimated at $192 billion annually [Leigh, 2011]. |
| Rationale: | Acute work-related trauma is a leading cause of death and disability among U.S. workers. Changes in hospitalization practices and workers’ compensation coverage/reporting may increasingly reduce capture of minor injuries but have little effect on severe injuries. Use of a severity threshold can decrease the impact of changing utilization and service delivery patterns on observed injury trends [Cryer and Langley, 2008; NCHS, 2004]. When hospitalization data are used to calculate occupational injury trends in the absence of severity restriction, observed trends are biased downward [Sears, et al.]. Accurate characterization of injury trends is critical to understanding how we are doing as a nation with regard to occupational injury prevention. |
| Limitations of Indicator: | Hospital discharge records are only available for non-federal, acute care hospitals. Many individuals with work-related injuries do not file for workers’ compensation or fail to recognize work as the cause of their injury. Additionally, self-employed individuals such as farmers and independent contractors, federal employees, railroad or longshore and maritime workers are not covered by state workers’ compensation systems. The expected payer on hospital discharge records may not be accurate and may not reflect the actual payer. Data between states may not be comparable due to the differences in states’ workers’ compensation programs. The indicator excludes patients hospitalized outside their state of residence. Severe traumatic injury hospitalizations are based only on first-listed ICD-9-CM diagnoses (following STIPDA/Safe States Alliance Consensus Recommendations, 2007) that have been estimated to have an Abbreviated Injury Scale (AIS) severity of 3 or above. As a result, some severe traumatic injuries will not be counted. |
| Data Resources: | Inpatient hospital discharge data (numerator)
BLS Current Population Survey Data (denominator) |
<p>| Limitations of Data Resources: | Practice patterns and payment mechanisms may affect decisions by health care providers to hospitalize patients, to correctly diagnose work-related conditions, and/or to list the condition as a discharge diagnosis. Residents of one state may be hospitalized in another state and not be reflected in his/her state’s hospitalization data. All admissions are counted, including multiple admissions for a single individual. Until hospital discharge data is available in all states, aggregation of state data to produce nationwide estimates will be incomplete. Data on |</p>
<table>
<thead>
<tr>
<th>HP2020 Objectives:</th>
<th>OHS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTE Positions:</td>
<td>None</td>
</tr>
<tr>
<td>Other Available Data:</td>
<td>Age, gender, race/ethnicity, diagnosis, residence zip code</td>
</tr>
<tr>
<td>Recommendations:</td>
<td>Age, gender, race/ethnicity, zip code specific counts and rates can be used to better define the pattern of work-related hospitalizations. Proportion of all hospitalizations in the state can be examined.</td>
</tr>
</tbody>
</table>
How-To Guide: INDICATOR #22:

WORK-RELATED SEVERE TRAUMATIC INJURY HOSPITALIZATIONS

22.1 Annual number of work-related inpatient hospitalizations for severe traumatic injury for persons age 16 years or older

a) Obtain from the State Health Department the number of cases meeting the following criteria from the inpatient hospital discharge file:

- Primary (i.e., principal or first-listed) diagnosis for a severe traumatic injury as listed below. This list includes those injury diagnostic codes in the range 800–959.9 that have been estimated to have an Abbreviated Injury Scale (AIS) severity of 3 or above or that have a high probability of hospital admission. The list excludes the following diagnostic codes: 905.x–909.x (late effects of injury), 910.x–924.x (superficial injuries), 930.x–939.x (foreign bodies), 940.x–949.x (burns, which are not well-characterized by AIS-based severity measures), and 958.x (traumatic complications).

- List of specific ICD-9-CM codes for severe traumatic injuries ("x" means that all subcodes are also included):

