<table>
<thead>
<tr>
<th>Indicator #</th>
<th>Indicator</th>
<th>Measure of frequency to be reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Adult binge drinking</td>
<td>Annual prevalence: crude with 95% CIs.</td>
</tr>
<tr>
<td>2</td>
<td>Youth binge drinking</td>
<td>Biennial (odd years) prevalence with 95% CI.</td>
</tr>
<tr>
<td>3</td>
<td>Alcohol-related crash deaths</td>
<td>Annual number of deaths. Annual crude mortality rate per 100,000</td>
</tr>
<tr>
<td>4</td>
<td>Mortality from liver disease and cirrhosis</td>
<td>Annual number of deaths. Annual mortality rate per 100,000: crude.</td>
</tr>
<tr>
<td>5</td>
<td>State excise tax; beer, wine, distilled spirits</td>
<td>Rate per gallon</td>
</tr>
<tr>
<td>6</td>
<td>Drug overdose mortality, all drugs</td>
<td>Annual number of deaths. Annual mortality rate per 100,000: crude, as a total for all drug types together and by drug type.</td>
</tr>
<tr>
<td>7</td>
<td>Hospitalization attributable to drugs with potential for abuse and dependence; all drugs, heroin poisoning, cocaine poisoning, non-heroin opioid poisoning, benzodiazepine-based tranquilizer poisoning, amphetamine poisoning, cocaine abuse or dependence, opioid abuse or dependence</td>
<td>Annual number of hospital discharges. Annual rate of hospital discharge per 100,000: crude.</td>
</tr>
<tr>
<td>8</td>
<td>Prescription opioid sales per capita</td>
<td>Morphine milligram equivalents (MME) per capita.</td>
</tr>
<tr>
<td>9</td>
<td>Drug or alcohol dependence or abuse in the last year</td>
<td>Two year prevalence with 95% CIs. States should combine two survey years (e.g., 2013-2014) to provide stable state-level estimates.</td>
</tr>
<tr>
<td>10</td>
<td>Prevalence of use of selected prescription and illicit drugs; past month illicit drug use*, past year marijuana use, past month marijuana use, past month illicit drug use other than marijuana*, past year cocaine use, past year non-medical use of pain relievers*</td>
<td>Two year prevalence with 95% CIs. States should combine two survey years (e.g., 2013-2014) to provide stable state-level estimates. *not available for 2014-2015</td>
</tr>
<tr>
<td>11</td>
<td>Suicide rate</td>
<td>Annual number of deaths. Annual mortality rate per 100,000: crude.</td>
</tr>
<tr>
<td>12</td>
<td>Hospital discharges for mental disorders; all, mood and depressive disorders, schizophrenic disorders, all mental disorders EXCEPT drug- and alcohol-induced mental disorders.</td>
<td>Annual number of hospital discharges. Annual rate of hospital discharge per 100,000: crude and.</td>
</tr>
<tr>
<td>13</td>
<td>Emergency department visits for intentional self-harm</td>
<td>Annual number of ED admissions. Annual rate of ED admissions per 100,000: crude.</td>
</tr>
<tr>
<td>14</td>
<td>Self-reported youth suicide attempts</td>
<td>Biennial (odd years) prevalence with 95% CIs.</td>
</tr>
<tr>
<td></td>
<td>Depressive episodes in the past year</td>
<td>Two year prevalence with 95% CIs. States should combine two survey years (e.g., 2014-2015) to provide stable state-level estimates.</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>Any adult mental illness in the past year</td>
<td>Two year prevalence with 95% CIs. States should combine two survey years (e.g., 2014-2015) to provide stable state-level estimates.</td>
</tr>
<tr>
<td>17</td>
<td>Serious adult mental illness in the past year</td>
<td>Two year prevalence with 95% CIs. States should combine two survey years (e.g., 2014-2015) to provide stable state-level estimates.</td>
</tr>
<tr>
<td>18</td>
<td>Frequent mental distress (≥14 days out of 30)</td>
<td>Annual prevalence: crude with 95% CIs.</td>
</tr>
</tbody>
</table>
Indicator Definitions and Measurements for Substance Abuse and Mental Health Surveillance
Indicator Group: Alcohol

Indicator 1. Adult binge drinking

<table>
<thead>
<tr>
<th>Demographic group</th>
<th>Adults aged ≥18 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>Adults aged ≥18 years who report having ≥ 5 drinks (men) or ≥ 4 drinks (women) on ≥ 1 occasion during the past 30 days.</td>
</tr>
<tr>
<td>Denominator</td>
<td>Adults aged ≥18 years who report having a specific number, including zero, of drinks on one occasion during the past 30 days (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).</td>
</tr>
<tr>
<td>Measure of frequency to be reported</td>
<td>Annual prevalence: crude</td>
</tr>
<tr>
<td>Time period for case definition</td>
<td>Past 30 days.</td>
</tr>
<tr>
<td>Data resources</td>
<td>Behavioral Risk Factor Surveillance System (BRFSS).</td>
</tr>
<tr>
<td></td>
<td>State-level data are available at the CDC BRFSS website: https://www.cdc.gov/brfss/brfssprevalence/index.html</td>
</tr>
<tr>
<td>Background</td>
<td>In 2013, a total of 17.4% of adults reported binge drinking on ≥ 1 occasion during the previous 30 days, with a range among states from 10.3% to 24.4% (2). Binge drinking prevalence in 2010 was higher among men, persons aged 18–34 years, whites, and those with household incomes ≥ $75,000 (3).</td>
</tr>
<tr>
<td>Significance</td>
<td>Excessive alcohol use accounted for an estimated average of 88,000 deaths and 2.5 million years of potential life lost (YPLL) in the United States each year during 2006-2010 (4), and an estimated $223.5 billion in economic costs in 2006 (5). Binge drinking accounted for more than half of those deaths, two thirds of the YPLL (6), and three quarters of the economic costs (5). Binge drinking also is a risk factor for many health and social problems, including motor-vehicle crashes, violence, suicide, hypertension, acute myocardial infarction, sexually transmitted diseases, unintended pregnancy, fetal alcohol syndrome, and sudden infant death syndrome (7, 8). In the United States, binge drinking accounts for more than half of the alcohol consumed by adults (9). However, most binge drinkers are not alcohol dependent (10, 11). Reductions in the value of this indicator are expected if states implement policy changes recommended in the CDC Prevention Status Report, and other evidence-based interventions.</td>
</tr>
<tr>
<td>Limitations of indicator</td>
<td>This indicator does not convey the frequency of binge drinking or the specific amount of alcohol consumed.</td>
</tr>
</tbody>
</table>
Limitations of data resource
As with all self-reported sample surveys, BRFSS data might be subject to systematic error resulting from non-coverage (e.g., college campuses or the military), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias). To address some of these potential concerns, BRFSS began including cell phone-only users in the 2011 data collection. Due to changes in sampling and weighting methodology, 2011 is a new baseline for BRFSS, and comparison with prior year data is inappropriate. A recent study using BRFSS data found that self-reports identify only 22%–32% of presumed alcohol consumption in states, based on alcohol sales (12).

Related indicator or recommendation
Healthy People 2020 Objective SA-14.3: Reduce the proportion of persons engaging in binge drinking during the past 30 days—Adults aged 18 years and older. http://www.healthypeople.gov/2020/topics-objectives/topic/substance-abuse/objectives

CDC’s Prevention Status Report: Excessive Alcohol Use.

Note
None.

References

Indicator Group: Alcohol

Indicator 2. Youth binge drinking

Demographic group

Students in grades 9–12.

Numerator

Students in grades 9–12 who report having ≥5 drinks of alcohol within a couple of hours on ≥1 day during the past 30 days. (YRBSS case definition for 2015 survey cycles)

Students in grades 9–12 who having ≥ 5 drinks of alcohol (males) or ≥ 4 drinks (females) in a row on ≥ 1 day during the past 30 days. (YRBSS case definition for 2017 survey cycles)

Denominator

Students in grades 9–12 who report having a specific number, including zero, of drinks of alcohol within a couple of hours during the past 30 days (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”). (YRBSS case definition for 2015 survey cycles)

Students in grades 9–12 who report having a specific number, including zero, of drinks of alcohol in a row during the past 30 days (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”). (YRBSS case definition for 2017 survey cycles)

Measure of frequency to be reported

Biennial (odd years) prevalence with 95% confidence interval.

