
— 1 —

VoiceVoice
	 The Voice of K–12 Computer Sc ience Educat ion and i t s Educators
	 Volume 7, Issue 2	 May 2011

ComputationalThinking

ComputationalThinking

To function well as citizens and
as scientists in a technology-driven
world and workplace, we need to use,
understand, and navigate a changing
landscape. To this end, we have called for
and embraced the building of a national
cyberinfrastructure to enable us to com-
pete on a global level and to carry out
our lives in a secure and healthy manner.
At the same time, many of us worry that
one part of the national infrastructure
has been overlooked—the thinking skills
needed to thrive in this new environment.

In 2006, Jeannette Wing popularized
computational thinking (CT) to promote
the identification and inclusion of think-
ing skills that arise from the computing
disciplines, but that are not currently a
part of the “Three Rs”—the Fourth “R”
if you will. Jeannette’s assertion is that
CT skills are needed by everyone, in all
disciplines, and in all facets of our lives.

Informally we might define CT as
a set of thinking or problem-solving
strategies that are used to solve problems
when working with computers, and that
can also be applied to many problem
types, even absent the computer. Since
2006, many of us provided preliminary
definitions and examples of CT and then
floated them in public. Indeed, NSF
among others has funded workshops to
determine the nature of CT and created
several programs in which investigators
are asked to identify CT constructs and
test them in formal and informal experi-
ments. The definition is emergent and
it will take the participation of multiple

communities, including computing
researchers and teachers, teachers of all
disciplines, cognitive experts, and educa-
tional researchers.

One example of CT comes from the
efforts of social scientists to examine the
multitasking in which we all engage in
our daily lives and workplaces. Is multi-
tasking making us more effective or inef-
fective? An article in the Christian Science
Monitor in 2008 observed that computer
scientists grappled with the problem of
multitasking early in the development
of operating systems. In particular, they
had to develop software that was capable
of managing the multiple processes that
are running on a computer at any given
time. Why not use the approaches these
computer scientists employed to solve
the human multitasking problem? Indeed
computer scientists have long recognized
the parallels between human and 	
machine problem formulation and solu-
tion strategies. Here we have an example
of how we might apply CT to a social
science research problem!

Since 2006, there have been many ef-
forts to provide a more precise definition
of CT. The first major attempt was by the
National Academies in two workshops on
Computational Thinking for Everyone.
The report of the first workshop provides
a long list of ideas, rather disjointed, but
to be expected when uncovering essen-
tial strategies from a relatively new and
broad discipline. The second report is still
pending. The current effort to develop
a new Advanced

Is Computational Thinking the Fourth “R”?
Joan Peckham

Inside This
Issue

features
Is Computational Thinking

the Fourth “R”?
Defining Computational

Thinking for K–12
Building the Future of CS

with Blocks

columns
Classroom Tools
Out and About the

Community
Chapter Highlights
College Connection
Show Me the Numbers

info briefs
CS & IT Conference
Staff
Membership Renewal
Contribute to the CSTA Voice
Contact Info
CSTA Thanks
Meet the Authors
Mark Your Calendar
Resources

In The
Next Issue

of The
Voice

 Your CSTA
Membership

continued on page 2

VoiceVoice

— 2 —

Placement Computer Science (AP CS)
exam has identified a framework needed
for CS students and acknowledges that
there is much more to computing than
programming. Margolis and Goode have
developed a first course in computing for
high school students—Exploring Computer
Science (www.exploringcs.org)—and they
are now working to identify the core
CT constructs presented in their course.
ISTE and CSTA have convened a series of
two workshops to define an operational
definition of CT for K–12 (see article
by Stephenson and Barr in this issue).
The result, work by computer scientists
and education experts, is
perhaps the most accessible
definition to date. Much
of this information can be
found on the NSF CE-21
portal (www.computingpor-
tal.org/CE21). CE-21 is a
program at NSF to broaden
participation in computing, to identify
CT learning objectives, and to test and
broadly deploy strategies in K–14.

With all of these new ideas, there have
been doubters. After early formulations
of CT, some were alarmed that we might
be proposing to teach our children to
think like computers. Instead, we are
proposing that students learn the think-
ing skills required to solve the deepest
and most pressing problems of our times.
Computational thinkers are masters of
computers and solvers of deep problems
using skills with which we have yet to
imbue computers.

