

HIGHLY PATHOGENIC AVIAN INFLUENZA (HPAI, FOWL PLAGUE)

ANIMAL GROUP AFFECTED	TRANS- MISSION	CLINICAL SIGNS	FATAL DISEASE ?	TREATMENT	PREVENTION & CONTROL
Birds, especially galliformes, anseriformes and struthioformes; humans	Directly (aerosol, body fluids, faeces) or indirectly (contaminated vehicles, material or persons)	In non- domestic birds usually none or mild respiratory signs; in poultry very high morbidity and mortality with peracute to acute course	HPAI has a high morbidity and mortality in domestic poultry; mortality in non-domestic birds has been very rarely described (common tern, young ostriches)	No treatment currently allowed	<i>In houses</i> <i>in zoos</i> Vaccination of all susceptible birds (currently requires special permit); quarantine of susceptible birds, equids, pigs and pinnipeds; notifiable disease

Manuel Garcia Hartmann February 2004 Zoo Duisburg, Mülheimer Str. 273, 47058 Duisburg, February 2004 Germany; Hartmann @zoo-duisburg.de, tel. +49-203-305.59.42, fax: +49-203-305.59.22 Fact sheet reviewed by Prof. Thomas C. Mettenleiter, Director BFAV Riems, Germany Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (Sterma hirundo), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenza viruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5A. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laborat	Fact sheet compiled by	Last update				
Zoo Duisburg, Mülheimer Str. 273, 47058 Duisburg, Germany; Hartmann@zoo-duisburg.de, tel. +49-203-305.59.42, fax: +49-203-305.59.22 Fact sheet reviewed by Prof. Thomas C. Mettenleiter, Director BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Viet	Manuel García Hartmann	February 2004				
Germany; Hartmann@zoo-duisburg.de, tel. +49-203-305.59.42, fax: +49-203-305.59.22 Fact sheet reviewed by Prof. Thomas C. Mettenleiter, Director BFAV Riems, Germany Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004	Zoo Duisburg, Mülheimer Str. 273, 47058 Duisburg,					
tel. +49-203-305.59.42, fax: +49-203-305.59.22 Fact sheet reviewed by Prof. Thomas C. Methelieter, Director BFAV Riems, Germany Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to	Germany; Hartmann@zoo-duisburg.de,					
Fact sheet reviewed by Prof. Thomas C. Mettenleiter, Director BFAV Riems, Germany Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI , but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicit	tel. +49-203-305.59.42, fax: +49-203-305.59.22					
Prof. Thomas C. Mettenleiter, Director BFAV Riems, Germany Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamilfu @ (oseltamivir) was recommended and used in The Nether	Fact sheet reviewed by					
Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close c	Prof. Thomas C. Mettenleiter, Director BFAV Riems, Ge	rmany				
Susceptible animal groups Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu (B) (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human	Dr. Ortrud Werner, National Reference Laboratory, BFAV Riems, Germany					
Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, quails, ducks <u>Non-domestic birds:</u> order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human	Susceptible animal groups					
 <u>Non-domestic birds:</u> order anseriformes, galliformes and struthioformes are the ones most likely to be susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk o	Domestic birds: chicken, turkey, young ostriches (also for LPAI), peafowl, guinea-fowl, guails, ducks					
susceptible to HPAI, but one case of high mortality in common tern (<i>Sterna hirundo</i>), order charadriiformes, in 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses.	Non-domestic birds: order anseriformes, galliformes and struthioformes are the ones most likely to be					
 1961 in South Africa is the only documented outbreak of HPAI in the wild; juvenile ostriches were affected by HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution 	susceptible to HPAI, but one case of high mortality in co	ommon tern (Sterna hirundo), order charadriiformes, in				
HPAI in the 1999/2000 outbreak in northern Italy. In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution	1961 in South Africa is the only documented outbreak of	of HPAI in the wild; juvenile ostriches were affected by				
In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ((e) (seltamivir)) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution Warde wide	HPAI in the 1999/2000 outbreak in northern Italy.					
charadriiformes, but also from psittacidae, passeriformes, struthioformes, turacos and many others. Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution	In contrast, LPAI probably affects all birds and has been isolated most frequently from anseriformes and					
Causative organism The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution	charadriiformes, but also from psittacidae, passeriformes	s, struthioformes, turacos and many others.				
The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	Causative organism					
characterised and numbered by their 15 types of haemagglutinin (H) and 9 types of neuramindase (N). Any combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	The group of avian influenzaviruses are orthomyxoviruses of the influenza A type. They are further					
combination of these two protein types seems possible and most have been isolated from birds. A distinction is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	characterised and numbered by their 15 types of haem	hagglutinin (H) and 9 types of neuramindase (N). Any				
is made between avian influenza viruses of low pathogenicity (LPAI) and of high pathogenicity (HPAI) with mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	combination of these two protein types seems possible	and most have been isolated from birds. A distinction				
mortality in domestic birds up to 100%. The HPAI viruses have traditionally been restricted to subtypes H5 and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	is made between avian influenza viruses of low pathog	genicity (LPAI) and of high pathogenicity (HPAI) with				
and H7, although not all viruses of these subtypes cause HPAI. In several cases, LPAI have mutated to HPAI, both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	mortality in domestic birds up to 100%. The HPAI viru	ses have traditionally been restricted to subtypes H5				
both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	and H7, although not all viruses of these subtypes cause	e HPAI. In several cases, LPAI have mutated to HPAI,				
details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution	both in epidemics as well as in laboratory passaging of the virus. The current definition of HPAI differs in some					
pathogenicity). Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	details between the OIE and the EU (the latter uses intravenous pathogenity index IVPI for assessment of					
Zoonotic potential Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution	pathogenicity).					
Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses.	Zoonotic potential					
humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004); preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution	Avian influenza is a classical zoonosis and this threat needs to be considered seriously since fatal disease in					
preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands, Germany and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	humans has occurred (The Netherlands 2003, Hong Kong 1997 & 2003, Thailand and Vietnam 2003/2004):					
and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	preventive medication with Tamiflu ® (oseltamivir) was recommended and used in The Netherlands. Germany					
human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human viruses. Distribution World wide	and Belgium in 2003 for those persons in close contact with infected birds. Additionally, vaccination against					
viruses. Distribution	human influenza was recommended to reduce the risk of reassortment by coinfecting avian and human					
Distribution World wide	viruses.					
World wide	Distribution					
	World-wide					