Time period for case definition

Past 30 days.

Data resource

Youth Risk Behavior Surveillance System (YRBSS).

State-level data are available at CDC YRBSS website: https://nccd.cdc.gov/youthonline/App/Default.aspx

Background

In 2013, 20.8% of high school students in the United States reported binge drinking during the past 30 days, with a range among the states from 5.9% to 24.4% (1). Binge drinking accounts for 90% of the alcohol consumed by youths (2), and about 2 in 3 high school students who drink report binge drinking (3), usually on multiple occasions. In 2013, the prevalence of binge drinking among boys was 22.0% and 19.6% among girls (4). The prevalence of binge drinking was higher among non-Hispanic white (23.2%) and Hispanic (22.6%) students than among black students (12.4%); prevalence increased with grade (4). Binge drinking by youth is correlated with binge drinking by adults (5).
Significance	Alcohol is a factor in the deaths of approximately 4,700 youths in the United States per year, shortening their lives by an average of 60 years (6). Underage drinking cost the U.S. $24 billion in 2006 (7). Binge drinking is a risk factor for many health and social problems, including motor vehicle crashes, violence, suicide, hypertension, acute myocardial infarction, sexually transmitted diseases, unintended pregnancy, fetal alcohol spectrum disorders, and sudden infant death syndrome (8, 9). Reductions in the value of this indicator are expected if states implement policy changes recommended in the CDC Prevention Status Report on excessive alcohol use, and other evidence-based interventions.
Limitations of indicator	The indicator does not convey the frequency of binge drinking or the specific amount of alcohol consumed. Prior to the 2017 administration of YRBSS, the data definition of binge drinking used in the data source (YRBSS) is not gender-specific (as it is for adults). This indicator is available every other year.
Limitations of data resource	As with all self-reported sample surveys, YRBSS data might be subject to systematic error resulting from noncoverage (e.g., no participation by certain schools), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias). YRBSS data only apply to youth who are attending school in regular classrooms, and thus may not be representative of all persons in this age group. YRBSS results are not available from every state because some states do not participate in the YRBSS. Moreover, some states that do participate do not achieve a high enough overall response rate to receive weighted data from CDC, and are therefore not included in the results. Some states may be able to use comparable data for this indicator that are collected through a mechanism other than the YRBSS.
Related indicator or recommendation	Healthy People 2020 Objective SA–14.1: Reduce the proportion of students engaging in binge drinking during the past 2 weeks—High school seniors.
CDC’s Prevention Status Report: Excessive Alcohol Use (10).	
Note	YRBSS binge drinking related question changed from 2015 to 2017.
References

Indicator Group: Alcohol

Indicator 3. Alcohol-related crash deaths

Demographic group: All resident persons.

Numerator: Alcohol-related death of a person involved in crash of a motor vehicle traveling on a public roadway and occurring within 30 days of the crash. Deaths are considered alcohol related when a driver had a blood alcohol concentration (BAC) ≥0.01 g/dL.

Denominator: Midyear population for the calendar year.

Measure of frequency to be reported: Annual number of deaths. Annual crude mortality rate.

Time period for case definition: Calculated annually for all deaths in the most recent calendar year.

Data Resource: Fatality Analysis Reporting System (FARS) coordinated by the National Highway Traffic Safety Administration (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator). Data calculated by CDC and included in annual summary of injury surveillance. FARS data are available at https://crashstats.nhtsa.dot.gov/#

Background: In 2013, 10,076 people died in alcohol-impaired driving crashes, accounting for nearly one third (31%) of all traffic-related deaths in the U.S. Over half (61%) of the 200 child passengers aged 14 years and younger who died in alcohol-related crashes in 2013 were riding with drivers who had a BAC of 0.08 g/dL or higher (1).

Significance: To the extent that states implement effective programs to prevent driving or cycling while intoxicated, as well as other effective traffic and pedestrian safety interventions, the annual rate of alcohol-related crash deaths will decline in those states.

Limitations of indicator: Injuries severe enough to result in death represent only a small proportion of the overall burden of injury. An evaluation of only these injuries may not present an accurate picture of the causes of less severe injuries.

Limitations of data resource: FARS does not include non-traffic crashes, such as those occurring on driveways and other private property. In addition, it does not include deaths that occur more than 30 days after the motor vehicle crash. Because BACs are not available on all fatalities, the FARS BAC estimates are based on a multiple imputation process.

Related indicator or recommendation: SA-17: Decrease the rate of alcohol-impaired driving (.08+ blood alcohol content [BAC]) fatalities. See: http://www.healthypeople.gov/2020/topics-objectives/topic/substance-abuse/objectives
Related surveillance indicators

Liver disease mortality, adult binge drinking, youth binge drinking.

Note

Data can be found through the FARS Pubs/Data Requests link, in the “Alcohol-Impaired Driving Traffic Safety Fact Sheet” publication (usually in Table 4. Motor Vehicle Traffic Fatalities, by State and Highest Driver BAC in the Crash).

References

Indicator Group: Alcohol

Indicator 4. Mortality from liver disease and cirrhosis

Demographic group: All resident persons.

Numerator: Deaths with the *International Classification of Diseases, 10th Revision* codes K70.x or K73.x–K74.x as the underlying cause of death among residents during the calendar year.

Denominator: Midyear resident population for the same calendar year.

Measure of frequency to be reported: Annual number of deaths. Annual mortality rate per 100,000: crude.

Time period for case definition: Calendar year.

Data resource: Death certificate data from state health departments (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator). Available at: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2016_PEPANNRES&src=pt

Background: In 2010, a total of 31,903 persons died from chronic liver disease (2). The age-adjusted rate of death among males (12.7 per 100,000 population) was greater than the rate among females (6.1 per 100,000 population) (2). Death rates among states ranged from 6.4 to 17.0 per 100,000 per year (3).

Significance: Excessive alcohol use accounted for an estimated average of 88,000 deaths and 2.5 million years of potential life lost in the United States each year during 2006–2010 (4) and an estimated $223.5 billion in economic costs in 2006 (5). Sustained alcohol consumption is the leading cause of liver cirrhosis, the 12th leading cause of death (6). The risk for chronic liver disease and cirrhosis is directly related to heavy and long-term alcohol consumption. Implementation of effective state programs to reduce long-term and heavy alcohol consumption, as well as to prevent cirrhosis of other etiologies (such as chronic infection with hepatitis B and C viruses) should reduce state liver disease death rates.

Limitations of indicator: Much alcohol-related disease can have a long latency, with changes in behavior or clinical practice affecting population mortality not be immediately apparent, with the exception of chronic liver disease which is responsive to alcohol policy (7). Not all chronic liver disease deaths are alcohol-attributable (6). In 2009, however, almost 70% of U.S. cirrhosis deaths were alcohol-attributable, and the proportion of cirrhosis deaths coded as 100% alcohol-attributable increased dramatically during 1970–2009 among adults aged 25–64 years (6).
Limitations of data resource Causes of death and other variables listed on the death certificate might be inaccurate.

Related indicator or recommendation Healthy People 2020 objective SA–11: Reduce cirrhosis deaths. See: http://www.healthypeople.gov/2020/topics-objectives/topic/substance-abuse/objectives

References

Indicator Group: Alcohol

Indicator 5. State excise taxes on alcohol

Demographic group: All resident persons.

Numerator: State taxes levied per gallon of beverage at the wholesale or retail level, by beverage type, reported separately for 1) beer, 2) wine, and 3) distilled spirits.

Denominator: None.

Measure of frequency to be reported: Annual excise tax amount, by beverage type.

Time period for case definition: Annual as of January 1.