Others, hearing of the abstraction and
modeling skills thought to be a part of
CT, have asserted that students of math-
ematics and science already learn these
skills. However, many science, math-	
ematics, and engineering abstraction
skills are only taught in graduate school,
thus are currently inaccessible to the
general population. Through the intro-
duction of computers, these thinking
skills are now needed and are accessible
to everyone.

Also, while abstraction is a fundamen-
tal human approach for managing com-
plexity, a new class of abstraction skills
have emerged that are particularly suited
to problem solving in this age of comput-
ing. For example, object-oriented software

design makes heavy use of abstraction
to design large and complex software
systems that are reusable and easy to
maintain. The principal approach is to de-
sign the software as a system of interact-
ing objects to be manipulated on different
abstraction levels. The object-oriented
design paradigm could be scaffolded and
taught to very young students, and has
broad application.

This has been a general introduction
to CT. In the next issue of the Voice, I will
describe emerging definitions, connect
them to a few concrete examples, and
point to additional CT resources.

CSTA
wishes to thank

Debra
for her dedicated work as

Chair of the CSTA
Advisory Council.

CSTA
wishes to thank

Debra
for her dedicated work as

Chair of the CSTA
Advisory Council.

CSTA
wishes to thank

Debra
for her dedicated work as

Chair of the CSTA
Advisory Council.

CSTA
wishes to thank

Debra
for her dedicated work as

Chair of the CSTA
Advisory Council.

CSTA
wishes to thank

Debra
for her dedicated work as

Chair of the CSTA
Advisory Council.

CS & IT
Conference

July 11–13
New York City

www.csitsymposium.org

Executive
Officers
Michelle Hutton

President
mfh@pobox.com

Stephen Cooper
Vice-President

cooper@cs.stanford.edu

Staff
Dr. Chris Stephenson

CSTA Executive Director
Phone: 1-800-401-1799

Fax: 1-541-687-1840
cstephenson@csta.acm.org

Pat Phillips
Editor

Phone: 1-608-436-3050
Fax: 1-928-855-4258

cstapubs@csta.acm.org

Committees
Certification

cstacertification@csta.acm.org

Curriculum
cstacurriculum@csta.acm.org

Funding Development
cstagrants@csta.acm.org

Membership
cstahelp@csta.acm.org

Professional Development
cstapd@csta.acm.org

Research
cstaresearch@csta.acm.org

CSTA Voice ISSN: 1555-2128
CSTA Voice is a publication of the Computer Science Teachers
Association.
CSTA Voice is a quarterly publication for members of the Com-
puter Science Teachers Association. It provides analysis and
commentary on issues relating to K–12 computer science educa-
tion, resources for educators, and information for members. The
publication supports CSTA’s mission to promote the teaching of
computer science and other computing disciplines.
Change of Address and Membership Questions: Contact Member
Services via e-mail at cstahelp@csta.acm.org, or call 1-800-
342-6626 (U.S. & Canada) or +1-212-626-0500 (Global).
Reproduction Rights Information: No part of this publication may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopy, recording or informa-
tion storage and retrieval system, without permission in writing
from the publisher. Exception: permission to photocopy [individual]
items for internal or personal use is hereby granted by CSTA.

Criteria for submitting articles: Potential writers for CSTA
should send a brief description of the proposed article, estimat-
ed word count, statement of value to members, author’s name
& brief bio/background info, and suggested title to the editor at
cstapubs@csta.acm.org. The final length, due date and title will
be negotiated for chosen articles.
Notice to Authors Contributing to CSTA Newsletter: By submit-
ting your article for distribution in this publication, you hereby
grant to CSTA the following non-exclusive, perpetual, worldwide
rights:

• to publish in print on condition of acceptance by the editor
• �to digitize and post your article in the electronic version of

this publication
• �to allow users to copy and distribute the article for noncom-

mercial, educational or research purposes
However, as a contributing author, you retain copyright to your
article and CSTA will make every effort to refer requests for com-
mercial use directly to you.

Is Computational Thinking the
Fourth “R”?
continued from page 1

Computational thinkers are masters
of computers and solvers of deep
problems using skills with which
we have yet to imbue computers.

