That Old Gray Pipe Ain’t What It Used to Be
Gwinnett County Stormwater System Assessment Program

Jonathan Semerjian, PE
Dept. of Water Resources
Stormwater Management

Sam Fleming, PE
Dewberry
Presentation Overview

• Project Background
 – Drivers

• Enhanced Inventory Database

• Capacity Level of Service Analysis
 – System Wide H&H Modeling

• Asset Management Decision Support

• Summary
 – Program Going Forward
Project Background

• Gwinnett County, GA
 – Metro Atlanta
 – 437 Square Miles
 – Population 800,000
• Stormwater Management
 – Stormwater Utility Funded
 • Implemented in 2006
 • $31M Annual Revenues ($2.46/100 sf)
 – Aging Stormwater Infrastructure
 • ~1,350 Miles County-Maintained Pipe
 – >1,000 Miles Corrugated Steel
 – ~500 Miles over 20 Years Old
 – Replacement Value $3 Billion
Project Background

• C&M Practices
 – SOP for Rehab/Replacement of Failed Pipe
 • CIPP or Replace Like Size with HDPE or RCP
 • 18” min
 – Existing Conditions Capacity LOS Unknown
 • Hydraulic Impacts of Rehab/Replacement Unknown
 – Does the existing system meet desired LOS?
 – What upgrades are needed to meet desired LOS?
 – H&H analysis on select systems where history of flooding exists
 • At discretion of Division based on site specific concerns
 – Resource Issue - Manpower and Funding
Project Background

- **Active Asset Management Program**
 - Stormwater Inventory Database
 - Pipes, Structures, Ditches
 - Basic Data – type, size, material, etc...
 - X&Y; No Z
 - Strategic Asset Management Plan
 - Identifies Critical Infrastructure
 - Capacity LOS potential score for ranking (unused)
 - Condition Assessment Inspections

- **Bridge/Culvert CIPs**
 - Floodplain Management Program
 - ~600 County Maintained Bridge/Culvert CIPs identified

- Next Step to Analyze Remaining Pipe Infrastructure
Project Background

- **Initiated Program in 2011**
- **Study Extents**
 - Pipe Infrastructure Upstream of 100-acre Floodplain
 - County-Maintained Pipe
 - Hydraulically Connected Non-County Maintained Pipe
 - **Data Collection**
 - Leverage existing SW Inventory
 - Collect Measure Down Depths on all pipe ends except for end sections
 - **Inventory DB Enhancement**
 - **Capacity LOS Analysis**
 - **CIP Planning**
Enhanced Inventory Database

- **System Connectivity**
 - Connectivity from upstream to downstream limits
 - Pipes / Channels / Streams / Ponds

- **Enhanced Database Elevations**
 - Invert Estimation
 - Leverage Terrain using MD Data
 - Pipe Profiles
 - Trench Area Impacts
 - Utilities and Critical Infrastructure
 - Easement Needs
 - Quantities for Cost Estimate Planning
Capacity Level of Service Analysis

- Dynamic rainfall-runoff simulation model
 - Pipe Infrastructure Upstream of 100-acre Floodplain
 - EPA SWMM5 engine (PCSWMM)
 - ArcGIS interface
 - Time varying rainfall
 - Synthetic or observed storms
 - Route hydrograph through the system
Capacity Level of Service Analysis: Sub-Catchments

- **Terrain processing tool**
 - Develop flow lines
 - Delineate sub-catchments
 - Determine representative length and %slope

- **% Impervious**
 - Impervious Coverage intersected with sub-catchments

- **Curve Number Generation**
 - Land Cover
 - Soils Data
Capacity Level of Service Analysis: System Setup

- Import Pipe and Structure Data from Enhanced Inventory DB
 - Structures
 - Type, Rim and Invert Elevations
 - Pipe
 - Size, Material, Invert Elevations, Length
 - Ditches/Channels/Streams
 - Assumed typical sections for roadway ditches
 - Transects from terrain for streams and channels
 - Facility ID
 - Pipe, channel, and structure association
 - Sub-catchment and inlet association
- Assign additional parameters
 - Ponded areas, Loss Coefficients, etc.
Capacity Level of Service Analysis: Modeling

- Determined Existing Capacity LOS
 - System Wide Model
 - Each pipe segment
 - Event Based Storm Return Period
 - 12-hour storm duration
 - HGL contained below ground for closed systems
 - Road/embankment overtopping
Capacity Level of Service Analysis: Modeling

- Rehabilitation/Replacement Scenarios
 - System-wide Model Scenarios
 - Not segment specific
 - Cured-in-Place Pipe Rehabilitation (CIPP)
 - All County-maintained CSP
 - No improvements to non-County
 - Improved hydraulics
 - Maintain pipe diameter (lining negligible)
 - Improved Manning’s ‘n’ (0.015)
 - Determine LOS for this Scenario
Capacity Level of Service Analysis: Modeling