Transmission By direct contact (aerosol, body fluids and excrements) and by indirect transmission (contaminated instruments, vehicles and persons). Indirect transmission by vehicles and persons, by contaminated faeces and by bird transport was proven to be important in the 2003 outbreak in The Netherlands and Germany, and other outbreaks. Transmission from carrier wild birds to domestic birds is very often assumed but –though suggestive data exist- there is little hard evidence published to prove this hypothesis.				
Incubation period Highly variable, from few hours to one week; OIE definition (for declaring a country status "free") is 21 days				
Domestic birds: clinical symptoms are very variable, mainly affecting the GI and respiratory tract, and the CNS, but are usually associated with very high morbidity and mortality, both reaching up to 100%. Also domestic turkeys, quails, pheasants and peafowl succumb to HPAI. Pigeons are believed to be resistant or only minimally susceptible (Panigraphy et al., 1996).				
<u>Non-domestic birds:</u> most species show no symptoms at all and some evidence exists that this is due to the lack of an enzyme –except in intestine and lungs- for cleavage of the hemagglutinin precursor, necessary for pathogenicity; however, evidence for replication of the virus in all major target organs has been proven for one species, i.e. muscovy ducks, <i>Cairina moschata</i> , (Capua & Mutinelli, 2001b); ostriches, common tern and muscovy ducks have become clinically ill with associated mortalities.				
Post mortem findings				
haemorrhagies, enteritis. See Capua & Mutinelli 2001a.				
Diagnosis By suspicion, followed by culling, pathology and virology by recognised methods in national reference laboratories.				
Material required for laboratory analysis				
Samples of trachea, lung, intestine, CNS, blood ("acute sera") plus cloacal and tracheal swabs. Send				
moribund and dead birds for pathological investigation. Send samples cooled and well protected to avoid any				
leakage and any potential spread of the virus (see reference "Centro Regionale per l'Epidemiologia				
Veterinaria, 2000").				
FU Reference Laboratory				
Dr Densis L Alexander				
Central Veterinery Leberatory Weybridge				
New Llow Addicators, Surroy KT15 2ND				
INUTED KINCDOM				
[16]: +44-1932- 34.11.11; Fax: +44-1932- 34.70.46				
Email: d.j.alexander@via.defra.gsi.gov.uk				
OIE Reference Laboratories				
Dr John Pasick				
Canadian Food Inspection Agency, National Centre for Foreign Animal Disease 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4				
Tel: (1.204) 789.20.13 Fax: (1.204) 789.20.38				
Email: jpasick@inspection.gc.ca				
Dr Hualan Chen				
National Avian Influenza Reference Laboratory, Animal Influenza Laboratory of the Ministry of Agriculture,				
Harbin Veterinary Research Institute, CAAS				
427 Maduan Street, Harbin 150001				
CHINA (People's Republic of)				
Tel: (86-451) 85.93.50.79 Fax: (86-451) 82.73.31.32				
Email: hlchen1@vahoo.com				
Email: hlchen@hvri ac.cn				
Web: <u>http://hvri.ac.cn</u>				
Dr Timm C. Harder				
Federal Research Centre for Virus Diseases of Animals (BFAV), Institute of Diagnostic Virology				
Boddenblick 5a, 17493 Greifswald - Insel Riems				
GERMANY				
Tel: (49.383) 51.71.52 Fax: (49.383) 51.72.75				
Email: timm.harder@fli.bund.de				