CSTA: The Voice of K–12 Computer Science Education and its Educators

— 3 —

When Jeanette Wing launched a discus-
sion regarding the role of computational
thinking (CT) across all disciplines, she
ignited a profound engagement with the
core questions of what computer science
is and what it might contribute to solving
problems across the spectrum of human
inquiry. Wing argued that advances in
computing allow researchers across all
disciplines to envision new problem-	
solving strategies and to test new solu-
tions in both the virtual and real world.

In the summer of 2009, the Computer
Science Teachers Association (CSTA) and
the International Society for Technology
in Education (ISTE) began a multi-phase
project supported by the National Science
Foundation, aimed at developing an 	
operational definition of CT for K–12.

Developing an operational definition
of, or approach to, CT that is suitable for
K–12 is especially challenging because
there is, as yet, no widely agreed upon
definition of CT. In addition, to be useful,
this definition must ultimately be coupled
with examples that demonstrate how CT
can be incorporated in the classroom. The
primary work of the project was there-
fore carried out during two workshops;
the first focused on developing a shared
understanding of CT, and the second on
creating exemplar resources and strategies
that would support the implementation of
CT concepts and skills across grade levels
and subject areas.

In attempting to define what distin-
guishes CT from other problem-solving
methods, the educators involved in this
project (more than 30 educators represent-
ing all grade levels and multiple subject
areas) focused on the centrality of the
computer and a set of concepts encom-
passed by CT.

“CT is an approach to solving problems in
a way that can be implemented with a com-
puter. Students become not merely tool users
but tool builders. They use a set of concepts,
such as abstraction, recursion, and iteration,
to process and analyze data, and to create real
and virtual artifacts. CT is a problem-solving
methodology that can be automated and trans-
ferred and applied across subjects.”

They also envisioned CT manifesting
in the classroom through active problem
solving. They saw students “engaged in
using tools to solve problems”, “comfort-
able with trial and error”, and working
in “an atmosphere of figuring things out
together”.

The project, while not yet complete, has
already resulted in the creation of a num-
ber of useful artifacts, perhaps the most
important being the following operational
definition of CT.

CT is a problem-solving process that
includes (but is not limited to) the following
characteristics:

• �Formulating problems in a way that
enables us to use a computer and other
tools to help solve them;

• �Logically organizing and analyzing data;
• �Representing data through abstractions

such as models and simulations;
• �Automating solutions through algorithmic

thinking (a series of ordered steps);
• �Identifying, analyzing, and implementing

possible solutions with the goal of
achieving the most efficient and effective
combination of steps and resources; and

• �Generalizing and transferring this problem
solving process to a wide variety of
problems.

It has also led to identification of a
number of dispositions or attitudes that
are essential dimensions of CT. These
dispositions or attitudes include:

• �Confidence in dealing with complexity;
• �Persistence in working with difficult

problems;
• �Tolerance for ambiguity;
• �The ability to deal with open-ended

problems; and
• �The ability to communicate and work

with others to achieve a common goal
or solution.

In addition to these definitions, the
project team is creating a number of re-
sources to support the implementation of
CT in K–12. These include:

• �A table identifying core CT concepts
and capabilities and providing
examples of how

Defining Computational Thinking for K–12
Chris Stephenson and Valerie Barr

Contribute
to the

CSTA Voice
The editorial board of the CSTA
Voice is dedicated to ensuring that
this publication reflects the interests,
needs, and talents of the CSTA
membership. Please consider sharing
your expertise and love for computer
science education by contributing
newsletter content.

Potential writers for the CSTA Voice
should send a brief description of
the proposed article, estimated
word count, statement of value to
members, author’s name and brief
bio/background info, and suggested
title to the editor at: cstapubs@csta.
acm.org. The final length, due date,
and title will be negotiated for chosen
articles. Please share your knowledge.

Volunteer today!

The CSTA Voice
welcomes your

comments.
E-mail: cstapubs@csta.acm.org
Phone: 1-608-436-3050
Fax: 1-928-855-4258

Letters to the Editor are limited to 200
words and may be edited for clarification.

Let us know if
your contact

information changes.
cstephenson@csta.acm.org

ACM founded CSTA as part of
its commitment to K–12

computer science education.
continued on page 4

VoiceVoice

— 4 —

they might be embedded in activities
across multiple disciplines;

• �An implementation strategy matrix
that identifies activities and outcomes
by key stakeholders in the short term,
midterm, and long term;

• �A set of exemplar activities for
embedding CT across grade bands and
subject areas;

• �A one-page flier describing CT; and

• �Key articles written by members of the
project team.

