Outcomes Associated with Mycophenolate Weight-Based Dosing in Varying Immunologic Risk Kidney Transplant Recipients

Amanda Al-Bahou, PharmD
PGY1 Pharmacy Resident

Disclosures

Amanda A.M. Al-Bahou, PharmD (speaker, primary investigator), has disclosed that she has no relevant financial disclosures. No one else in a position to control content has any financial relationships to disclose.

Lyndsey J. Bowman, PharmD, FAST, BCPS (planning committee, co-investigator), has disclosed that she serves on the Speakers’ Bureau for Veloxis Pharmaceuticals. She has no other relevant financial disclosures.

Allyssa Webb, PharmD, (co-investigator), has disclosed that she has no relevant financial disclosures. No one else in a position to control content has any financial relationships to disclose.

Meghan Bloxam, PharmD (planning committee, co-investigator), has disclosed that she has no relevant financial disclosures. No one else in a position to control content has any financial relationships to disclose.

Rajendra Baliga, MD (co-investigator), has disclosed that he has no relevant financial disclosures. No one else in a position to control content has any financial relationships to disclose.

Andrew J. Brueckner, PharmD, BCPS (planning committee, co-investigator), has disclosed that he has no relevant financial disclosures. No one else in a position to control content has any financial relationships to disclose.
Presentation Objective

Describe patient-specific variables that could influence clinical outcomes in kidney transplant recipients receiving mycophenolic acid products

Abbreviations

- **ARC**: acceptable reactive crossmatch
- **AUC**: area under the curve
- **BMI**: body mass index
- **BPAR**: biopsy-proven acute rejection
- **CMV**: cytomegalovirus
- **DGF**: delayed graft function
- **DM**: diabetes mellitus
- **IQR**: interquartile range
- **EC-MPS**: enteric-coated mycophenolate sodium
- **eGFR**: estimated glomerular filtration rate
- **GI**: gastrointestinal
- **HTN**: hypertension
- **KTR**: kidney transplant recipient
- **MMF**: mycophenolate mofetil
- **MPA**: mycophenolic acid
- **PRA**: panel reactive antibody
- **SD**: standard deviations
- **TDM**: therapeutic drug monitoring
Tampa General Hospital

Large academic medical center
- 1,007 beds
- Affiliated with USF Health Morsani College of Medicine
- Private, not-for-profit
- Level 1 trauma
- Solid organ transplant center
 - Ranked #6 in the nation for organ transplants by volume
 - 6 transplant pharmacotherapy specialists

Image Accessed at: https://www.linkedin.com/company/tampa-general-hospital

Background

Mycophenolate is a nucleotide blocking agent
- Maintenance immunosuppression post-transplant
 - Reduces rates of BPAR and increases survival
 - Used in >95% of KTRs
- Prescribed as fixed dosing in adult patients
 - MMF (Cellcept®) 2000 mg/day
 - EC-MPS (Myfortic®) 1440 mg/day

CellCept (mycophenolate mofetil) [package insert]. Nutley, NJ: Roche Laboratories Inc.
Myfortic (mycophenolate acid) [package insert], East Hanover, NJ: Novo Nordisk Pharmaceuticals Corporation.
MPA-Related Toxicities

- Most common MPA-related toxicities
 - Leukopenia
 - GI adverse effects
 - Infections
- Toxicities are often dose-dependent, leading to reductions, interruptions, or discontinuations
- Dose reductions increase the risk of BPAR and allograft failure by 2-fold

Reducing MPA-Related Toxicities

Therapeutic Drug Monitoring of MPA products

- Targeted therapeutic range: \(\text{AUC}_{0-12} \text{ hr} = 30 \text{ to } 60 \text{ mg*hr/L} \)
- Not routinely performed due to cost and feasibility
- Wang and colleagues showed no benefit of TDM in reducing treatment failure or adverse events

TDM does NOT have any clinical benefit in reducing MPA-related adverse effects, but can we use other strategies focusing on patient-specific variables?
MPA Weight-Based Dosing

<table>
<thead>
<tr>
<th>Trial</th>
<th>Study Population</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
| Implications of Clinical MMF Dose According to Individual Body Weight in Japanese KTRs | • 43 Japanese patients
• Received renal transplant ≥6 months prior to study enrollment | • Mean MMF dose: 581 ± 207 mg/day
• Mean MPA AUC: 36.2 ± 18.7 mg*hr/mL
• Mean body weight: 56.3 ± 11.1 kg
• Rate of therapeutic MPA AUC of 74.7% with doses at 10-16 mg/kg/dose | • Lower body weights had higher AUC levels
• MMF dose based on total body weight of 10-16 mg/kg/dose can predict therapeutic levels
• Weight-based dosing could replace TDM |
| Is a standard fixed dose of MMF ideal for all patients? | • 53 Asian renal transplant recipients
• Received MMF for at least 3 months prior to study enrollment | • Positive correlation between AUC and body weight per MMF dose
• AUC of 45 mg*hr/L could be achieved with 12 mg/kg twice daily of MMF | • Fixed dosing may not be appropriate for all patients
• MMF should be dosed based on body weight |