1				
•	Dr Ian Brown			
	VLA Weybridge			
	New Haw, Addlestone, Surrey KT15 3NB			
	UNITED KINGDOM			
	Tel: (44.1932) 35.73.39 Fax: (44.1932) 35.72.39			
	Email: <u>i.h.brown@vla.defra.gsi.gov.uk</u>			
•	Dr Paul W. Selleck			
	CSIRO, Australian Animal Health Laboratory (AAHL)			
	5 Portarlington Road, Private Rad 24 Geolong 3220 Victoria			
	STORALING TOTAL A			
	Tel: (61.3) 52.27.50.00 Fax: (61.3) 52.27.55.55			
	Email: <u>paul.selleck@csiro.au</u>			
•	Dr B. Panigrahy			
	National Veterinary Services Laboratories			
	P.O. Box 844, Ames, IA 50010			
	UNITED STATES OF AMERICA			
	Tel: (1,515) 663,75,51 Fax: (1,515) 663,73,48			
	Email: brundaban panjarahy@anbis.usda.gov			
	Linai. <u>Brandaban pangrany e aprilo abda gov</u>			
	Dr Ilaria Canua			
	Istituto Zooprofilattico Sperimentale delle Venezie. Laboratorio Virologia			
	Via Parso 14/A 25020 Lagranza Badava			
	Ta Kumea 14/A, 33020 Legilaio, Faulova			
	Tel: (39.049) 808.43.79 Fax: (39.049) 808.43.60			
	Email: <u>icapua@izsvenezie.it</u>			
•	Dr H. Kida			
	Graduate School of Veterinary Medicine, Hokkaido University, Department of Disease Control			
	Kita-18, Nishi-9, Kita-ku, Sapporo 060-0818			
	JAPAN			
	Tel: (81.11) 706.52.07 Fax: (81.11) 706.52.73			
	Email: kida@vetmed.hokudai.ac.ip			
•	Dr S.C. Dubey			
	High Security Animal Disease Laboratory, Indian Veterinary Research Institute, Indian Council of			
	Agricultural Research			
	Anand Nagar, Bhopal 462021, Madhva Pradesh			
	INDIA			
	Tel: (91,7552) 26,94,87 Fax: (91,7552) 26,94,87			
	Email: scd 11@vahoo.in			
Tre	eatment			
Us	ually not allowed by law. Amantadine has been used experimentally in birds but is claimed to develop			
res	sistencies Broad spectrum antibiotics supportive therapy and increasing surrounding temperature (virus is			
les	s resistant to higher temperatures) may help to reduce mortality			
Pr	evention and control in zoos			
Va	ccination of all susceptible birds			
Re	duction of food supply for wild birds			
	addition of direct contract hetween suscentible birds and persons			
	introl suppliars, anterprises, personnal for their contacts with notantially infected promises (cave; food			
	and of suppliers, enterprises, personnel for the contacts with potentially interced premises (cave. rood			
Su	Suppliers are believed to have transiened the virus in the Nethenalius and Germany in 2003)			
Quarantine of susceptible birds and animals in case of a nearby outbreak				
Co	mplete isolation of the zoo in case of an outbreak inside the zoo, potentially culling of infected birds,			
su	bdivision of the zoo into epidemiological units			
Ge	neral measures of epidemiological control, like increased rodent control etc.			
Su	ggested disinfectant for housing facilities			
AC	cording to national law and disinfectants registered for this use in each EU country (as specified by EU			
dir	ective 92/40/EEC). Citric acid has been used in the past.			
NC	NUTICATION			
An	y suspicion of HPAI has to be notified to the national veterinary authorities (OIE list A disease)			