All of these resources will be made
available on the CSTA website (csta.acm.
org). We strongly encourage you to review
these resources and join the conversation
about how we can best enable all of our
students to incorporate CT concepts and
skills into their knowledge base.

This project is supported by the 	
National Science Foundation under Grant
Nos. 0964217 and 1030054.

How do people conceptualize

computation? What tools would allow
people with no programming experience
to build sophisticated simulations and
games? For 15 years, supported by the
National Science Foundation, we have re-
searched these questions.
The AgentSheets software
authoring environ-
ment resulting from this
research has been used
worldwide by students
in curricular and extra-
curricular contexts.

Scalable Game Design is
our latest curriculum design initiative that
enhances K–12 education with game design-
based curriculum and teacher training
aligned with standards. Scalable refers to
the scope of applications, starting with
simple game design in middle schools and
advancing along a gentle learning slope, all
the way to graduate school. We have started
to use the notion of computational thinking
(CT) tools as a combination of curriculum
based on CT skills, such as Scalable Game
Design, and technical authoring tools, such
as AgentSheets.

Based on our experiences, we have iden-
tified requirements for effectively includ-
ing computer science (CS) education into
schools and we created a checklist to assess
the effectiveness of CT teaching strategies.

� Low Threshold: To make CS inclusive
to women and other underrepresented
groups, an ideal strategy may be to make

it an integral part of existing required
courses, such as early exploratory topics.
In this context, it is typically feasible to
squeeze in a one-week (five hours) mod-
ule. To be successful it must be possible
for students to complete a project, such as

the Frogger game, in this allowed time. If
the project is hard to build and the game
design activities become frustrating, little
progress towards building CT skills is
achieved. With AgentSheets, most students
finish Frogger in the first two hours, and
additional game creation activities follow.

� High Ceiling: If the students cannot make
interesting, playable games, then their
initial excitement quickly gives way to
big disappointment. Students need ways
to build games with artificial intelligence,
math, and complex behavior. How can
my characters find the shortest path in a
maze? How can I make them collaborate
or compete? This type of sophistication
may seem out of the reach of middle
school students but we have found ways
to scaffold game design with CT pat-
terns to the point where they can build
games that, not too long ago, would have

Computational Thinking for Game Design
Alexander Repenning and Andri Ioannidou

CSTA
thanks

The Web
Repository
Cataloging
Volunteers

L eade r s :

Joe Kmoch
Debbie Carter

Dave Burkhart
Renee Ciezki
Myra Deister
Rebecca Dovi
Ria Galanos

Jacqueline Harper
Mindy Hart

Stephanie Hoeppner
Michelle Hutton

Debbie Klipp
Karen Lang

Eugene Lemon
Ron Martorelli
Tim McMichael

Daniel Moix
Deepa Muralidhar

Jill Pala
Margot Phillipps
Tammy Pirmann
Johanna Rivera
Cihan Taktak

Ronald Tenison
Angie Thorne

Jeannie Turner

Defining Computational Thinking
for K–12
continued from page 3

Scalable refers to the scope of
applications, starting with simple
game design in middle schools and
advancing along a gentle learning
slope, all the way to graduate school.

CSTA: The Voice of K–12 Computer Science Education and its Educators

— 5 —

Meet the
Authors

Valerie Barr
Union College, Schenectady, NY
Valerie is a Professor of CS. She is
working on creating a campus-wide
computation program that will
engage all students in computing,
regardless of their field of interest.

Andri Ioannidou
University of Colorado, Boulder
Andri is the Senior Project Manager
of AgentSheets Inc. She teaches
game design classes at all levels,
nationally and internationally.

Joan Peckham
University of Rhode Island
Joan is a Professor of CS. She is
currently on rotation at the National
Science Foundation, where she is
serving as a Program Director in the
Office of Cyberinfrastructure.

Alex Repenning
University of Colorado, Boulder
Alex is a Professor of CS and creator
of the AgentSheets simulation and
game-authoring tool. He has been
teaching game design courses in
the U.S., Europe, and Asia.

Chris Stephenson
Executive Director, CSTA
Chris is a long-time advocate for
K–12 CS education. She is the
author of several textbooks, white
papers, and scholarly articles on CS
and adaptive technologies.