Data resource: Alcohol Policy Information System (APIS)-Under the taxation tab: https://alcoholpolicy.niaaa.nih.gov/

Background: The Community Preventive Services Task Force recommends increasing the unit price of alcohol by raising taxes, based on strong evidence of effectiveness for reducing excessive alcohol consumption and related harms (1). Public health effects are expected to be proportional to the size of the tax increase (2). Alcohol consumption is particularly sensitive to the price of alcoholic beverages (2). Across alcohol beverage types (i.e., beer, wine, and distilled spirits), the median price elasticity (a measure of the relationship between price and consumption) ranges from -0.50 for beer to -0.79 for distilled spirits, and the overall price elasticity for ethanol is -0.77 (2). Thus, a 10% increase in the price of alcoholic beverages likely would reduce overall consumption by <7% (2). Recent analyses also note a substantial gap between the societal and governmental cost of excessive alcohol consumption (approximately $1.90 and $0.80 per drink, respectively) and the total federal and state taxes on alcoholic beverages (approximately $0.12 per drink) (3). Alcohol excise taxes are implemented at the state and federal levels and are beverage specific (i.e., differ for beer, wine, and distilled spirits) (2). These taxes usually are based on the volume of alcohol sold and not on the sales price; therefore, their contribution to the total price of alcohol can erode over time because of inflation (2).

Significance: This indicator provides information about the level of state alcohol excise taxes and supports state-level surveillance of an important component of the price of alcohol (i.e., beverage-specific alcohol excise taxes), which has been strongly associated with changes in alcohol consumption (2). At the state and federal levels, inflation-adjusted alcohol taxes have decreased considerably since the 1950s (2). Concordant with this decrease in the real value of these taxes, the inflation-adjusted price of alcohol has decreased, reflecting the fact that changes in taxes are efficiently passed on through changes in prices (2).
Changes in state alcohol excise tax levels can be expected to lead to changes in per capita consumption and patterns of consumption.

Limitations of indicator

Taxes other than excise taxes that can affect the price of alcoholic beverages (e.g., sales taxes, which are levied as a percentage of the beverage’s retail price) are not reported.

Limitations of data resource

Beverage-specific state tax levels are based on the taxes assessed on an index beverage within a particular beverage category (e.g., beer with 5% alcohol by volume) (4). APIS reports taxes for the most commonly sold container size and therefore does not include data on the taxes levied on alcoholic beverages sold in other container sizes. Tax amounts are not reported for states and beverage types for which the index beverage is available in state-run retail stores or through state-run wholesalers. In these cases, the state sets a price for each alcohol product that is some combination of cost, mark-up, and taxes, and determining the dollar value assigned to each of these components is not possible. Some states have separate tax rates for other types of alcoholic beverages (e.g., sparkling wine) that are not included in APIS. However, these beverages generally constitute a small segment of the alcohol retail market.

Related indicator or recommendation

CDC Prevention Status Report: Excessive alcohol use (5).

Note

None.

References

Indicator Group: Drugs

Indicator 6. Drug overdose mortality, all drugs

Demographic group
All resident persons.

Numerator
Deaths with International Classification of Disease 10th Revision codes as the underlying cause of death among residents during the calendar year:

- X40–X44, accidental poisoning by drugs;
- X60–X64, intentional self-poisoning by drugs;
- X85, assault by drug poisoning and;
- Y10–Y14, drug poisoning of undetermined intent.

Deaths should also be tabulated on a drug-specific basis, using the T codes below to assign deaths to selected specific drugs. Unspecified drug type should be included as a category. Drug categories include opium (T40.0), heroin (T40.1), other opioids including codeine and morphine (T40.2), methadone (T40.3), other synthetic narcotics (T40.4), cocaine (T40.5), other and unspecified narcotics (T40.6), cannabis (T40.7), lysergide (T40.8), other unspecified psychodysleptics (T40.9), benzodiazepines (T42.4), and psychostimulants with abuse potential (T43.6). Also stratify by T50.9, other and unspecified drugs, medicaments and biological substances, if it is present and none of the T codes listed above are present. Deaths may be counted more than once if more than one drug was involved in the death; numerator need both underlying cause and multiple cause files.

Denominator
Midyear resident population for the same calendar year.

Measure of frequency to be reported
Annual number of deaths. Annual mortality rate per 100,000: crude, distribution, as a total for all drug types together and by drug type (1).

Time period for case definition
Calendar year.

Data resource
Death certificate data from state health department (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator). Available at: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2016_PEPANNRES&src=pt
Data can be accessed by state offices of vital statistics and through CDC WONDER, available at http://wonder.cdc.gov.

Background

The number and rate of drug poisoning deaths (overdoses) has increased significantly in all regions of the country (2). In 2013 there were almost 44,000 deaths attributed to drug poisoning. From 1999 to 2013, the U.S. death rate from drug poisoning more than doubled, from 6.1 to 13.8 per 100,000 per year. Within this overall epidemic of drug overdose deaths, there has been striking variability by age group, race, ethnicity, and region. From 1999 to about 2006, the major contributor to the increase in such deaths was opioid analgesics. Since 2006, the death rate due to these drugs has stabilized around 5 per 100,000, while the death rate for drug-poisoning deaths involving heroin has risen from 1.0 per 100,000 in 2010 to 2.7 in 2013 (2). Deaths associated with benzodiazepine tranquilizers increased 5-fold from 2001 to 2014 (3). Cocaine-involved deaths peaked in 2006 but reached a low point in 2010 and have since edged up (3). The dynamic and diverse nature of these overdose deaths suggests a need for systematic and timely surveillance for overall deaths and for deaths associated with use of specific substances.

Significance

This indicator measures the burden of deaths attributed to these drugs in the population. Total and drug-specific data illuminate the impact of policies related to prescription drugs and illicit drugs. Drug overdose deaths are preventable through a series of mutually reinforcing activities including (1) measures to reduce inappropriate prescribing of analgesics through health insurance and healthcare system policies and procedures, prescription drug monitoring programs, tighter standards for pain clinics and law enforcement activities; (2) efforts to assure providers know how to identify and address addiction and make appropriate treatment referrals; (3) increased availability of treatment for drug abuse or dependence; and (4) programs to make naloxone more readily available.

Limitations of indicator

Both underlying-cause and multiple-cause death certificate files are needed for these analyses. Death records often lack specificity as to the exact drug responsible for the death. Deaths suspected to be due to these drugs are typically medical examiner or coroner cases, and the extent of laboratory analysis varies by jurisdiction. Records indicating that the death is due to overdose with an unknown or unspecified drug are an issue in many states, and these should be tabulated separately. Nationally, 22% of 2013 death certificates for persons dying of drug poisoning lacked information on the type(s) of drug involved (4), and this varied considerably among the states. Information about drug type may not be fully comparable across jurisdictions. Multiple drugs are often involved in a drug overdose death, and each death should be tabulated according to each drug mentioned on the death certificate. For example, approximately 16% of drug-poisoning deaths involving heroin also involve opioid analgesics (2). In deaths involving opioids, substances such as tranquilizers and alcohol may be important cofactors in causing death, with only modest doses of the opioid.
Limitations of data resource

Finalized files of death certificate data are often unavailable until 6 to 18 months after the end of a calendar year, although they are becoming more timely with electronic death registration. Records for deaths of greatest interest for this indicator are often particularly delayed because of further laboratory testing by the medical examiner or coroner (ME/C), though delays may be minimized through cooperation with these officials. Records for jurisdiction residents who die outside the jurisdiction are also often delayed in the interstate notification process. Jurisdictions vary as to the extensiveness of ME/C laboratory investigation and availability of electronic death records in real time (especially those for ME/C cases).

Related indicator or recommendation

MSA 12: Reduce drug-induced deaths.
MSP 2.4: Reduce deaths from the use of pain medicines.
IVP 9: Prevent an increase in poisoning deaths.

See http://www.healthypeople.gov/2020/topics-objectives/topic/substance-abuse/objectives

Note

References

Indicator Group: Drugs

Indicator 7. Hospitalizations attributable to drugs with potential for abuse and dependence, all drugs

Demographic Group
All resident person.

Numerator
Hospitalizations attributable to drugs with potential for abuse and dependence, excluding alcohol, substances that cause adverse effects in therapeutic use, and underdosing. A case is identified using the principal (first-listed) diagnosis code [specific International Classification of Disease 10th Revision, Clinical Modification (ICD-10-CM) codes are listed in Table 1 below].

All hospitalizations of jurisdiction residents occurring in acute care, non-federal in-state hospital settings are included. Excluded are those with unknown age, out-of-jurisdiction residence, unknown state of residence, non-acute care or federal hospital admission, and admission only for short stays or observation visits.