Study Purpose

Tampa General Hospital

Utilizes FDA-approved fixed dosing of MPA products

Dose reductions based on toxicities and tolerability

Study Aim

Evaluate the efficacy and safety of a standardized MPA dosing schematic among varying immunologic risk KTRs
Methodology

Retrospective, single-center study of kidney transplant recipients

Inclusion
- Adult (≥18 years of age)
- Transplanted between January 1, 2015 to December 31, 2017
- Discharged on a MPA product

Exclusion
- Combined solid organ transplant
- Graft loss or death during index hospitalization
- Lost to follow-up within 3 months post-transplant

Methodology

- Patients were stratified based on immunologic risk and followed for 1-year

<table>
<thead>
<tr>
<th>Low Risk</th>
<th>Moderate Risk</th>
<th>High Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Living related donor with 2 haplotype match
- OR zero antigen mismatches with no immunologic risk factors*
- OR age >65 years old with no immunologic risk factors*</td>
<td>- Age ≤65 years old
- No immunologic risk factors*</td>
<td>- Any age
- Presence of one or more immunologic risk factors*</td>
</tr>
</tbody>
</table>

*Immunologic Risk Factors: repeat transplant, current PRA ≥20%, African American ≤65 years old, or positive ARC

- **MPA weight-based dosing**: low dosing (<20 mg/kg per day), standard dosing (20-33.9 mg/kg per day), and high dosing (≥34 mg/kg per day)
Study Outcomes

Primary Outcome: incidence of BPAR at 1-year post-transplant between high immunologic risk KTRs that received low doses of MPA compared to those that received standard and high doses at the time of discharge

Secondary Outcomes
- BPAR in low and moderate immunologic risk KTRs
- MPA-related adverse effects leading to dose reductions
- Number of MPA dose reductions
- MPA-related readmission rates
- Renal function (eGFR)
- Graft loss
- All-cause mortality

Results

Assessed for Eligibility (n=648)
- Met exclusion criteria
 - Combined solid organ transplant (n=72)
 - Graft loss on index hospitalization (n=12)
 - Lost to follow-up within 3 months (n=11)

Enrollment (n=553)
- Low Dosing (n=158)
- Standard Dosing (n=355)
- High Dosing (n=40)
Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>Low Dosing (n=158)</th>
<th>Standard Dosing (n=355)</th>
<th>High Dosing (n=40)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age in years (± SD)</td>
<td>55.2 (12.5)</td>
<td>53.4 (13.8)</td>
<td>45.7 (13.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>121 (76.6)</td>
<td>201 (56.6)</td>
<td>13 (32.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race, Black, n (%)</td>
<td>47 (29.7)</td>
<td>82 (23.2)</td>
<td>7 (17.5)</td>
<td>0.007</td>
</tr>
<tr>
<td>Indication for transplant, n (%)</td>
<td>36 (22.8)</td>
<td>68 (19.2)</td>
<td>6 (15)</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean BMI in kg/m² (± SD)</td>
<td>30.8 (4.9)</td>
<td>27.4 (4.6)</td>
<td>20.8 (3.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>DGF, n (%)</td>
<td>45 (28.4)</td>
<td>52 (14.7)</td>
<td>4 (10)</td>
<td><0.001</td>
</tr>
<tr>
<td>Deceased Donor, n (%)</td>
<td>132 (83.5)</td>
<td>271 (76.3)</td>
<td>27 (67.5)</td>
<td>0.125</td>
</tr>
<tr>
<td>CMV High Risk, n (%)</td>
<td>40 (25.3)</td>
<td>65 (18.3)</td>
<td>7 (17.5)</td>
<td>0.386</td>
</tr>
<tr>
<td>Mean Cold Ischemia Time in hours (± SD)</td>
<td>781.4 (398.3)</td>
<td>724.9 (448.7)</td>
<td>618.6 (500.5)</td>
<td>0.093</td>
</tr>
<tr>
<td>Re-transplantation</td>
<td>12 (7.6)</td>
<td>40 (11.3)</td>
<td>9 (22.5)</td>
<td>0.026</td>
</tr>
<tr>
<td>Immunologic Risk, n (%)</td>
<td>7 (4.8)</td>
<td>151 (42.5)</td>
<td>23 (57.5)</td>
<td>0.292</td>
</tr>
</tbody>
</table>