Audrey Van Norman
Marketing Specialist, iD Tech Camps
Audrey is responsible for making
teachers and students aware of the
many programs offered by iD Tech
Camps’ youth technology summer
program, located at 60 prestigious
universities in the U.S.

Elaine Kao
Google, Inc.
Elaine is on the Google education
team managing several K–12
initiatives, including Exploring
Computational Thinking. She has
been in the industry for over 12
years and has played a variety of
roles, from software engineer to
product and program manager.

required much more advanced CS skills.

� Scaffolds Flow: Optimal flow in game de-
sign requires balancing design challenges
and developing skills by scaffolding
the process with well-defined stepping
stones (Csikszentmihalyi, 1990). Increas-
ingly complex patterns and interactions
are gradually introduced to students.
These patterns can be used to sequence a
number of games, starting with a simple
Frogger game all the way up to Sims-like
games and complex computational 	
science applications. CT tools, coupled
with curricula designed in anticipation
of the next challenge, deliver a scaffolded
gentle-slope learning trajectory.

� Enables Transfer: Teachers can ask their
students, “Now that you can make Space
Invaders, can you build a science simula-
tion?” Perhaps, this question really gets
to the core of CT. This is what educators
believe learning should be able to achieve:
transfer! How can game design skills
transfer to model building? One way is to
develop a higher-level CT pattern invento-
ry. This inventory is a collection of concep-
tual patterns that are transferable between
a number of applications. To support this
kind of transfer, CT tools need to include
functionality relevant to game design as
well as to science simulation design. Exam-
ples of functionality include visualization
tools such as plotters and tools to export
data into other tools such as spreadsheets.

� Supports Equity: To be effective, tools
must motivate and educate students
across ethnicity and gender, in a variety of
educational settings from elective classes
to required courses. Formal studies such
as an independent research study by the
Stanford School of Education (Walter,
2007), concluded that both boys and girls

express the same high levels of desire
to continue with game design using
AgentSheets. Teachers report: a) increased
participation by girls in computer classes,
and b) both boys and girls are so ener-
gized after using AgentSheets that they go
to the counseling office to put computers
as their first elective choice.

� Systemic & Sustainable: For computa-
tional tools to be successfully integrated in
K–12 education, they need to be systemi-
cally adopted by schools and districts.
Students are intrinsically motivated
by game design activities to engage in
problem solving, including accessing,
compiling, and integrating information,
outcomes that are consistent with those
suggested by the ACM K-12 CS Model
Curriculum. We have developed teacher
training and curriculum aligned with
ISTE NETS standards and have inte-
grated AgentSheets into the middle school
computer education curriculum of entire
school districts. AgentSheets Inc. and the
University of Colorado are currently
collaborating on an NSF-funded project
that implements Scalable Game Design in
schools in diverse areas in Colorado (tech-
nology hub, inner-city, rural, and remote/
tribal areas).

Visit the Scalable Game Design wiki
(scalablegamedesign.cs.colorado.edu) and
AgentSheets website (www.agentsheets.com)
to see what students are doing, try some
of the tutorials, and provide feedback.

References:
Csikszentmihalyi, M. (1990). Flow: The

psychology of optimal experience. New
York: Harper Collins Publishers.

Walter, S. Barron, B. Forssell, K. & 	
Martin, C. (2007). Continuing Motivation
for Game Design. CHI, 2007, 2735-2740.

CSTA Member in the News:
Evelyn Torres-Rangel

LA Lakers Teacher of the Month
Evelyn is a teacher at Gabrielino High School and president of the

Southern California CSTA. She has led her school’s award winning MESA
(Math, Engineering, and Science Achievement) program for the past 25 years.

Selection of an award recipient is based on exemplary teaching.

VoiceVoice

— 6 —

Classroom Tools
Exploring Computational Thinking at Google
Elaine Kao

Over the past year and a half, a group of California-
credentialed teachers and some of our own Google

engineers came together to discuss and explore ideas about
how to incorporate computational thinking (CT) into the K–12
curriculum to enhance student learning and build this critical
21st Century skill in everyone.

While different sources define CT slightly differently, we
define it as a set of skills that software engineers use to write the
programs that underlie all computer applications.
• �Decomposition: the ability to break down a problem into sub-

problems.
• �Pattern recognition: the ability to notice similarities,

differences, properties, or trends in data.
• �Pattern generalization: the ability to extract unnecessary details

and generalize those that are necessary in order to define a
concept or idea in general terms.