Calculate separately for the following drugs using the codes in Table 1:

1) Heroin poisoning, 2) Cocaine poisoning, 3) Non-heroin opioids, 4) Benzodiazepine-based tranquilizer poisoning, 5) Amphetamine poisoning

Note that in states where emergency department (ED) visits and hospital discharges are combined in a single database, the same record selection criteria can be applied to hospital ED visits that do not result in hospitalization as to hospital admissions/discharges.

Denominator
Midyear resident population for the same calendar year.

Measure of frequency to be reported
Annual number of hospital discharges. Annual rate of hospital discharge per 100,000: crude 1), as a total for all drug types together and by drug type (1).

Time period for case definition
Calendar year.

Data resource
State hospital discharge database.
In 2014, there were nearly 260,000 hospitalizations resulting from nonfatal, unintentional drug poisonings (2). Of these, 3.2% (8,290) were attributable to methamphetamine poisonings, 5.1% (13,265) were attributable to cocaine poisoning, and 20.4% (53,000) were due to opioid poisonings. Moreover, heroin was identified as the involved opioid in 21.7% of the opioid hospitalizations.

Drug-related hospitalizations represent the more severe morbidity burden of drug use. Drug-related hospitalizations are preventable through a series of mutually reinforcing activities including, but not limited to, (1) measures to reduce inappropriate prescribing of analgesics through health insurance and care system policies and procedures, prescription drug monitoring programs, tighter standards for pain clinics and law enforcement activities; (2) efforts to assure providers know how to identify and address addiction and make appropriate treatment referrals; (3) increased availability of treatment for drug abuse or dependence and (4) programs to make naloxone more readily available. This indicator measures an important component of the morbidity burden of drugs in the population. Total and drug-specific data inform the impact of policies related to nonmedical use of prescription drugs, as well as to other drugs with potential for abuse and dependence. Patterns of drug use and abuse vary greatly over time and by age group, race, ethnicity, income level, and geography. Timely monitoring of hospitalizations by specific drug type, as well as overall, can assist in rapid identification and characterization of community health threats.

Captures admissions for which drug use is the primary reason, per the admitting physician. Thus, it does not capture admissions for which drug use may be an ancillary or indirect reason, e.g., a motor vehicle crash injury caused by drug-impaired driving. This indicator is only as good as the recognition, documentation and coding of drug use and drug-related diagnoses by hospital staff, all of which are known to vary. It documents definitively those cases in which drug use is the main impetus for the admission.

Data availability may lag a year or more behind hospitalization date, depending on the jurisdiction. Because most jurisdictions do not include information from U.S. Veterans Administration, Department of Defense and Indian Health Service hospitals in their hospital discharge data—and many do not include specialty hospitals, such as psychiatric facilities—information from these facilities is excluded from the numerator of this measure. As a result, the included hospitalizations may not be representative of all such events in the jurisdiction, and there may be underestimation of hospitalization rates. Since the unit of analysis is the episode...
of care, not the individual, individuals with several hospital admissions during an analysis period may be counted several times. Completeness and quality of ICD-9-CM and ICD10-CM coding are limiting factors for any indicator based on administrative data. Comparability cannot be assured over the transition from ICD-9-CM-coded to ICD10-CM-coded hospital discharge data.

<table>
<thead>
<tr>
<th>Related indicator or recommendation</th>
<th>IVP-10: Prevent an increase in nonfatal poisonings.</th>
</tr>
</thead>
</table>

Note

None.

References

<table>
<thead>
<tr>
<th>ICD-10-CM Code*</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>F11.1 - F11.9</td>
<td>Opioid related disorders</td>
</tr>
<tr>
<td>F12.1 - F12.9</td>
<td>Cannabis related disorders</td>
</tr>
<tr>
<td>F13.1 - F13.9</td>
<td>Sedative, hypnotic, or anxiolytic related disorders</td>
</tr>
<tr>
<td>F14.1 - F14.9</td>
<td>Cocaine related disorders</td>
</tr>
<tr>
<td>F15.1 - F15.9</td>
<td>Other stimulant related disorders</td>
</tr>
<tr>
<td>F16.1 - F16.9</td>
<td>Hallucinogen related disorders</td>
</tr>
<tr>
<td>F19.1 - F19.9</td>
<td>Other psychoactive substance related disorders</td>
</tr>
<tr>
<td>O99.32</td>
<td>Drug use complicating pregnancy, childbirth, and the puerperium</td>
</tr>
<tr>
<td>P04.4</td>
<td>Newborn (suspected to be) affected by maternal use of drugs of addiction</td>
</tr>
<tr>
<td>P96.1</td>
<td>Neonatal withdrawal symptoms from maternal use of drugs of addiction</td>
</tr>
<tr>
<td>T40.0 - T40.9</td>
<td>Poisoning by narcotics and psychodysleptics (hallucinogens)</td>
</tr>
<tr>
<td>T42.3</td>
<td>Poisoning by barbiturates</td>
</tr>
<tr>
<td>T42.4</td>
<td>Poisoning by benzodiazepines</td>
</tr>
<tr>
<td>T42.6</td>
<td>Poisoning by other antiepileptic and sedative-hypnotic drugs</td>
</tr>
<tr>
<td>T42.7</td>
<td>Poisoning by unspecified antiepileptic and sedative-hypnotic drugs</td>
</tr>
<tr>
<td>T43.6</td>
<td>Poisoning by psychostimulants</td>
</tr>
</tbody>
</table>

*The listed code may be an abbreviation of the full ICD-10-CM code. Codes are comprised of between 4 and 7 characters. For all T codes, adverse effects, underdosing, and encounters due to sequela are excluded.
Indicator Group: Drugs

Indicator 8. Prescription opioid sales per capita

Demographic group
All resident persons.

Numerator
Total state sales of prescription opioids by pharmacies, expressed in morphine milligram equivalents (MMEs)/per capita.

Denominator
Midyear resident population for the same calendar year.

Measure of frequency to be reported
Annual sales of opioid prescription drugs (MME/per capita) sold by pharmacies. Opioid prescription drugs include the following: Codeine, Buprenorphine, Dihydrocodeine, Oxycodone, Hydromorphone, Hydrocodone, Levorphanol, Meperidine (Pethidine), Methadone, Morphine, Opium Powdered, Oxymorphone, Tapentadol, Fentanyl Base

Time period for case definition
Calendar year.

Data Resource

Background
The number of kilograms of morphine equivalent of prescription opiates and opioids sold per 10,000 population in the U.S. as a whole rose from 3.0 in 2001 to 8.5 in 2014. In 2001, the range among the states was 1.8 to 5.4 kg per 10,000; in 2014 it was 4.8 to 14.8.

Prescription opioid drug abuse and dependence has become a major medical and public health issue, whether measured as number of people needing treatment for dependence or addiction, number of hospitalizations or number of overdose deaths. Although opioid drugs are an important medical intervention for pain relief (e.g., in relation to surgery, cancer or injuries), there are large grey areas between indicated and non-indicated uses. These grey areas enable people to obtain prescriptions, often from unethical prescribers, for their own non-medical use or for resale to others. The U.S. Drug Enforcement Administration (DEA) tracks total sales of opioid drugs to pharmacies, measured as MMEs. Because the legitimate medical need for pain relief is roughly the same everywhere (despite varying prescribing practices), total sales of these drugs provides an indicator of their possible overuse, diversion and/or abuse. Measures to control diversion of these drugs are different from those needed to control the manufacture, distribution and sale of street drugs such as heroin, methamphetamines and cocaine, which are manufactured outside the legal pharmaceutical industry.
<table>
<thead>
<tr>
<th>Significance</th>
<th>State restrictions, policies or guidelines to ensure safe opioid prescribing practices should result in a reduction in per-capita sales. Implementation of effective prescription drug monitoring programs (intended to reduce doctor-shopping for opioid drug prescriptions) and pain clinic medical practice guidelines should result in reduced consumption (1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations of indicator</td>
<td>This indicator cannot distinguish between prescriptions issued for necessary pain relief and prescriptions issued for other reasons (e.g., because of fraudulent requests by patients or because of unethical prescribing). The optimal amount of prescribed MMEs of opioid drugs per capita is not known. Reducing overall consumption of opioid drugs too low could mean that some people are not obtaining needed pain relief. CDC has issued guidelines for prescribing opioids for pain relief (2).</td>
</tr>
<tr>
<td>Limitations of data resource</td>
<td>The data reported by the U.S. DEA reflect the distribution of prescription opioids to pharmacies, not actual prescriptions written or filled, medications taken, or individual users. Thus, total sales are an overestimate of consumption. The degree of overestimation is expected to be consistent over time, however. Consumption per capita could reflect heavy consumption by a few people or moderate consumption by many.</td>
</tr>
<tr>
<td>Note</td>
<td>Data can be found through the ARCOS link. Select appropriate Reporting Period and data can usually be found under Report 5 “Statistical Summary for Retail Drug Purchases by Grams WT” Activity A – Pharmacies. Sum select prescription opioids then multiply “Total Grams” by 1000 and divide by midyear population.</td>
</tr>
</tbody>
</table>

References

Indicator Group: Drugs

Indicator 9. Illicit drug or alcohol dependence or abuse in the past year

Demographic group
All persons aged ≥12 years.

