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Floating between two liquids
1,2

 

 

A very classical exercise is the analysis of the hydrostatic equilibrium of a cylindrical body –height 

H, area of the base S, mean density ρs - situated in a recipient with two immiscible liquids of 

density, respectively ρ1 and ρ2, such that ρ1 > ρs > ρ2. The body floats in the first one alone (ρ1 > ρs) 

and sinks in the other one alone (ρs > ρ2).  The hydrostatic equilibrium of the solid “between two 

liquids” may be like one of the two cases (a or b) represented in Figure 1.  

 

 

 

 

 

 

 

 

 

a   The floating body is covered by liquid 2. b   The floating body is not covered by liquid 2 

Then, the body is in contact with the air.  

    Figure 1.  Two cases for a cylindrical solid at hydrostatic equilibrium “between” two liquids. 

Materials 

The materials needed to implement this experiment are very simple, for example.  

- A transparent cylindrical glass filled with water (possibly with a colorant).  

- Groundnut oil, usually about 50 cm
3 

are sufficient.
. 

-A plastic egg (toys, e.g. Kinder) or any empty tube of pills, to be partly filled with dense materials 

(e.g. coins, shot) until the floating in water (alone) is ensured. It is in a stable vertical position, the 

top of the solid emerging by about the third or the quarter of its height H out the free surface of 

water . 

 

                                                           
1 More details in: VIENNOT, L. (2011). Floating between two liquids, 

http://education.epsdivisions.org/muse/twoliquid.pdf 
2
 The MUSE group (G. Planinsic, E. Sassi, L. Viennot)  takes responsibility for the content of this paper (July 2011). The 

intellectual property remains with the authors. 
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Classical solution 

For any position of the solid, the relationship of fluid statics p = - ρ gz can be used for each part 

of the cylinder immersed in each liquid, of respective heights h1 and h2. Therefore, with an upward 

axis, the differences in pressure between lower and upper horizontal sections of the cylinder 

immersed in, respectively, liquid 1 and 2 are given by: 

p1 = ρ1 gh1  p2 = ρ2 gh2  

The possible contribution of the air (case b in Fig. 1) can be neglected with respect to the two 

others, given that the density of the air is typically a thousand times smaller than those of the 

liquids.   

A state of equilibrium occurs when Archimedes’ up-thrusts due to each liquid and the weight of 

the body balance out: (ρ1h1 + ρ2h2 ) Sg - ρs HS g = 0, or else 

ρ1h1 + ρ2h2 = ρs H 

Solving for, say, h1 gives 

h1 = (ρs H - ρ2 h2)/ρ1         (1) 

h1 and h2 being the heights of each part of the cylinder immersed in each liquid in case the 

cylinder actually floats between the liquids. 

In particular, relationship (1) gives the value of h1 that is necessary for the body to float in liquid 1 alone (then h2 = 0), or to be in a 

state of equilibrium of the type “floating between two liquids” with a given value of h2. Would the actual volume of liquid 1 be too 

small to ensure this condition on h1, then the body would rest on the bottom of the recipient. 

The statements of this section, and in particular relationship (1), hold for case a and case b in 

Figure 1; with, in case b, the approximation that Archimedes’ up-thrust due to air is 

neglected with respects to the two other contributions. 

In case a, when the body is covered by fluid 2, h1 + h2 = H and relationship (1) leads to  

h1= h2 (ρs-ρ2) / (ρ1-ρs)         (2)   or else  

h1= H (ρs-ρ2) / (ρ1-ρ2)   (3)      

 

Stability of the equilibrium “between two fluids”: For the cylindrical solid to stay in a stable 

vertical position, it is necessary that the center of mass of the solid be lower than the center of 

mass of a fluid cylinder of same section filled up with the two liquids respectively by a height h1 

and h2. The insertion in the solid cylinder of a dense material, e.g. coins or shot, can solve this 

problem. 

Practical detail: when the immersed cylinder is just resting (with nearly zero interaction) on the 

bottom of the recipient, it is particularly striking to see it “taking off” when the oil is added. 

 

This situation can be used to 

- address some students’ difficulties about: pressure in statics of fluids, role of atmospheric 

pressure, Archimedes’ up-thrust, thinking this setting as a system. 

- overcome some of these difficulties, especially the last one, by using graphical representations, 

thereby addressing the interpretation of abstract representations as Cartesian graphs. 
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Evidencing possible difficulties
3
  

Question: A cylindrical body (mean density ρs) floats on a liquid 1 (density ρ1). Another liquid (2: 

ρ2< ρs) is poured on top of liquid 1. The two liquids are not miscible. What will happen with the 

cylinder? Choose the right answer and explain: The new equilibrium position of the cylinder will be 

A. same as before  

B. higher than before  

C. lower than before  

D. at the bottom 

E. more information is needed 

 (In Bennhold & Feldmann ‘s wording, it is said that “an object floats in water with ¾ of it’s volume submerged, and 

“oil is poured on top of the water”; and the questions are slightly different.) 