• �Algorithm design: the ability to build a repeatable, step-by-step
process to solve a particular problem.

Given the increasing prevalence of technology in our day-to-
day lives and in most careers, we believe that it is important to
raise this base level of understanding in everyone.

To this end, we’ve developed a program that is focused on
exploring CT in and outside of the classroom. Similar to some
of our other initiatives in education, including CS4HS (www.
cs4hs.com) and Google Code University (code.google.com/
edu), this program is committed to providing educators with
access to our curriculum models, resources, and communities.
Our goal is to help teachers learn more about CT, discuss it as
a strategy for teaching and understanding core curriculum, and
easily incorporate CT into their own curriculum in math, science,
language, history, and beyond.

The lessons, examples, and programs developed by the
team reflect both the teachers’ expertise in pedagogy and
K–12 curriculum, as well as our engineers’ problem-solving
techniques that are critical to our industry. Our goal in the
coming months is to further expand our curriculum models to
demonstrate how CT can work in all subjects, not just in STEM-
related subjects, as well as in all grade levels.

Before launching this program, we reached out to several
educators and classrooms and had them try our materials. We
received valuable feedback that will be used into future versions.
• �CT as a strategy for teaching and student learning works well

with many subjects, and can easily be incorporated to support
the existing K–12 curriculum.

• �Models help to call out the specific CT techniques and provide
more structure around the topics taught by educators, many
of whom were already unknowingly applying CT in their
classrooms.

• �Including programming exercises in the classroom can
significantly enrich a lesson by both challenging the advanced
students and motivating the students who have fallen behind.

• �Examples provide educators with a means of re-teaching
topics that students have struggled with in the past, without
simply going through the same lesson that frustrated them
earlier.

To learn more about our program or access our CT
curriculum materials and other resources, including our
moderated discussion forums, visit www.google.com/edu/ect.

Out and About the
Community
Keeping Kids Active in STEM Year ‘Round
Audrey Van Norman

Because computers and technology never go on summer
vacation, STEM (science, technology, engineering and

mathematics) education should not be relegated to only nine
months of the school year either. iD Tech Camps fill the summer
void for students ages seven to eighteen with fun technology
programs that combine the energy of traditional summer camps
with the computer science (CS) skills necessary for success in
today’s job market.

During the weeklong programs, students learn in small
specialized classes and apply new CS skills towards the creation
of a final project. The camp environment makes STEM subjects
more accessible to students by putting technology in the exciting
contexts of robotics, mobile programming, web design, film
production, sports and technology, and a variety of game design
and development topics.

Learning in a camp environment is also effective because
it builds on students’ existing interests—gaming, for instance.
When students see the jump from simply playing video games
to designing them, their hobbies suddenly become the possible
foundations for careers. Pete Ingram-Cauchi, CEO of iD Tech
Camps, believes that encouraging STEM education early is the
best way to prepare for today’s job market. “When you are 13
years old and learning to program your own iPhone apps—that
is just cool. It gets you ready for the future. It is relevant.”

CS skills are increasingly important for all students.
According to the Entertainment Software Association 2010
report, the video game software industry grew at an annual rate
of 8.7% between 2005 and 2009. The U.S. Bureau of Labor
Statistics estimates that employment of computer software
engineers will grow by 32% through 2018, much faster than the
average for all occupations.

The iD Tech Camps programs are held at 60 universities
throughout the U.S., including MIT, Harvard, Princeton,
Stanford, and Carnegie Mellon. Campers can participate in
innovative programs including an introductory programming
course for kids as young as seven, Teen Academies during
which students build a professional portfolio, and iD 365,
a monthly series of online workshops like Android App
Development.

For more information visit: www.internalDrive.com.

Chapter Highlights
Great Job CSTA-San Diego!

CSTA’s San Diego Chapter is at the heart of a new partnership
and a recent symposium dedicated to reintroducing

computer science (CS) curricula into all San Diego County
schools in the coming years.

The partnership consists of the San Diego Chapter of CSTA, the
University of California San Diego, and the University’s San Diego
Supercomputer Center (SDSC) Education Team, led by Director
Diane Baxter. SDSC hosted the symposium where:
• �SDSC Director, Michael Norman, explained the relationship of

CS with astrophysics. For example, “seeing” the earliest time in
the existence of the universe requires virtual imaging since it is
inaccessible through the visible or infrared spectrum.