Numerator
All persons aged ≥12 years who answered question items positively, meeting DSM-IV inclusion criteria, for dependence on or abuse of alcohol or illicit drugs in the past year.

Illicit drugs include marijuana/hashish, cocaine (including crack), heroin, hallucinogens, inhalants and methamphetamines, and nonmedical use of prescription pain relievers, tranquilizers, stimulants, or sedatives (1).

Denominator
All persons aged ≥12 years (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).

Measure of frequency to be reported
Two year prevalence with 95% confidence intervals. States should combine two survey years (e.g., 2013-2014) to provide stable state-level estimates.

State estimates provided by the Substance Abuse and Mental Health Services Administration are developed using a small area estimation procedure in which state-level NSDUH data from 2 survey years are combined with local-area county and census block group/tract-level data from the state. This model-based methodology provides more precise estimates of state-level substance use than those based solely on the sample, particularly for smaller states (2).

Time period for case definition
Past year.

Data resources
National Survey of Drug Use and Health (NSDUH).

Background

This is a summary measure (see note below) of dependence on or abuse of alcohol, drugs or both. It documents the overall abuse/dependence burden on society of all of these agents, whether used separately or together. From 2013/2014, alcohol dependence or abuse among persons aged 12 and over was 6.5%%, for illicit drugs was 2.64%, and for both (alcohol and illicit drugs) was 8.16% (3). For middle-aged, white, non-Hispanic persons with no education beyond high school, the combined death rate from drug overdose, suicide and alcoholic liver disease has risen strikingly in the first 15 years of the new century (4). This surveillance indicator captures and combines information about most of the direct risk behaviors for these causes of death.

Significance

This indicator captures a very broad set of precursors of ill health, disability and death. Effective evidence-based state-level and national interventions to reduce use and abuse of alcohol and illicit drugs and dependence on these substances, and to improve availability of treatment services, should result in improvements in the value of this indicator.

Limitations of indicator

This is an overall summary measure of dependence on or abuse of either alcohol, drugs or both. It relies on multiple NSDUH questionnaire items, which are self-reported with a long recall period. The indicator captures information on the U.S. civilian, non-institutional population aged 12 or older. NSDUH excludes homeless people who do not use shelters, military personnel on active duty, and residents of institutional group quarters, such as jails and hospitals. It hides regional variations in relative importance of various drugs and of alcohol but documents the overall burden on society and on the healthcare system of abuse and/or dependence on all these agents together. This indicator is intentionally broad; users interested specifically in alcohol, in illicit drugs as a whole, or in specific illicit drugs will need to examine other indicators.
Limitations of data resource

Reported data rely on a two-year rolling average and reflect respondents’ recalled experience for the full twelve months before the interview date. Data collected during the two-year period ending in December of one year are reported approximately one year later. Thus, the earliest events captured in the data reported each year may have occurred up to three years before the data become available. The data reported by SAMHSA are derived from a long-running, annual, face-to-face household survey with high response rates and extensive quality checking. As with any sample survey, issues with data item validity and over- or under-estimation of parameters of interest may arise. Small numbers of subjects in sub-state areas limit ability to make sub-state area estimates, especially in less populous states. The NSDUH questionnaire underwent a partial redesign in 2015 to improve the quality of the NSDUH data and to address to changing needs of policymakers and researchers, resulting in lack of availability of some indicators, including those pertaining to illicit drugs, for 2014 and 2015.

Related indicator or recommendation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-19:</td>
<td>Reduce the past-year nonmedical use of prescription drugs.</td>
</tr>
<tr>
<td>SA-13:</td>
<td>Reduce past-month use of illicit substances.</td>
</tr>
<tr>
<td>SA15:</td>
<td>Reduce the proportion of adults who drank excessively in the previous 30 days.</td>
</tr>
</tbody>
</table>

There are seven possible dependence criteria for specific drugs (1):

1. spent a lot of time engaging in activities related to use of the drug,
2. used the drug in greater quantities or for a longer time than intended,
3. developed tolerance to the drug,
4. made unsuccessful attempts to cut down on use of the drug,
5. continued to use the drug despite physical health or emotional problems associated with use,
6. reduced or eliminated participation in other activities because of use of the drug, and
7. experienced withdrawal symptoms when respondents cut back or stopped using the drug.

For most drugs, dependence is defined as meeting three or more of these seven criteria. However, experiencing withdrawal symptoms is not included as a criterion for some illicit drugs based on DSM-IV criteria. For these substances, dependence is defined as meeting three or more of the first six criteria.

Respondents who used (or misused) a specific illicit drug in the past 12 months and did not meet the dependence criteria for that drug were defined as having abuse were defined as meeting the abuse criteria for that drug if they reported one or more of the following:

1. problems at work, home, and school because of use of the drug;
2. regularly using the drug and then doing something physically dangerous;
3. repeated trouble with the law because of use of the drug; and
4. continued use of the drug despite problems with family or friends.
References

Indicator Group: Drugs

Indicator 10. Prevalence of use of selected prescription and illicit drugs (6 sub-indicators)

<table>
<thead>
<tr>
<th>Demographic group</th>
<th>All persons aged ≥12 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>All persons aged ≥12 years who answered question items positively on past month/year use of the following:</td>
</tr>
<tr>
<td></td>
<td>1) Illicit drug use in the past year</td>
</tr>
<tr>
<td></td>
<td>2) Marijuana use in the past year</td>
</tr>
<tr>
<td></td>
<td>3) Marijuana use in the past month</td>
</tr>
<tr>
<td></td>
<td>4) Illicit drug use other than marijuana in the past month</td>
</tr>
<tr>
<td></td>
<td>5) Cocaine use in the past year</td>
</tr>
<tr>
<td></td>
<td>6) Nonmedical use of pain relievers in the past year</td>
</tr>
</tbody>
</table>

Illicit drugs include marijuana/hashish, cocaine (including crack), heroin, hallucinogens, inhalants, or prescription-type psychotherapeutics used non-medically (1).

<table>
<thead>
<tr>
<th>Denominator</th>
<th>All persons aged ≥12 years (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure of frequency to be reported</td>
<td>Two year prevalence with 95% confidence intervals. States should combine two survey years (example 2013-2014, 2014-2015) to provide stable state-level estimates.</td>
</tr>
</tbody>
</table>

State estimates provided by the Substance Abuse and Mental Health Services Administration are developed using a small area estimation procedure in which state-level NSDUH data from 2 survey years are combined with local-area county and census block group/tract-level data from the state. This model-based methodology provides more precise estimates of state-level substance use than those based solely on the sample, particularly for smaller states (2).

<table>
<thead>
<tr>
<th>Time period for case definition</th>
<th>Past month or past year, depending on drug.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data resources</td>
<td>National Survey of Drug Use and Health (NSDUH).</td>
</tr>
</tbody>
</table>

Background
Nationwide, NSDUH estimated past-month illicit drug use in 2012-13 as 9.27% for those aged 12 and older, 9.18% for those aged 12-17, 21.44% for those aged 18-25, and 7.19 for those aged 26 and older. State-specific estimates ranged from 6.2% to 15.1% among adolescents and from 6.2% to 15.8% among adults. Similar variability among the states is seen for individual drugs. For past-month use of marijuana, adolescent and adult use were similar; adolescent use ranged from 5.2% to 12.9%, and adult use from 5.0% to 14.2%. Past-year cocaine use was rare in adolescents, ranging from 0.4% to 1.1%, and more common in adults, ranging from 1.1% to 2.9% (3). Extensive trend data for 2002-2014 are available at http://www.samhsa.gov/data/sites/default/files/NSDUH-FRR1-2014/NSDUH-FRR1-2014.pdf. Just as for hospitalization and mortality, time trends and population groups with greatest use are quite different for different drugs on a multi-year time scale.

