Teaching health economics to students without strong backgrounds in quantitative methods

In-class activities improve comprehension and retention of abstract concepts

Michal Horný
July 8, 2017

Boston University School of Public Health
Teachers understand concepts

Students don’t
Probabilistic sensitivity analysis

“A simulation procedure in which all input parameters are considered as random quantities and therefore are associated with probability distributions that describe the background knowledge of the decision-maker”
Concepts that are memorized rather than comprehended are often not retained over time.
In-class activity: Requirements
No vaccination → Flu (25%)

No flu → No hospitalization (80%)

Hospitalization → Cost = $3,000, Utility = 0.80 QALY

Flu (20%)

No hospitalization (75%)

Cost = $0, Utility = 0.95 QALY
Vaccination

Flu

No flu

Hospitalization

Cost = $3,100
Utility = 0.80 QALY

20%

10%

80%

Cost = $600
Utility = 0.90 QALY

Cost = $100
Utility = 0.95 QALY

90%
Deterministic modeling
No vaccination

<table>
<thead>
<tr>
<th>Flu</th>
<th>No flu</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Hospitalization

<table>
<thead>
<tr>
<th>No hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
</tr>
<tr>
<td>80%</td>
</tr>
</tbody>
</table>
No vaccination

Flu: 25%
No flu: 75%

Hospitalization: 20%
No hospitalization: 80%
No vaccination

Flu
- 25%
- 75%

No flu
- 25%
- 80%

Hospitalization
- 20%

25% * 20% = 5%
25% * 80% = 20%
75%

Boston University School of Public Health
No vaccination

Flu
- 25%

No flu
- 75%

Hospitalization
- 20%
 - Cost = $3,000
 - Utility = 0.80 QALY

No hospitalization
- 80%
 - 25% * 80% = 20%
 - Cost = $500
 - Utility = 0.90 QALY

75%

Cost = $0
Utility = 0.95 QALY
Stochastic modeling: Microsimulation
No vaccination

Flu

- No flu: 75%
- Flu: 25%

Hospitalization

- No hospitalization: 80%
- Hospitalization: 20%
No vaccination

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flu</td>
<td>No flu</td>
<td>No flu</td>
<td>No flu</td>
<td></td>
</tr>
</tbody>
</table>

25% Flu
75% No flu

No hospitalization

20%
No vaccination

Flu

No flu

Hospitalization

20%

No flu

25%

75%

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flu</td>
<td></td>
<td>No flu</td>
<td>No flu</td>
<td>No flu</td>
</tr>
</tbody>
</table>

Boston University School of Public Health
No vaccination

Flu

Hospitalization

No flu

75%

7%

5%

20%

80%

1 - 2

3 - 4

5 - 6

7 - 8

9 - 10

H

NH

NH

NH

NH

Boston University School of Public Health
No vaccination

Flu

No flu

Hospitalization

No hospitalization

75%

20%

80%

<table>
<thead>
<tr>
<th>1-2</th>
<th>3-4</th>
<th>5-6</th>
<th>7-8</th>
<th>9-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>NH</td>
<td>NH</td>
<td>NH</td>
<td>NH</td>
</tr>
</tbody>
</table>

Boston University School of Public Health
No vaccination

Flu

- 25%

No flu

- 75%

No hospitalization

- 80%

Hospitalization

- 20%
No vaccination

- Flu: 25%
- No flu: 75%

Hospitalization: 20%

No hospitalization: 80%

Cost = $500
Utility = 0.90 QALY
A diagram illustrating the outcomes of flu vaccination:

- **No vaccination**
 - Flu: 25%
 - No flu: 75%

- **Hospitalization**
 - 5%
 - Cost = $3,000
 - Utility = 0.80 QALY

- **No hospitalization**
 - 20%
 - Cost = $500
 - Utility = 0.90 QALY

- **No flu**
 - 80%
 - Cost = $0
 - Utility = 0.95 QALY

Total Utility Calculation

- **No flu** with vaccination: 0.95 QALY
- **Hospitalization** with vaccination: (1 - 0.05) * 0.80 = 0.76 QALY

Total Utility = 0.76 + 0.95 = 1.71 QALY

Cost with vaccination = $500

Utility = 0.90 QALY

Total Cost = $500

Total Utility = 0.90 QALY

Total Cost + Total Utility = $500 + 0.90 = $500.90
Repeat the drill multiple times

Like 5x
<table>
<thead>
<tr>
<th>Trial</th>
<th>Vaccination</th>
<th></th>
<th></th>
<th>No vaccination</th>
<th></th>
<th></th>
<th></th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total cost</td>
<td>Total utility</td>
<td>Total cost</td>
<td>Total utility</td>
<td>Total cost</td>
<td>Total utility</td>
<td>Total cost</td>
<td>Total utility</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activity variations

- Deterministic modeling

- Stochastic modeling
 - First order simulation
 - Second order simulation

- Markov model/process
 - Make sure to distinguish the difference between a simulation using a simple decision tree, a deterministic Markov model/process, and a simulation using a Markov model/process
Feedback

“I really liked the way you explained probabilistic sensitivity analysis it really helped me encode the concept, and I probably will never forget this even though it’s very complex”.

Boston University School of Public Health
Thank you!

Michal Horný, MSc.
Ph.D. candidate ('17)
Boston University School of Public Health
Health Law, Policy & Management
mhorny@bu.edu
www.michalhorny.cz
@michalhorny

Boston University School of Public Health