CSTA: The Voice of K–12 Computer Science Education and its Educators

— 7 —

• �Gail Chapman provided an update on the Los Angeles
Unified School District Exploring Computer Science
introductory course (www.exploringcs.org). Gail, who co-
authored the curriculum, has worked to have it included in
the district curriculum and was candid concerning both the
accomplishments and the challenges faced.

• �Beth Simon, Lecturer with UCSD’s Computer Science and
Engineering Department and newly appointed Director of
the Center for Teaching Development, described the new
Computer Science Principles course at UCSD. Beth, who is
teaching one of five national pilot curricula for the proposed
AP CS Principles course (csprinciples.org), discussed her
curriculum, pedagogical approach, and outcomes.

The three largest public school districts in San Diego County
were represented by board trustees, administrators, and
curriculum personnel, who contributed to a discussion of the
shared SDSC and CSTA goals and the potential incorporation of
the Exploring CS and the AP CS Principles courses in the San
Diego area.

Future meetings will involve dialogues and planning with
district leadership to lay the foundation for district CS curricula.
The partnership will provide the resources and staff training
and districts will work at the local level by encouraging staff,
analyzing student needs, and examining systemic elements
such as scheduling. Learn more at: sandiegocsta.org.

College Connection
Rochester Institute of Technology

Editor’s note: This dialogue with Paul Tymann, Chair of the
Department of Computer Science at the Rochester Institute of
Technology, is a continuation of our series of interviews with
CSTA institutional members. Please share these details about
the CS programs at RIT (www.rit.edu) with your students.

The Rochester Institute of Technology (RIT) is one of the
world’s leading technological institutions. Enrolling approximately
17,000 students and located in Rochester, NY, RIT is comprised
of nine colleges, and has more than a dozen graduate and
undergraduate programs in computing and computing-related
disciplines. The hub of computing education at RIT is the
B. Thomas Golisano College of Computing and Information
Sciences, which enrolls approximately 2,500 undergraduates
and 600 graduate students, making it one of the largest
producers of computing graduates in the world. The college
offers graduate and undergraduate programs including a Ph.D.
in Computing and Information Sciences.

CSTA: What draws students to your program and what keeps
them there?
Tymann: RIT has a reputation as an outstanding academic
institution with faculty committed to teaching and state-of-the art
facilities. Additionally, RIT emphasizes experiential education,
especially cooperative education where students gain paid,
practical experience in their field before graduation. Students
graduate with as much as one year of paid work experience in
their field.

CSTA: Tell us about innovative majors or programs of study.
Tymann: In addition to the more traditional programs like CS
and IT, the B. Thomas Golisano College of Computing and
Information Sciences offers programs in software engineering,
game design and development, information security and

forensics, medical informatics, and new media interactive
development. Innovative programs in other colleges include
bioinformatics and computer animation.

CSTA: What cool careers are your graduates prepared for?
Tymann: The sky is really the limit for CS students at RIT. There
is not a discipline around that does not use computers. Our
graduates work in a wide variety of fields including traditional
software development, game development, and computer
effects for movies. Our students are also well-prepared to pursue
graduate education and advanced degrees in computing.

CSTA: What distinguishes your program from others?
Tymann: In addition to career-focused technological education,
RIT faculty are educators first and researchers second. There
are many opportunities for students to get involved in a wide
variety of projects outside of the classroom. RIT has such a
breadth of disciplines across its nine colleges that students
enjoy interactions in and out of the classroom with students from
diverse backgrounds and academic interests.

CSTA: Tell us a bit about the social environment.
Tymann: When most people think of CS majors they instantly
envision of the classical stereotype of the lone CS student sitting
in front of a terminal and coding. In reality, very few software
systems are written by individuals; they are built by teams of
computer scientists. Accordingly, at RIT our students often work
in teams. In our second course for majors, for example, students
work in teams of three to write the logic for a board game. At
the end of the term we host the “Battle Royale” that pits the
programs written by one team against another.

Outside of the classroom, the Computer Science Community
(CSC) serves as a community for learning, support, friendship,
social activity, and mentorship. CSC hosts workshops on new
computing technologies, information sessions with various
employers, and pizza nights that feature board games or laser
tag.