Significance
Use of these substances varies over time, space, and personal characteristics, and is a product of many factors acting separately and together, including price and availability of substances, cultural acceptability, concurrent mental distress, and social factors such as prolonged unemployment, poverty or family dysfunction. The substance abuse surveillance indicators in this document range from simple use (this indicator) through abuse and dependence, to hospitalization and death. It is important to have windows into the entire potential natural history of drug use and the entire spectrum of severity, in order to understand the determinants of adverse health effects and the impact of various prevention and control measures.

Limitations of indicator
This is a measure of drug use, not dependence or abuse. It relies on self-report for multiple NSDUH questionnaire items and has a relatively long recall period (one month for some drugs, 12 months for others). The indicator captures information on the U.S. civilian, non-institutional population aged 12 or older. NSDUH excludes homeless people who do not use shelters, military personnel on active duty, and residents of institutional group quarters, such as jails and hospitals. It masks regional variations in drug use within states but documents the population-level exposure to each.

Limitations of data resource
The data reported rely on a two-year rolling average and reflect respondent's self-reported experience for either one month or a full twelve months before the interview date. Data collected during the two-year period ending in December of one year are reported approximately one year later. Thus, the earliest events captured in the data reported each year may have occurred up to two or even three years before the data become available. The data reported by SAMHSA are derived from a long-running annual face-to-face household survey with high response rates and extensive quality checking. As with any sample survey, issues with data item validity and over- or under-estimation of parameters of interest may arise. Small numbers of subjects in sub-state areas limit ability to make sub-state area estimates, especially in less populous states. The NSUDH questionnaire underwent a partial redesign in 2015 to improve the quality of the NSDUH data and to address to changing needs of policymakers and researchers, resulting in lack of availability of some indicators, including those pertaining to illicit drugs, for 2014 and 2015.

Data access
(Note: Access link with specific year of interest [e.g., 2014-2015 NSDUH State-specific Tables])

Related indicator or recommendation

SA-2: Increase the proportion of adolescents never using substances.
SA-13: Reduce past-month use of illicit substances.
SA-19: Reduce the past-year nonmedical use of prescription drugs.

Note
None.

References

Indicator Group: Mental Health

Indicator 11. Suicide rate

<table>
<thead>
<tr>
<th>Demographic group</th>
<th>All resident persons.</th>
</tr>
</thead>
</table>
| Numerator | Suicides with *International Classification of Disease 10*th *Revision (ICD10)* codes as the underlying cause of death:
 - X60–X84, intentional self-harm;
 - Y87.0, sequelae of intentional self-harm;
 - U03, terrorism-intentional self-harm. |
| Denominator | Midyear resident population for the same calendar year. |
| Measure of frequency to be reported | Annual number of deaths. Annual mortality rate per 100,000: crude. |
| Time period for case definition | Calendar year. |
| Data Resource | Death certificate data from state health department (numerator) and population estimates from the U.S. Census Bureau or suitable alternative (denominator). Available at: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?pid=PEP_2016_PEPANNRES&src=pt |

Background

In the United States, the 2015 age-adjusted suicide rate was 13.3, at 28% increase since 2000 (2). In 2015, suicide was the 10th leading cause of death among all persons (3). Among males, suicide was the seventh leading cause of death. Suicide was the third leading cause of death among children aged 5-14 years, the second leading cause of death among persons 15-24 years, fourth leading cause of death among 25-44 years, and the eighth leading cause of death among persons 45-64 years.

Significance

To the extent that effective, evidence-based strategies are implemented in communities, suicide rates can be expected to fall, and this change will be reflected in this indicator. Striking regional variations in suicide rates indicate the potential for prevention.
Limitations of Indicator

Injuries severe enough to result in death represent only a small proportion of the overall burden of self-inflicted injury. An evaluation limited to fatal injuries may not present an accurate picture of the causes and impacts of less-severe injuries. Medical examiners or coroners may misclassify intentionality of death. The proportion of deaths of undetermined intent varies by jurisdiction.

Limitations of data resource

The accuracy of indicators based on vital statistics codes is limited by the completeness and quality of coding. The overall completeness of external cause coding on death data is uniformly high. Coding criteria specify that cases of injury death must contain an injury code in the underlying-cause-of-death field. Data-sharing among geographic jurisdictions can be slow, making final determination of numbers of suicide deaths less timely than desired. Different jurisdictional definitions and processes may result in some loss of comparability across jurisdictions.

Related indicator or recommendation

MHMD-1: Reduce the suicide rate.

Note(s)

Attempts should be made to include discharges from all hospitals (including psychiatric hospitals). The specification of this indicator uses primary diagnosis in the numerator, and this will be most useful for national and cross-state comparisons. Realizing that this may underestimate the prevalence, an additional calculation could be made using recording of suicide in any of all diagnoses codes. For other information regarding methodology, see https://www.cdc.gov/injury/stateprograms/indicators.html.

References

Indicator Group: Mental Health

Indicator 12. Hospital discharges for mental disorders (3 subindicators)

Demographic group: All resident persons.

Numerator: 1) Hospitalizations, discharged from civilian, non-federal acute care hospitals, attributable to a mental disorder with primary diagnosis of a mental, behavioral or neurodevelopmental disorder (International Classification of Disease 9th Clinical Modification (ICD-9-CM) codes 290-319, ICD-10-CM codes F01-F99), total and three subindicators: mood and depressive disorders (ICD-9-CM 296 and 311; ICD10-CM F30 to F39),
2) schizophrenic disorders (ICD-9-CM 295; ICD10-CM F20 to F29), and

Denominator: Midyear resident population for the same calendar year.

Measure of frequency to be reported: Annual number of hospital discharges. Annual rate of hospital discharge per 100,000: crude.

Time period for case definition: Calendar year.

Data resource: State hospital discharge database.

Background: Mental disorders, when serious and untreated, can cause significant morbidity, reduced quality of life, numerous hospitalizations and a burden to the local healthcare system. Mood disorders are particularly important contributors to disability-adjusted life years lost (DALYs), contributing 3.7% of the U.S. total in 2013, and to years lived with disability (YLDs), contributing 7.7% of the U.S. total in 2013. Anxiety disorders contribute 2.3% of DALYs and 4.7% of YLDs, and schizophrenia contributes 0.9% of DALYs and 1.9% of YLDs (2).

Significance: Planning for healthcare system resources, including outpatient treatment (which can reduce hospitalizations and costs) can be improved by understanding subpopulation rates of hospitalizations for mental disorders and trends in those rates. Evidence-based primary and secondary preventive interventions should have an impact on these rates.
Limitations of indicator
Severity of illness resulting in hospital admission varies by locale based on local mental health systems. Admissions with one of the designated codes present only as a secondary diagnosis are excluded from the numerator. Changes in insurance reimbursement policies, or changes in recommendations for psychiatric diagnosis, may increase or decrease hospitalization rates without reflecting changes in true disease burden. Self-harm is not included.

Limitations of data resource
Out-of-jurisdiction admissions by jurisdiction residents are typically not included in jurisdiction databases. In addition, discharges from federal hospitals (e.g., U.S. Veterans Administration, Department of Defense and Indian Health Service hospitals) and from specialty facilities (e.g., psychiatric care centers) may or may not be included in the hospital discharge database, depending on state law and local data agreements. Such differences would limit inter-jurisdiction comparisons.

Related indicator or recommendation
MHMD-4: Reduce the proportion of persons who experience major depressive episodes (MDEs).
MHMD-9: Increase the proportion of adults with mental health disorders who receive treatment.

Note
None.

Reference

Indicator Group: Mental Health

Indicator 13. Emergency department visits for intentional self-harm

Demographic group
All resident persons.

Numerator
Emergency department (ED) admissions, from civilian, acute care, nonfederal hospitals, with any primary diagnosis of intentional self-injury International Classification of Disease 9th Revision Clinical Modification (ICD-9-CM) codes E950-E958 or first-listed valid E-code in secondary diagnosis field.