A correct answer  

Adding liquid 2 results in a part of the solid being then immersed in this liquid, with a 

corresponding contribution to Archimedes’ up-thrust. Relationship (1) shows that a non-zero 

value of h2 always contributes to a smaller value of h1, comparing the equilibrium “between 

two fluids” to the situation when the solid floats in liquid 1 only. The solid will then move up.  

However, h2 being always smaller than H (or equal to H), and ρ2 being smaller than ρs (the 

body is said not to float in liquid 2) , relationship (1) also entails that h1 cannot be zero. A part 

of the body will stay in liquid 1. 

 

Possible origins of common difficulties  

Common answers may be due to  

-the idea that a liquid in which the solid cannot float (ρ2 < ρs) cannot facilitate the floating of 

this solid - floating which is ensured only by the first liquid (item A). 

-the idea of a load added on top of the cylinder, pushing downwards (items C and D). It is 

likely that this idea will be particularly strong when it is stated that the solid, before being 

released from its initial position, is covered by liquid 2. This common idea contradicts a well-

known fact: If your add water in a recipient with an object floating in water, this object will 

float to the top. But seeing a contradiction is not enough to reach a satisfying comprehension. 

In both cases, the change in the setting due to the addition of liquid 2 is not envisaged in a 

systemic way, but very locally. Instead of taking into account that the whole system 

experiences changes (here in pressure), many students seem to consider that only a local 

change occurs. This suggests the following staging of the situation. 

 

Staging the situation in order to stress the systemic aspect 

                                                           
3 This questionnaire has been inspired by Bennhold, C.  & Feldmann, G. 2005. Instructor Notes On 

Conceptual Test Questions, In Giancoli Physics- Principle with applications , 6
th
 Edition, Pearson, 

Prentice Hall, 290-291. 
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A graph can be constructed, showing pressure against altitude without (black line in fig. 2) and 

with (coloured line in fig. 2) the second liquid.  

The approximation done previously about the role of the air - i.e. a negligible contribution to 

Archimedes’ up-thrust - has a graphical equivalent: a constant value of atmospheric pressure 

near the recipient. 

What counts to evaluate the up-thrust on the cylinder is the difference between the pressure 

forces exerted on the lower and upper  horizontal surfaces of this body, situated at a given 

altitude interval H. For any hydrostatic equilibrium, this difference in pressure, peq, is such 

that 

S peq =g (ρs S H)           or else              peq = g ρs H 

It can be seen that, at the initial equilibrium position, the difference in pressure p between the 

lower and the upper horizontal surface limiting the cylinder is larger when the second liquid is 

added. Hence the resulting increased up-thrust. The body then moves upwards and reaches a 

new equilibrium position, where p will retrieve its initial value (fig. 3). 

An important point to be stressed is that the effect of adding the second fluid on top of the 

first one is a change of the whole field of pressure: a systemic view.  

As regards Figure 2, some possibly useful questions to ask the students may be:  

- explain, in your words, why, concerning a part of the liquid, the coloured and black lines are 

parallel; 

- explain the physical meaning of their distance when these lines are parallel;  

- explain what happens when the atmospheric pressure increases; 

- explain what happens if the two liquids have the same density (the case when liquid 1 = liquid 

2. 

All the various cases (not enough water to ensure floating only in liquid 1, case a and b in 

Figure 1, density ρ2 lower than ρ1 and larger than ρs) can be discussed in terms of the difference 

in pressure p between lower an upper sections of the solid.  

Performing all the corresponding experiments after justified predictions will feed all the 

discussions about these various cases. 

 

Practical suggestion: the set square 

Finding any equilibrium position sums up in fitting: 

-the field of pressure, graphically represented, and characteristic of the fluid. 

-two characteristics of the body: height H and peq                (peq = g ρs H) 

This can be highlighted by using a cardboard set-square and fitting it on a graph drawn on the 

blackboard, like in fig. 3. Many different situations can be solved with this technique. 

Using the set square also makes it possible to predict qualitatively the force exerted by the fluids on 

the cylinder when this body is pushed downward by a distance d from its equilibrium position. 
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Systemic approach via graphs 

 

Fig. 2 Pressure versus altitude in two situations: only liquid1 (black), liquid 2 added on top of liquid 1 (coloured). When 

the second liquid is added the solid will move upwards (due to increased p), reaching a new equilibrium: see Fig. 3. 

 

Fig. 3 Looking for the new equilibrium. For given values of H and peq , the “set square” in the top right angle 

should be moved  and “stuck” against the coloured line representing the field of pressure. This gives at the same 

time the new position of the body and the new values of the heights of the immersed parts.  
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peq 
 

A set square for the blackboard: do it yourself 