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>800.x</td>
<td>821.x</td>
<td>904.4x</td>
</tr>
<tr>
<td>801.x</td>
<td>823.1x</td>
<td>904.5x</td>
</tr>
<tr>
<td>803.x</td>
<td>823.3x</td>
<td>925.x</td>
</tr>
<tr>
<td>804.x</td>
<td>824.5</td>
<td>926.x</td>
</tr>
<tr>
<td>805.x</td>
<td>824.7</td>
<td>927.x</td>
</tr>
<tr>
<td>806.x</td>
<td>850.2</td>
<td>928.x</td>
</tr>
<tr>
<td>807.03</td>
<td>850.3</td>
<td>929.x</td>
</tr>
<tr>
<td>807.04</td>
<td>850.4</td>
<td>950.3</td>
</tr>
<tr>
<td>807.05</td>
<td>851.x</td>
<td>952.x</td>
</tr>
<tr>
<td>807.06</td>
<td>852.x</td>
<td></td>
</tr>
<tr>
<td>807.07</td>
<td>853.x</td>
<td></td>
</tr>
<tr>
<td>807.08</td>
<td>854.x</td>
<td></td>
</tr>
<tr>
<td>807.13</td>
<td>860.x</td>
<td></td>
</tr>
<tr>
<td>807.14</td>
<td>861.x</td>
<td></td>
</tr>
<tr>
<td>807.15</td>
<td>862.8</td>
<td></td>
</tr>
<tr>
<td>807.16</td>
<td>862.9</td>
<td></td>
</tr>
<tr>
<td>807.17</td>
<td>863.x</td>
<td></td>
</tr>
<tr>
<td>807.18</td>
<td>864.x</td>
<td></td>
</tr>
<tr>
<td>807.2</td>
<td>865.x</td>
<td></td>
</tr>
<tr>
<td>807.3</td>
<td>866.x</td>
<td></td>
</tr>
<tr>
<td>807.4</td>
<td>874.1x</td>
<td></td>
</tr>
<tr>
<td>807.5</td>
<td>874.5</td>
<td></td>
</tr>
<tr>
<td>807.6</td>
<td>887.x</td>
<td></td>
</tr>
<tr>
<td>808.x</td>
<td>896.x</td>
<td></td>
</tr>
<tr>
<td>812.1x</td>
<td>897.x</td>
<td></td>
</tr>
<tr>
<td>812.3x</td>
<td>900.x</td>
<td></td>
</tr>
<tr>
<td>812.5x</td>
<td>901.x</td>
<td></td>
</tr>
<tr>
<td>813.1x</td>
<td>902.x</td>
<td></td>
</tr>
<tr>
<td>813.3x</td>
<td>904.0</td>
<td></td>
</tr>
<tr>
<td>813.5x</td>
<td>904.1</td>
<td></td>
</tr>
<tr>
<td>813.9x</td>
<td>904.2</td>
<td></td>
</tr>
<tr>
<td>820.x</td>
<td>904.3</td>
<td></td>
</tr>
</tbody>
</table>
Sample Stata code for severe traumatic injury diagnosis flag:

```stata
generate dxflag= ///
/*diagnoses specified to 3 digits*/ ///
inlist(substr(dx,1,3),"800","801","803","804","805","806","808","820","821") ///
inlist(substr(dx,1,3),"851","852","853","854") ///
inlist(substr(dx,1,3),"860","861","863","864","865","866","887","896","897") ///
inlist(substr(dx,1,3),"900","901","902","925","926","927","928","929","952") ///
/*diagnoses specified to 4 digits*/ ///
inlist(substr(dx,1,5),"807.2","807.3","807.4","807.5","807.6") ///
inlist(substr(dx,1,5),"812.1","812.3","812.5","813.1","813.3","813.5","813.9") ///
inlist(substr(dx,1,5),"823.1","823.3","824.5","824.7") ///
inlist(substr(dx,1,5),"850.2","850.3","850.4","862.8","862.9","874.1","874.5") ///
inlist(substr(dx,1,5),"904.0","904.1","904.2","904.3","904.4","904.5","950.3") ///
/*diagnoses specified to 5 digits*/ ///
inlist(substr(dx,1,6),"807.03","807.04","807.05","807.06","807.07","807.08") ///
inlist(substr(dx,1,6),"807.13","807.14","807.15","807.16","807.17","807.18")
```

- Primary payer = Workers’ Compensation.
- Limit age to those 16 years or older (age at admission is preferred).
- Select for state of residence = ‘your state’.
- Exclude:
 - age unknown
 - out-of-state residents and unknown residence
 - out-of-state inpatient hospitalizations
- Use unduplicated data (no exclusions for deaths, readmissions).
- Use discharge data during calendar year, not fiscal year.
- Use all cases reported on the discharge file, regardless of length of stay.
- This will yield ‘Annual number of work-related inpatient hospitalizations for severe traumatic injury for persons age 16 years or older’.