Note: Corresponding ICD10-CM codes are T36 to T65 inclusive where 6th digit is 2, and X71 to X83 inclusive, as first-listed diagnosis. Except for T36.9, T37.9, T39.9, T41.4, T42.7, T43.9, T45.9, T47.9, T49.9, T51.9, T52.9, T53.9, T54.9, T56.9, T57.9, T58.0, T58.1, T58.9, T59.9, T60.9, T61.0, T61.1, T61.9, T62.9, T63.9, T64.0, T64.8, and T65.9, the 5th character indicates intent.

Denominator
Midyear resident population for the same calendar year.

Measure of frequency to be reported
Annual number of ED admissions. Annual rate of ED admissions per 100,000: crude.

Time period for case definition
Calendar year.

Data Resource
State hospital discharge database or emergency department database.

Note: In some states the syndromic surveillance system may be able to provide the same data.

Background
Suicide attempts are highly correlated with suicide mortality, though the relationship between attempts and completions is different for men and for women. Suicide is one of the top 10 leading causes of death in the United States and is increasing in certain demographic subgroups. An analysis focusing only on completed suicides will miss important morbidity. Putting this behavior under public health surveillance defines the suicide risk by subpopulation and by access to certain suicide mechanisms, thus providing more detail than is available for completed suicides alone. A national strategy to prevent suicide includes components to promote healthy and empowered individuals, families and communities; to enhance preventive services; to increase availability of treatment and support services; and to improve surveillance, research and evaluation (2).

Significance
Successful efforts to prevent suicides should also prevent suicide attempts, and this should be evident in the data. The relationship between attempts and completed suicides may differ by subpopulation and by method.
Limitations of indicator

Only self-injury presentations to the emergency department are included; persons who do not seek medical care are not counted. Intentionality may be misclassified by clinicians. This indicator does not perfectly measure suicide attempts: for example, injury may be intentional but not intended to result in death. Sequelae of intentional self-injury (E959) are not included in this measure to reduce duplicate counts for individual suicide attempts. However, this convention may exclude persons who did not initially visit the emergency department for their injury. There is little experience to date in most jurisdictions for systematic examination of this indicator.

Limitations of data resource

E-codes may not be documented for every visit when ICD-9-CM is used. There is little experience so far on possible quality issues in facilities using ICD10-CM. Residents who are treated in other geographic areas are not captured. Federal facilities (e.g., Veterans Administration, Department of Defense, Indian Health Service hospitals) sometimes do not have data-sharing agreements with local areas, so visits to such facilities would be missed in some states, but not others, if they were included in the analysis.

Related indicator or recommendation

MHMD-1: Reduce the suicide rate.

MHMD2: Reduce suicide attempts by adolescents.

Note

None.

Reference

Indicator Group: Mental Health

Indicator 14. Self-reported youth suicide attempts

Demographic group: Students in grades 9-12.

Numerator: Students in grades 9-12 who reported attempted suicide at least once in the past 12 months.

Denominator: All students in grades 9-12 (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).

Measure of frequency to be reported: Biennial (odd years) prevalence with 95% confident intervals.

Time period for case definition: Past year.

Background: Suicide attempts are highly correlated with suicide mortality and are a major cause of morbidity. Persons who attempt suicide are at increased risk for completed suicide. The ratio between attempts and completions is not the same for men and women, or for boys and girls. Suicide is one of the 5 leading causes of death for U.S. youth. In the 2013 YRBSS, nationwide, 8.0% of students had attempted suicide one or more times during the 12 months before the survey. The prevalence of having attempted suicide was higher among female (10.6%) than male (5.4%) students. Among the 40 states with analyzable data, the percentage of students reporting having attempted suicide ranged from 6.0% to 14.3% (1).

Significance: YRBSS data define the risk for suicide attempt and indirectly for completed suicide by subpopulation. Successful efforts to prevent suicide should also prevent suicide attempts, and this should be evident in the data. The relationship between attempts and completed suicides may differ by subpopulation and by method.

Limitations of Indicator: Data are conducted biennially in participating states (2).

Limitations of Data Resource: Only public-school students are included; youth who drop out of high school are excluded. In 2013 only 40 of the states participated fully in the YRBSS and had data reported (1). Some states that collect survey data do not get a high enough response rate, and CDC does not weight or report these data. Data are collected only for odd-numbered years.
Related indicator or recommendation
MHMD2: Reduce suicide attempts by adolescents.

Note
None.

Reference
Indicator Group: Mental Health

Indicator 15. Depressive episodes in the past year

<table>
<thead>
<tr>
<th>Demographic group</th>
<th>All persons aged 12-17 and ≥18 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>All persons aged 12-17 and ≥18 years who answered question items positively, meeting DSM-IV inclusion criteria, for major depressive episode in the past year. NSDUH uses different age-adapted questions based on the DSM-IV to ask adults and adolescents about their experiences with MDE. Adults and adolescents were defined as having an MDE if they had a period of 2 weeks or longer in the past 12 months when they experienced a depressed mood or loss of interest or pleasure in daily activities, and they had at least some additional symptoms, such as problems with sleep, eating, energy, concentration and self-worth (1).</td>
</tr>
<tr>
<td>Denominator</td>
<td>All persons aged 12-17 and ≥18 years (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure“).</td>
</tr>
<tr>
<td>Measure of frequency to be reported</td>
<td>Two year prevalence with 95% confidence intervals. States should combine 2 survey years (example 2013-2014, 2014-2015) to provide stable state-level estimates. State estimates provided by the Substance Abuse and Mental Health Services Administration are developed using a small area estimation procedure in which state-level NSDUH data from 2 survey years are combined with local-area county and census block group/tract-level data from the state. This model-based methodology provides more precise estimates of state-level substance use than those based solely on the sample, particularly for smaller states (2).</td>
</tr>
<tr>
<td>Time period for case definition</td>
<td>Past year.</td>
</tr>
</tbody>
</table>
Background
Depression is common and serious; depressive episodes are major causes of morbidity and disability, as well as being precursors to self-harm and suicide. In the United States during 2012-2013, NSDUH data showed an estimated 6.77% of persons over age 18 had at least one major depressive episode in a 12-month span. Many were not specifically medically attended. The percentage of persons aged 18 and over reporting a major depressive episode by state ranged from 5.63% to 9.45%. An estimated 9.86% of adolescents aged 12 to 17 had at least one major depressive episode in a 12-month span. The percentage of persons aged 12 to 17 reporting a major depressive episode by state ranged from 7.95% to 12.65%. (3)

Significance
Implementation by states of effective and evidence-based interventions to reduce episodes of major depressive episodes should affect the value of this indicator.

Limitations of indicator
This indicator relies on multiple NSDUH questionnaire items. It relies on self-report and has a long recall period. Classification of respondents does not come from a clinician's diagnosis. The indicator captures information on the U.S. civilian, non-institutional population aged 12 or older. NSDUH excludes homeless people who do not use shelters, military personnel on active duty, and residents of institutional group quarters, such as jails and hospitals.

Limitations of data resource
Significant time can elapse before data are available for inclusion in a surveillance summary, since reported data rely on a two-year rolling average, data reflect the respondent's experience for a full 12 months before the interview date, and it can be 6 to 12 months after the date of the last interview before the data are cleaned and analyzed. The data reported by SAMHSA are derived from a long-running annual face-to-face household survey with high response rates and extensive quality checking, and current data are directly comparable to those from 2002 and later and appear consistent with those of other surveys of the same topics. As with any sample survey, issues with data item validity and over- or under-estimation of parameters of interest may arise. Small numbers of subjects in sub-state areas limit ability to make sub-state area estimates, especially in less populous states.

Related indicators or recommendations
MHMD-4.1: Reduce the proportion of adolescents aged 12 to 17 who experience major depressive episodes.

MHMD-4.2: Reduce the proportion of adults aged 18 and older who experience major depressive episodes.