Guarantees required under EU Legislation

Guarantees required by EAZA Zoos

Measures required under the Animal Disease Surveillance Plan

Measures required for introducing animals from non-approved sources

Measures to be taken in case of disease outbreak or positive laboratory findings

Positive laboratory findings need to be confirmed by haemagglutination inhibition (HI) test, which is specific for the haemagglutinin (H) involved. Only H5 and H7 strains can be considered HPAI with the current EU-definition; for further details see the laboratory procedures published by the OIE and the EU commission, respectively (see references).

It is suggested to subdivide the zoo into quarantine areas with birds of different susceptibility housed separately. Clinically ill birds shed virus and therefore should be euthanased –with adequate protection of the personnel.

Conditions for restoring disease-free status after an outbreak

This status can only be restored by the official veterinary service of the national government.

Contacts for further information

References

- 1. Alexander, DJ (2000): A review of avian influenza in different bird species. Vet. Microbiol. 74, 3-13.
- 2. Alexander, D.J., W.H. Allan, J.W. Harkness, S.A. Hall (1974): Isolatin of influenza virus from prsittacines. Res Vet Sci 17(1): 125-127.
- 3. Council of the European Union (1992): Council directive 92/40/EEC introducing Community measures for the control of avian influenza. Official EU Journal L 167, 22/06/1992, pp.1-16.
- 4. Capua, I., F. Mutinelli, M.A. Bozza, C. Terregino, G. Cattoli (2000): Highly pathogenic avian influenza (H7N1) in ostriches (*Struthio camelus*). Avian Pathol 29, 537-543.
- 5. Capua, I. & F. Mutinelli (2001a): A colour atlas and text on avian influenza. Papi Editore, Edizioni Tecnico Scientifiche, Bologna.
- Capua, I & F. Mutinelli (2001b): Mortality of Muscovy ducks (*Cairina moschata*) and domestic geese (*Anser anser var. domestica*) following natural infection with highly pathogenic avian influenza of the H7N1 subtype. Avian Pathol 30, 179-183.
- 7. Capua, I. & D.J. Alexander (2002): Avian influenza and human health. Acta Trop 83(1): 1-6.
- Centro Regionale per l'Epidemiologia Veterinaria & Italian National Reference Laboratory for Avian Influenza (2000): Contingency manual for avian influenza. Publication of the Istituto Zooprofilattico Sperimentale delle Venezie, pp. 1-23. In: Capua, I. & F. Mutinelli (Eds.): A colour atlas and text on avian influenza. Papi Editore, Edizioni Tecnico Scientifiche, Bologna.
- Panigrahy, B., D.A. Senne, J.E. Pearson (1995): Presence of avian influenza virus (AIV) subtypes H5N2 and H7N1 in emus (Dromaius novaehollandiae) and rheas (Rhea americana): virus isolation and serologic findings. Avian Dis 39(1): 64-67.
- Panigrahy, B., D.A. Senne, J.C. Pedersen, A.L. Shafer, J.E. Pearson (1996): Susceptibility of pigeon to avian influenza. Avian Dis 40(3): 600-604.
- Panigrahy, B., D.A. Senne (1998): Subtypes of avian influenza virus isolated from exotic birds and ratites in the United States, 1992-1996. In: Swayne D.E. & R.A. Slemons (Eds.): Proceedings of the Fourth International Symposium on Avian Influenza, Athens, Georgia, U.S. Animal Health Assosication, Richmond, Virginia, pp. 70-75.
- Scientific Committee on Animal Health and Animal Welfare (2000): The definition of Avian Influenza/ The Use of Vaccination against Avian Influenza. Draft Report Sanco/B3/AH/R17/2000, European Commision, Health and Consumer Protection Directorate-General, Directorate B, Scientific Health Options, Unit B3, Management of scientific committees II.
- 13. Suss, J., J. Schafer, H. Sinnecker, R.G. Webster (1994): Influenza virus subtypes in aquatic birds of eastern Germany. Arch Virol 135(1-2): 101-114.