Concomitant Immunosuppression

<table>
<thead>
<tr>
<th></th>
<th>Low Dosing (n=158)</th>
<th>Standard Dosing (n=355)</th>
<th>High Dosing (n=40)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction Immunosuppression, n (%)</td>
<td>129 (81.6)</td>
<td>283 (79.7)</td>
<td>33 (82.5)</td>
<td>0.574</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>0 (0)</td>
<td>5 (1.4)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Anti-thymocyte globulin</td>
<td>29 (18.4)</td>
<td>67 (18.9)</td>
<td>7 (17.5)</td>
<td></td>
</tr>
<tr>
<td>Maintenance Immunosuppression at discharge, n (%)</td>
<td>150 (94.9)</td>
<td>351 (98.9)</td>
<td>40 (100)</td>
<td>0.011</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>83 (52.5)</td>
<td>166 (46.8)</td>
<td>22 (55)</td>
<td>0.354</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>1 (0.6)</td>
<td>1 (0.3)</td>
<td>0 (0)</td>
<td>0.767</td>
</tr>
<tr>
<td>Belatacept</td>
<td>7 (4.4)</td>
<td>3 (0.8)</td>
<td>0 (0)</td>
<td>0.013</td>
</tr>
<tr>
<td>Average time to therapeutic tacrolimus level in days (± SD)</td>
<td>12.9 (39.5)</td>
<td>8.1 (5.3)</td>
<td>9.9 (11.5)</td>
<td>0.075</td>
</tr>
<tr>
<td>Average tacrolimus level in ng/mL over 1-year (± SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 month</td>
<td>8.8 (2.6)</td>
<td>8.9 (4.2)</td>
<td>8.7 (2.4)</td>
<td>0.936</td>
</tr>
<tr>
<td>6 months</td>
<td>7 (2.6)</td>
<td>7.5 (4.8)</td>
<td>7.5 (2.2)</td>
<td>0.547</td>
</tr>
<tr>
<td>12 months</td>
<td>6.6 (1.8)</td>
<td>6.6 (2.2)</td>
<td>7.3 (2.9)</td>
<td>0.279</td>
</tr>
<tr>
<td>Maintenance Immunosuppression at 12 months, n (%)</td>
<td>125 (85.6)</td>
<td>284 (84)</td>
<td>33 (91.7)</td>
<td>0.736</td>
</tr>
<tr>
<td>Mycophenolate</td>
<td>126 (86.3)</td>
<td>312 (92.3)</td>
<td>35 (97.2)</td>
<td>0.033</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>80 (61)</td>
<td>214 (63.3)</td>
<td>22 (61.1)</td>
<td>0.155</td>
</tr>
<tr>
<td>Prednisone</td>
<td>7 (4.8)</td>
<td>12 (3.6)</td>
<td>0 (0)</td>
<td>0.628</td>
</tr>
<tr>
<td>Cyclosporine</td>
<td>9 (6.2)</td>
<td>7 (2.1)</td>
<td>1 (2.8)</td>
<td>0.067</td>
</tr>
</tbody>
</table>

15

16
Entire Study Population

Summary of Clinical Outcomes Among MPA Weight-Based Dosing Cohorts (n=553)

- BPAR: Low Dose (p=0.093), Standard Dose (p=0.615), High Dose (p=0.008)
- Readmission for GI Toxicity: Low Dose (p=0.615), Standard Dose (p=0.008), High Dose (p=0.218)
- Readmission for Leukopenia: Low Dose (p=0.008), Standard Dose (p=0.218), High Dose (p=0.008)
- Readmission for Infection: Low Dose (p=0.008), Standard Dose (p=0.218), High Dose (p=0.008)

Overall incidence of BPAR was low (8.5%)
Rate of BPAR was numerically higher in the low dosing cohort

High Immunologic Risk KTRs – Efficacy

Incidence of Efficacy Outcomes in High Immunologic Risk KTRs (n=242)

- BPAR: Low Dosing (p=0.029), Standard Dosing (p=0.209), High Dosing (p=0.13)
- AMR: Low Dosing (p=0.209), Standard Dosing (p=0.13), High Dosing (p=0.221)
- ACR: Low Dosing (p=0.209), Standard Dosing (p=0.13), High Dosing (p=0.221)
- De Novo DSA: Low Dosing (p=0.209), Standard Dosing (p=0.13), High Dosing (p=0.221)

Incidence of BPAR at 1-year was significantly higher in the low dose cohort (p=0.029)
Graft Survival at 1-Year Post-Transplant

Average time to BPAR at 1-year was shorter in low dose cohort (p=0.024)