Among the residence halls, Computer Science House,
founded in 1976, is one of the oldest and most popular Special
Interest Houses at RIT. Located on the third floor of Nathaniel
Rochester Hall, CSH provides an innovative living environment
for over fifty students and a gathering place for many more
that live off-floor. Students develop special projects as part of
this experience. Projects have included the very first internet-
based soda machine, a drink delivering robot, and a multi-touch
display.

Show me the Numbers
Volume of computational thinking

references found with an 	
Internet search engine

Computational thinking (CT). 3,440,000

CT examples. 2,580,000

Teaching CT 2,090,000

CT and university. 1,920,000

CT definition. 652,000

CT and K–12. 49,600

— 8 —

Voice Computer Science Teachers Association
2 Penn Plaza, Suite 701
New York, NY 10121-0701Voice

We’re on the Web! csta.acm.org

	 The Voice of K–12 Computer Sc ience Educat ion and i t s Educators
	 Volume 7, Issue 2	 May 2011

mark your calendar
NCWIT Aspiration in Computing
Various local and state award event dates
www.ncwit.org/work.awards.aspiration.find.html

Alabama Computer Camps
June 6–24, 2011 in Tuscaloosa, Alabama
www.cs.ua.edu/outreach/camps

CS & IT Conference
July 11–13, 2011 in New York City
www.csitsymposium.org

CH4HS: Carnegie Mellon
July 6–8, 2011 in Pittsburgh, Pennsylvania
www.cs.cmu.edu/cs4hs

Microsoft Innovative Educator Institutes
June 21–22 and 23–24, 2011 in Rochester, New York
www.microsoft.com/education/training/microsoftinstitute/
teachers/Innovative_Educator_Program/default.aspx

Consortium for Computing Sciences in Colleges 	
(CCSC: Midwestern)
September 23–24, 2011 in Huntington, Indiana
www.ccsc.org/midwest/Conference

Consortium for Computing Sciences in Colleges 	
(CCSC: Northwestern)
October 7–8, 2011 in Richland, Washington
www.ccsc.org/northwest

Consortium for Computing Sciences in Colleges 	
(CCSC: Rocky Mountain)
October 14–15, 2011 in Orem, Utah
www.ccsc.org/rockymt

Consortium for Computing Sciences in Colleges 	
(CCSC: Eastern)
October 14–15, 2011 in Arlington, Virginia
www.ccsc-e2011.org

Grace Hopper Celebration of Women in Computing
November 9–12, 2011 in Portland, Oregon
gracehopper.org/2011

Consortium for Computing Sciences in Colleges 	
(CCSC: Southeastern)
November 11–12, 2011 in Greenville, South Carolina
www.ccscse.org

resources
Here’s more information on topics covered in this issue of the CSTA Voice.

Page 1: Computer Science Unplugged csunplugged.org
Page 1: �Discussions: Jon Udell with Jeannette Wing

itc.conversationsnetwork.org/shows/detail1844.html
Page 1: �Discussions: Jon Udell with Joan Peckham

www.conversationsnetwork.org/shows/detail4094.html
Page 2: CE-21 Portal www.computingportal.org/CE21
Page 2: CS & IT Conference www.csitsymposium.org
Page 3: CSTA csta.acm.org
Page 4: Agent Sheets www.agentsheets.com
Page 4: CSTA Source Web Repository csta.acm.org/WebRepository/WebRepository.html
Page 5: �LA Lakers Teacher of the Month

www.nba.com/lakers/community/1011seom_february.html
Page 5: Gabrielino High School www.gabrielino.sgusd.k12.ca.us
Page 6: Google Exploring Computational Thinking www.google.com/edu/ect
Page 6: iD Tech Camps www.internalDrive.com
Page 6: CSTA San Deigo sandiegocsta.org
Page 6: San Diego Supercomputer Center education.sdsc.edu/teachertech
Page 7: CS Principles csprinciples.org
Page 7: Exploring CS www.exploringcs.org
Page 7: CSTA Chapters www.csta.acm.org/About/sub/CSTAChapters.html
Page 7: Rochester Institute of Technology www.rit.edu

CS & IT
Conference
July 10–13

New York City

➤ �Explore issues and trends
relating directly to your
classroom

➤ �Network with top professionals
from across the country

➤ �Interact with other teachers
to gain new perspectives on
shared concerns

Register today!
www.csitsymposium.org