- **Rehabilitation/Replacement Scenarios**
 - System-wide Model Scenarios
 - Not segment specific
 - Replace like-size HDPE or RCP
 - All County-maintained CSP
 - Replace with 18” min diameter
 - Replace arch with equivalent round
 - Match downstream regardless of Ownership
 - Improved hydraulics
 - Improved Manning’s ‘n’ (0.015)
 - Determine LOS for this Scenario
Capacity Level of Service Analysis: Modeling

- Rehabilitation/Replacement Scenarios
 - System-wide Model Scenarios
 - Not segment specific
 - Replace with HDPE or RCP to meet desired LOS
 - Pipes not meeting desired LOS from CIPP/Replace Like Size Scenarios
 - 18” min. diameter
 - Replace arch with equiv. round
 - Closed, Lateral, and Longitudinal Pipes
 - 25-yr Storm LOS
 - Culverts
 - 100-yr Storm LOS
 - Pipe Diameter Upgrades
 - Match diameter downstream regardless of Ownership
Asset Management Decision Support

- **Asset Management Decision Support**
 - Rehab/Replacement Scenarios
 - What's the pipe's existing LOS?
 - What's the LOS if lined (CIPP)?
 - What does that cost?
 - What's the LOS if replace like size with HDPE or RCP (18" min)?
 - Same as CIPP except where pipe diameter < 18"
 - What does that cost?
 - What do we need to do meet the desired LOS
 - What does that cost?

- **Leverage DB, GIS, and Models**
 - Estimate of Quantities
 - Develop Accurate Planning Cost Estimates
Asset Management Decision Support - Quantities

- **Enhanced Inventory Database**
 - Pipe Size, Material, Length
 - Replacement Pipe, CIPP
 - Remove Pipe, Silt Fence, Inversion Setup, Clean Pipe
 - Pipe depth along profile
 - Depth to Top of Pipe
 - Backfill
 - Structure Type, Depth
 - Replacement Structure
 - Remove Structure, Silt Fence

- **GIS Data**
 - Transportation Polygons
 - Roadway, Sidewalk, Driveway Feature Classes
 - Barrier Feature Class
 - Fence
 - Trench Area Polygons
 - Street Cut, Driveway, Sidewalk Removal and Replacement
 - Remainder - Sod
 - Fence Removal and Replacement

- **Populate Database with Quantities**
Asset Management Decision Support – Unit Costs

- **Unit Cost Database**
 - Annual Contractor Prices
 - GDOT Item Mean Summary
 - Engineering Judgment
 - Logical Incremental Price Increases
 - Rolled Up Specific Items into One
 - GP1, GP2 CBs as simple CB
 - Unit Conversion for Specific Items
 - RCB from CY to LF
 - Contingency to Unit Price
 - Incidentals not captured in GIS
Asset Management Decision Support – CIP Tool

- GCSWM Stormwater System CIP Tool
 - ESRI ArcGIS and Microsoft Excel

ArcGIS
- Inventory & Rehabilitation/Replacement Info Database

ArcGIS
- Select conduits/structures
- Select rehabilitation/replacement scenarios

Excel
- Cost breakdown for each conduit/structure under each scenario
- Cost roll-up for each scenario
- Cost comparison between scenarios

Excel
- Unit Costs Database
Asset Management Decision Support – CIP Tool
Summary

- **Asset Management Decision Support Tool**
 - Enhanced DB and GIS Data
 - Model Results
 - Accurate Planning Level Cost Estimates
 - Assist in Rehab/Replacement Decisions

- **Sustainable Models**
 - New Inventory
 - Replaced/Rehabbed Inventory
 - Updated H&H
 - Land Cover Changes
 - Unit Prices/Quantities
Summary

• Going Forward
 – Watershed Studies
 • System Assessment
 – 7 Watersheds Complete (over 440 miles pipe)
 – 3 Watersheds Under Study 2014
 – 7 Watersheds 2015 – TBD
 – Integrate with Floodplain Management
 • Extend Study Extents to Zone AE
 • Update LD models and CIP Planning
 – Align with Condition Assessment Scoring to Identify CIPs
 – DB / Model Maintenance

• Other Potential Applications
 – Forensics
 – Emergency Preparedness
 – Pollutant Loading
 – LID / Green Infrastructure Planning
Questions

Jonathan Semerjian, P.E.
Section Manager
Gwinnett Co. Dept. of Water Resources
684 Winder Hwy.
Lawrenceville, GA 30045
678.376.6934
jonathan.semerjian@gwinnettc county.com

Eric Swett
Program Analyst III
Gwinnett Co. Dept. of Water Resources
684 Winder Hwy.
Lawrenceville, GA 30045
678.376.6979
eric.swett@gwinnettc county.com

Steve Leo
Division Director
Gwinnett Co. Dept. of Water Resources
684 Winder Hwy.
Lawrenceville, GA 30045
678.376.6949
steve.leo@gwinnettc county.com

Sam Fleming, P.E.
Dewberry
2835 Brandywine Road, Suite 100
Atlanta, GA 30341
678.537.8627
sfleming@dewberry.com