22.2 Annual crude rate of work-related inpatient hospitalizations for severe traumatic injury per 100,000 employed persons age 16 years or older

a) To obtain the denominator for the rate:
 - Go to http://www.bls.gov/gps/#tables to access the Geographic Profile of Employment and Unemployment (GPS) which contains Current Population Survey estimates for state-specific numbers of employed persons;
 - Page down to heading “TABLES CREATED BY BLS”;
 - Find table for “Employment status of the civilian noninstitutional population in states by sex, race, Hispanic or Latino ethnicity, marital status, and detailed age “Note: Data from 1997 through 2002 can be found at http://www.bls.gov/opub/gp/laugp.htm;
 - Choose the Annual Averages for year of Interest.
 - Scroll down to find your state.
 - Read the ‘Total’ row for your state and the 4th data column- ‘Employment Number’. This is the ‘Number of employed persons age 16 years or older’ (in thousands). Multiple by 1000.

b) To calculate the rate:
 - Divide the numerator (22.1) by the denominator (22.2a).
 - Multiply this result by 100,000 to get the ‘Annual crude rate of work-related inpatient hospitalizations for severe traumatic injury per 100,000 employed persons age 16 years or older’.
Appendix A: Original Work Group Members

NIOSH-CSTE OCCUPATIONAL HEALTH
SURVEILLANCE WORK GROUP

OCCUPATIONAL HEALTH SURVEILLANCE INDICATORS
For Tracking Work-Related Health Effects
And Their Determinants

WAYNE BALL, Utah Department of Health
GEOFFREY CALVERT, National Institute for Occupational Safety and Health
ROBERT CASTELLAN, National Institute for Occupational Safety and Health
LETITIA DAVIS, Massachusetts Department of Health
ROBERT HARRISON, California Department of Health Services
MICHAEL HEUMANN, Oregon Department of Health Services
KIM LIM, Maine Department of Labor
JOHN MYERS, National Institute for Occupational Safety and Health
MATT LONDON, New York State Department of Health
LATOYA OSMANI, Council of State and Territorial Epidemiologists
DAVID PARKER, Minnesota Department of Health
KENNETH ROSENMAN, Michigan State University
ROBERT ROSCOE, National Institute for Occupational Safety and Health
DIANA SALZMAN, Texas Department of Health
JOHN SESTITO, National Institute for Occupational Safety and Health
CATHERINE THOMSEN, Oregon Department of Human Services
DAVID VALIANTE, New Jersey Department of Health and Senior Services
APPENDIX B: CORE STATE MEMBERS OF THE OCCUPATIONAL HEALTH SURVEILLANCE PILOT PROJECT

California Department of Health Services
BARBARA MATERNA
FLORENCE REINISCH

Massachusetts Department of Public Health
TSEGAYE BEKLE
LETITIA DAVIS
ROKHO KIM

Michigan Department of Community Health
THOMAS LARGO
MARTHA STANBURY

New York State Department of Health
ALICIA FLETCHER
KITTY GELBERG

Washington State Department of Labor and Industries
DAVE BONAUTO
CHRISTY CURWICK
APPENDIX C: CURRENT OHI WORK GROUP STATE REPRESENTATIVES

Membership Information and Work Group Operating Guidelines are available online:

<table>
<thead>
<tr>
<th>State</th>
<th>Name</th>
<th>E-mail contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Debra Hodges</td>
<td>debra.hodges@adph.state.al.us</td>
</tr>
<tr>
<td>CA</td>
<td>Susan Payne</td>
<td>susan.payne@cdph.ca.gov</td>
</tr>
<tr>
<td>CO</td>
<td>Dara Buris</td>
<td>dara.burris@state.co.us</td>
</tr>
<tr>
<td>CT</td>
<td>Al DeLoreto</td>
<td>Albert.DeLoreto@po.state.ct.us</td>
</tr>
<tr>
<td>FL</td>
<td>Juanita Chalmers</td>
<td>Juanita.Chalmers@doh.state.fl.us</td>
</tr>
<tr>
<td>GA</td>
<td>Antionette Lavender</td>
<td>Antionette.Lavender@dph.ga.gov</td>
</tr>
<tr>
<td>IA</td>
<td>Kathy Leinenkugel</td>
<td>kathy.leinenkugel@idph.iowa.gov</td>
</tr>
<tr>
<td>IL</td>
<td>Lee Friedman</td>
<td>lfried1@uic.edu</td>
</tr>
<tr>
<td>KS</td>
<td>Farah Ahmed</td>
<td>fahmed@kdheks.gov</td>
</tr>
<tr>
<td>KY</td>
<td>Svetla Slavova</td>
<td>ssslav2@uky.edu</td>
</tr>
<tr>
<td>LA</td>
<td>Michelle Lackovic</td>
<td>michelle.lackovic@la.gov</td>
</tr>
<tr>
<td>MA</td>
<td>Kathleen Gratten</td>
<td>Kathleen.Grattan@state.ma.us</td>
</tr>
<tr>
<td>MD</td>
<td>John Braggio</td>
<td>jbraggio@dhh.state.md.us</td>
</tr>
<tr>
<td>ME</td>
<td>Kirk Duplessis</td>
<td>Kirk.B.Duplessis@maine.gov</td>
</tr>
<tr>
<td>MI</td>
<td>Tom Largo</td>
<td>largot@michigan.gov</td>
</tr>
<tr>
<td>MN</td>
<td>Adrienne Kari</td>
<td>adrienne.kari@state.mn.us</td>
</tr>
<tr>
<td>MO</td>
<td>Carol Braun</td>
<td>carol.braun@health.mo.gov</td>
</tr>
<tr>
<td>MT</td>
<td>David Elenbaas</td>
<td>daelenbaas@mt.gov</td>
</tr>
<tr>
<td>NC</td>
<td>Gregory Dang</td>
<td>gregory.dang@dhhs.nc.gov</td>
</tr>
<tr>
<td>ND</td>
<td>Corey Butler</td>
<td>guz5@cdc.gov</td>
</tr>
<tr>
<td>NE</td>
<td>Derry Stover</td>
<td>Derry.Stover@nebraska.gov</td>
</tr>
<tr>
<td>NH</td>
<td>Karla Armenti</td>
<td>karmenti@dhhs.state.nh.us</td>
</tr>
<tr>
<td>NJ</td>
<td>Marija Borjan</td>
<td>Marija.Borjan@doh.state.nj.us</td>
</tr>
<tr>
<td>NM</td>
<td>Edward Irobi</td>
<td>Edward.Irobi@state.nm.us</td>
</tr>
<tr>
<td>NY</td>
<td>Alicia Fletcher</td>
<td>amk05@health.state.ny.us</td>
</tr>
<tr>
<td>OK</td>
<td>Claire Nguyen</td>
<td>ClaireN@health.ok.gov</td>
</tr>
<tr>
<td>OR</td>
<td>Daniel Cain</td>
<td>daniel.t.cain@state.or.us</td>
</tr>
<tr>
<td>SC</td>
<td>Fran W. Marshall</td>
<td>marshafw@dhec.sc.gov</td>
</tr>
<tr>
<td>SD</td>
<td>Corey Butler</td>
<td>guz5@cdc.gov</td>
</tr>
<tr>
<td>TX</td>
<td>Richard Beauchamp</td>
<td>Richard.Beauchamp@dshs.state.tx.us</td>
</tr>
<tr>
<td>VA</td>
<td>Dwight Flammia</td>
<td>dwight.flammia@vdh.virginia.gov</td>
</tr>
<tr>
<td>WA</td>
<td>Naomi Anderson</td>
<td>Naomi.Anderson@lni.wa.gov</td>
</tr>
<tr>
<td>WI</td>
<td>Carrie Tomasallo</td>
<td>carrie.tomasallo@wisconsin.gov</td>
</tr>
<tr>
<td></td>
<td>Henry Anderson</td>
<td>henry.anderson@wisconsin.gov</td>
</tr>
<tr>
<td>WY</td>
<td>Meredith Towle</td>
<td>meredith.towle@wyo.gov</td>
</tr>
</tbody>
</table>
Appendix D: Current Occupational Health Indicator and Work Group Leads

<table>
<thead>
<tr>
<th>Work Group Leads</th>
<th>Name</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-Chair (State Rep)</td>
<td>Marija Borjan</td>
<td>Marija.borjan@doh.state.nj.us</td>
</tr>
<tr>
<td>Co-Chair (NIOSH Rep)</td>
<td>Corey Butler</td>
<td>guz5@cdc.gov</td>
</tr>
<tr>
<td>Co-Chair (NIOSH Rep)</td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>Secretary (CSTE)</td>
<td>Amy Patel</td>
<td>amypatel@cste.org</td>
</tr>
</tbody>
</table>