High Immunologic Risk KTRs – Efficacy

High Immunologic Risk KTRs – Safety

<table>
<thead>
<tr>
<th>MPA-related readmissions, n (%)</th>
<th>Low Dosing (n=68)</th>
<th>Standard Dosing (n=151)</th>
<th>High Dosing (n=23)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI toxicity</td>
<td>17 (17.6)</td>
<td>22 (14.6)</td>
<td>4 (17.4)</td>
<td>0.823</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>9 (13.2)</td>
<td>22 (14.6)</td>
<td>8 (34.7)</td>
<td>0.037</td>
</tr>
<tr>
<td>Infection</td>
<td>23 (33.8)</td>
<td>41 (27.2)</td>
<td>6 (26.1)</td>
<td>0.573</td>
</tr>
<tr>
<td>Any</td>
<td>31 (45.6)</td>
<td>59 (39.1)</td>
<td>11 (47.8)</td>
<td>0.547</td>
</tr>
</tbody>
</table>

Reason for first MPA dose reduction, n (%)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Low Dosing (n=68)</th>
<th>Standard Dosing (n=151)</th>
<th>High Dosing (n=23)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI intolerance</td>
<td>25 (36.8)</td>
<td>53 (35.1)</td>
<td>9 (39.1)</td>
<td>0.837</td>
</tr>
<tr>
<td>Leukopenia</td>
<td>27 (39.7)</td>
<td>58 (38.4)</td>
<td>8 (34.8)</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>7 (10.3)</td>
<td>12 (7.9)</td>
<td>1 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Reducing immunosuppression</td>
<td>0 (0)</td>
<td>2 (1.3)</td>
<td>1 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Other/unidentified</td>
<td>2 (2.9)</td>
<td>2 (1.3)</td>
<td>1 (4.3)</td>
<td></td>
</tr>
<tr>
<td>Average Number of MPA reductions (± SD)</td>
<td>2.3 (1.4)</td>
<td>2 (1.5)</td>
<td>2.3 (1.4)</td>
<td>0.295</td>
</tr>
</tbody>
</table>

Infection, n (%)

<table>
<thead>
<tr>
<th>Type</th>
<th>Low Dosing (n=68)</th>
<th>Standard Dosing (n=151)</th>
<th>High Dosing (n=23)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial</td>
<td>36 (52.9)</td>
<td>73 (48.3)</td>
<td>11 (47.8)</td>
<td>0.579</td>
</tr>
<tr>
<td>Viral</td>
<td>18 (26.5)</td>
<td>51 (33.8)</td>
<td>8 (34.7)</td>
<td>0.534</td>
</tr>
<tr>
<td>Death, n (%)</td>
<td>3 (4.4)</td>
<td>4 (2.6)</td>
<td>0 (0)</td>
<td>0.528</td>
</tr>
</tbody>
</table>
Low and Moderate Immunologic Risk KTRs

No major differences in primary or secondary outcomes in low or moderate risk KTRs

MPA Dosing Over 1-Year

MPA doses gradually decline over 1-year in all immunologic risk groups. Low immunologic risk patients receive lower doses at all timepoints.
Clinical Implications

High Immunologic Risk Patients
- Low MPA weight-based doses increase the risk for BPAR
- MPA weight-based dosing is most relevant in this population

Low and Moderate Immunologic Risk Patients
- No major differences in efficacy or safety
- Lower MPA weight-based doses may be appropriate in low and moderate immunologic risk KTRs

Pharmacists’ Role
- MPA doses decline gradually over 1-year in all groups
- Inpatient and outpatient pharmacists can optimize MPA doses post-transplant

Study Limitations

- Retrospective and observational study design allows for unmeasured confounders
- BMI of the study population was relatively low
 - Median BMI = 27.7 kg/m² (IQR, 24-31.5 kg/m²)
 - Reduced the ability to capture effect of weight-based dosing in KTRs of extreme weights
- Plausible that subgroup analyses lacked power to detect a difference between groups
Summary

- Lower weight-based doses of MPA resulted in higher rates of BPAR in high immunologic risk KTRs
- No differences in outcomes based on MPA weight-based dosing in low or moderate immunologic risk KTRs
- Pharmacists can play a major role in optimizing MPA doses throughout the post-transplant period
- Further studies are needed to evaluate the optimal dose of MPA products in KTRs of extreme weights

Acknowledgements

Lyndsey J. Bowman, PharmD, FAST, BCPS
Allyssa Webb, PharmD
Meghan Bloxam, PharmD
Rajendra Baliga, MD
Andrew J. Brueckner, PharmD, BCPS
References

CellCept (mycophenolate mofetil) [package insert]. Nutley, NJ: Roche Laboratories Inc.

Myfortic (mycophenolate acid) [package insert]. East Hanover, NJ: Novartis Pharmaceuticals Corporation.

Outcomes Associated with Mycophenolate Weight-Based Dosing in Varying Immunologic Risk Kidney Transplant Recipients

Amanda Al-Bahou, PharmD
PGY1 Pharmacy Resident