References

Indicator Group: Mental Health

Indicator 16. Any adult mental illness in the past year

<table>
<thead>
<tr>
<th>Demographic Group</th>
<th>All persons aged ≥18 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>All persons aged ≥18 years who answered question items positively, meeting DSM-IV inclusion criteria, for any mental illness (AMI) in the past year. Adults with AMI were defined as having any mental, behavioral, or emotional disorder in the past year that met DSM-IV criteria (excluding developmental disorders and SUDs) (1).</td>
</tr>
<tr>
<td>Denominator</td>
<td>All persons aged ≥18 years (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).</td>
</tr>
<tr>
<td>Measure of frequency to be reported</td>
<td>Two year prevalence with 95% confidence intervals. States should combine two survey years (example 2013-2014, 2014-2015) to provide stable state-level estimates. State estimates provided by the Substance Abuse and Mental Health Services Administration are developed using a small area estimation procedure in which state-level NSDUH data from 2 survey years are combined with local-area county and census block group/tract-level data from the state. This model-based methodology provides more precise estimates of state-level substance use than those based solely on the sample, particularly for smaller states (2).</td>
</tr>
<tr>
<td>Time period for case definition</td>
<td>Past year.</td>
</tr>
</tbody>
</table>

Background

In 2012-2013, 18.53% of U.S. adults aged 18 and over met the criterion of any mental illness in the last year, according to the NSDUH. The percentage reporting any mental illness by state ranged from 15.62% to 22.31% (3).
<table>
<thead>
<tr>
<th>Significance</th>
<th>To the extent that states and other jurisdictions can assure that effective, evidence-based interventions are put in place to prevent mental illness and its consequences, and can assure access to treatment, the value of this indicator can be expected to fall.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limitations of indicator</td>
<td>This indicator relies on multiple NSDUH questionnaire items. It relies on self-report and has a long recall period. Classification of respondents does not come from a clinician's diagnosis. The indicator captures information on the U.S. civilian, non-institutional population aged 12 or older. NSDUH excludes homeless people who do not use shelters, military personnel on active duty, and residents of institutional group quarters, such as jails and hospitals.</td>
</tr>
<tr>
<td>Limitations of data resource</td>
<td>Significant time can elapse before data are available for inclusion in a surveillance summary, since reported data rely on a two-year rolling average, data reflect the respondent's experience for a full 12 months before the interview date, and it can be 6 to 12 months after the date of the last interview before the data are cleaned and analyzed. The data reported by SAMHSA are derived from a long-running annual face-to-face household survey with high response rates and extensive quality checking, and current data are directly comparable to those from 2002 and later and appear consistent with those of other surveys on the same topics. As with any sample survey, issues with data item validity and over- or under-estimation of parameters of interest may arise. Small numbers of subjects in sub-state areas limit ability, to make sub-state area or race/ethnicity estimates, especially in less populous states.</td>
</tr>
<tr>
<td>Note</td>
<td>None.</td>
</tr>
</tbody>
</table>
References

Indicator Group: Mental Health

Indicator 17. Serious adult mental illness in the past year

<table>
<thead>
<tr>
<th>Demographic group</th>
<th>All persons aged ≥18 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>All persons aged ≥18 years who answered question items positively, meeting DSM-IV inclusion criteria, for serious mental illness (SMI) in the past year. Adults with AMI were defined as having SMI if they had any mental, behavioral, or emotional disorder that substantially interfered with or limited one or more major life activities in the past year that met DSM-IV criteria (excluding developmental disorders and SUDs) (1).</td>
</tr>
<tr>
<td>Denominator</td>
<td>All persons aged ≥18 years (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).</td>
</tr>
<tr>
<td>Measure of frequency to be reported</td>
<td>Two year prevalence with 95% confidence intervals. States should combine two survey years (example 2013-2014, 2014-2015) to provide stable state-level estimates. State estimates provided by the Substance Abuse and Mental Health Services Administration are developed using a small area estimation procedure in which state-level NSDUH data from 2 survey years are combined with local-area county and census block group/tract-level data from the state. This model-based methodology provides more precise estimates of state-level substance use than those based solely on the sample, particularly for smaller states (2).</td>
</tr>
<tr>
<td>Time period for case definition</td>
<td>Past year.</td>
</tr>
<tr>
<td>Background</td>
<td>In 2012-2013, 4.14% of U.S. adults aged 18 and over met the criterion of a serious mental illness in the last year, according to the NSDUH. The percentage of such persons reporting serious mental illness by state ranged from 3.26% to 5.48%.</td>
</tr>
<tr>
<td>Significance</td>
<td>To the extent that states and other jurisdictions implement evidence-based interventions to prevent serious mental illness and its consequences and assure access to treatment, the value of this indicator can be expected to fall.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Limitations of indicator</td>
<td>This indicator relies on multiple NSDUH questionnaire items. It relies on self-report and has a long recall period. Classification of respondents does not come from a clinician's diagnosis. The indicator captures information on the U.S. civilian, non-institutional population aged 12 or older. NSDUH excludes homeless people who do not use shelters, military personnel on active duty, and residents of institutional group quarters, such as jails and hospitals.</td>
</tr>
<tr>
<td>Limitations of data resource</td>
<td>Significant time can elapse before data are available for inclusion in a surveillance summary, since reported data rely on a two-year rolling average, data reflect the respondent's experience for a full 12 months before the interview date, and it can be 6 to 12 months after the date of the last interview before the data are cleaned and analyzed. The data reported by SAMHSA are derived from a long-running annual face-to-face household survey with high response rates and extensive quality checking, and current data are directly comparable to those from 2002 and later and appear consistent with those of other surveys of the same topics. As with any sample survey, issues with data item validity and over- or under-estimation of parameters of interest may arise. Small numbers of subjects in sub-state areas limit ability, to make sub-state area or race/ethnicity estimates, especially in less populous states.</td>
</tr>
<tr>
<td>Note</td>
<td>None.</td>
</tr>
</tbody>
</table>

Indicator Group: Mental Health

Indicator 18. Frequent mental distress (≥14 days out of 30)

<table>
<thead>
<tr>
<th>Demographic group</th>
<th>Adults aged ≥18 years.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerator</td>
<td>Adults aged ≥18 years who reported that their mental health was not good for ≥14 days in the past 30 days.</td>
</tr>
<tr>
<td>Denominator</td>
<td>Adults aged ≥18 years who report any number of days, including zero, when their mental health was not good in the past 30 days (excluding those who refused to answer, had missing answers, or answered “don’t know/not sure”).</td>
</tr>
<tr>
<td>Measure of frequency to be reported</td>
<td>Annual prevalence: crude, with 95% confidence intervals (1).</td>
</tr>
<tr>
<td>Time period for case definition</td>
<td>Past 30 days.</td>
</tr>
<tr>
<td>Data resources</td>
<td>Behavioral Risk Factor Surveillance System (BRFSS).</td>
</tr>
</tbody>
</table>

State-level data are available at the CDC BRFSS website: https://www.cdc.gov/brfss/brfssprevalence/index.html

Background

Frequent mental distress is correlated with mental illness, such as clinically significant depression and anxiety. Mental illness can cause significant morbidity and affects healthcare costs. In 2014, the percentage of adults with frequent days of mental distress (days when mental health was not good) in the past 30 days ranged from 8.0% to 15.7% among the states and Washington, D.C. The median value among the states was 11.0% (2).

Significance

Poor mental health interferes with social functioning, is associated with adverse health behaviors, and should be monitored as an overall indicator of chronic disease. Percent of population with frequent mental distress is a good summary measure of population mental health. Evidence-based public health services, mental health services, and other preventive interventions could be expected to reduce the percentage of the population with frequent mental distress.

Limitations of indicator

There is limited validation of the 14-day frequent mental distress method of analyzing responses to this questionnaire item.
Limitations of data resource

As with all self-reported sample surveys, BRFSS data might be subject to systematic error resulting from noncoverage (e.g., on college campuses, residential institutions or military bases), nonresponse (e.g., refusal to participate in the survey or to answer specific questions), or measurement (e.g., social desirability or recall bias). To address some of these potential concerns, BRFSS began including cellular telephone–only users in its 2011 data collection. Because of changes in sampling and weighting methods, 2011 is a new baseline for BRFSS, and comparisons with previous years’ data are inappropriate. As a phone-based survey it relies on self-report.

Related indicator or recommendation

MHMD-4.2: Reduce the proportion of adults aged 18 and older who experience major depressive episodes.

MDHD-9: Increase the proportion of adults with mental health disorders who receive treatment.

Note

None.

Reference