Indicator Table

<table>
<thead>
<tr>
<th>Indicator</th>
<th>State Leads Name</th>
<th>State Leads E-mail</th>
<th>National Leads Name</th>
<th>National Leads E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic Profile</td>
<td>Tom Largo</td>
<td></td>
<td>Audrey Reichard</td>
<td>akr5@cdc.gov</td>
</tr>
<tr>
<td>1. Non-fatal injury and illness</td>
<td>Kathy Leinenkugel</td>
<td>Suzanne Marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. All Hosp.</td>
<td>Alicia Fletcher</td>
<td></td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>3. Fatalities</td>
<td>Antionette Lavender</td>
<td></td>
<td>Suzanne Marsh</td>
<td>Smm2@cdc.gov</td>
</tr>
<tr>
<td>4. BLS Amputations</td>
<td>Kathy Leinenkugel</td>
<td>Suzanne Marsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. WC Amputations</td>
<td>Naomi Anderson</td>
<td></td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>6. Burn Hosp.</td>
<td>Alicia Fletcher</td>
<td></td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>7. MSDs</td>
<td>Kathleen Grattan</td>
<td>Suzanne March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. WC CTS</td>
<td>Naomi Anderson</td>
<td></td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>9. Pneumo. Hosp.</td>
<td>Alicia Fletcher</td>
<td></td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>10. Pneumo. Fatalities</td>
<td>Tom Largo</td>
<td></td>
<td>Patricia Schleiff</td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>11. Pesticides</td>
<td>John Beckman</td>
<td>Geoff Calvert</td>
<td></td>
<td>jac6@cdc.gov</td>
</tr>
<tr>
<td>12. Mesothelioma</td>
<td>Tom Largo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Lead</td>
<td>Susan Payne</td>
<td>Walter Alarcon</td>
<td></td>
<td>wda7@cdc.gov</td>
</tr>
<tr>
<td>14. High risk</td>
<td>Jocelyn Lewis</td>
<td>Audrey Reichard</td>
<td></td>
<td>akr5@cdc.gov</td>
</tr>
<tr>
<td>15. High risk</td>
<td>Jocelyn Lewis</td>
<td>Audrey Reichard</td>
<td></td>
<td>akr5@cdc.gov</td>
</tr>
<tr>
<td>16. High risk</td>
<td>Jocelyn Lewis</td>
<td>Suzanne Marsh</td>
<td></td>
<td>Smm2@cdc.gov</td>
</tr>
<tr>
<td>17. OSH professionals</td>
<td>Naomi Anderson</td>
<td>Patricia Schleiff</td>
<td></td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>18. OSHA Inspections</td>
<td>Kathleen Grattan</td>
<td>Patricia Schleiff</td>
<td></td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>19. WC Awards</td>
<td>Svetla Slavova</td>
<td>Patricia Schleiff</td>
<td></td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>20. Low Back Hosp.</td>
<td>Naomi Anderson</td>
<td>Patricia Schleiff</td>
<td></td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>21. Asthma</td>
<td>Karen Cummings</td>
<td>Patricia Schleiff</td>
<td></td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>22. Severe Traumatic Injury</td>
<td>Alicia Fletcher</td>
<td>Patricia Schleiff</td>
<td></td>
<td>pls1@cdc.gov</td>
</tr>
<tr>
<td>23. Influenza Vacc</td>
<td>Bob Harrison</td>
<td>Corey Butler</td>
<td></td>
<td>Guz5@cdc.gov</td>
</tr>
</tbody>
</table>
REFERENCES

Centers for Disease Control and Prevention Current asthma prevalence, National Health Interview Survey (NHIS), National Center for Health Statistics, (NHIS 2010), 2010.

Council of State and Territorial Epidemiologists (CSTE). Revised Chronic Disease Indicators (CDI) to reflect expert and stakeholder recommendations. 2002.

Cryer C, Langley J. Developing indicators of injury incidence that can be used to monitor global, regional and local trends. 2008. Available at: http://ipru3.otago.ac.nz/ipru/ReportsPDFs/OR070.pdf

[22]

