Oxy-Combustion Boiler
Development for Tangential Firing
DE-NT0005290

Armand Levasseur Alstom
Power, Windsor, CT

CO2 Capture Technology Conference
US DOE/NETL, Pittsburgh
March 25, 2009
Alstom - A Leader in Power Generation and Rail Transport

Alstom Tangentially-Fired Boilers Represent:
- More Than 40% of the Installed US Coal-Fired Boilers
- About 20% of the Total US Power Generation

Alstom Is Actively Developing Carbon Capture Technologies Including:
- Post Combustion Scrubbing
- Oxy Combustion - Oxy PC, Oxy CFB, Chemical Looping
Oxy Combustion Technology

Advantages

- Near Term to Market (Conventional Components)
- High/Known Reliability (Conventional Components)
- Addresses Both New and Installed Base (Retrofit)
- High Efficiency (SC Cycles, Ultra SC Cycles)
- High CO2 Capture Rate (>90%)
- Competitive Cost of Electricity and Cost of CO2 Avoided
- Potential for Further Improvement (e.g. Oxygen Production)

Challenges

- Development of Oxy-Fired Boilers
 - Combustion Characteristics
 - Heat Transfer
 - Pollutant Formation
 - Ash Deposition
 - Fireside Corrosion
 - Air In-Leakage
- Gas Cleanup and Condensers
- Development and Scale-Up Of Large ASU and GPU
- Systems Integration and Optimization (Costs)
30 MWt Oxy Pilot Plant

- Vattenfall’s Schwarze Pumpe 30 MWt Oxy Plant - Entire Oxy Train ASU to CO2 Capture.
- Alstom Project Partner with Vattenfall AB – Supplied Oxy Boiler and ESP
- Demonstrated Successful Operation at 30 MWt (more than 900hrs oxy firing and 700hrs of air firing through Feb 2009)
- Comprehensive Test Program - Detailed Performance and Operating Data (Dried Lignite)

Vattenfall AB – 30 MWt Oxy Plant at Schwarze Pumpe Station
Oxy T-Fired Boiler Development

Develop Competitive CO2 Solutions – Target of greater than 90% CO2 capture at less than 35% increase in the cost of electricity.

Project Objectives:

- Design and develop an innovative oxyfuel firing system for T-fired boilers
- Evaluate the performance in pilot scale tests at 15 MWt
- Determine boiler design and performance impacts for oxy-combustion
- Evaluate and improve engineering and CFD tools for oxy-combustion

Address Technical Gaps For Tangentially Fired Oxy Demonstration
Oxy T-Fired Boiler Development Project

Team
- Alstom – Power Plant Laboratories
- Alstom – New & Retrofit Boiler Business
- Utility Advisory Group

Budget
- Total Budget: $8,012,000
 - Budget Period 1: $4,728,000
 - Budget Period 2: $3,374,000
- DOE Funding: 62%
- Alstom/Industry Cost Share: 32%
- ICCI Funding: 6% (Awarded)

Schedule
- October 2008 to September 2010
- 24 Months
Utility Advisory Group

- Provide Comment, Focus and End-User Perspective advise to the Project
- Develop Customer Background for Future Demonstration
- Show Utility Support and Commitment

Ten Utility Members:

Vattenfall
ATCO
Dominion Energy
Luminant (TXU)
LCRA and Austin Energy
AmerenUE
OG&E
MidWest Generation
Great River Energy
NB Power
Project Schedule

- Start September 2008
- First BSF Campaign July/Aug 2009
- Complete Testing May 2010
- Final Report Sept 2010

Project Schedule

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Q4 '09</th>
<th>Q1 '10</th>
<th>Q2 '10</th>
<th>Q3 '10</th>
<th>Q4 '10</th>
<th>Q1 '11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
<td>Nov</td>
<td>Dec</td>
<td>Jan</td>
</tr>
<tr>
<td>1</td>
<td>DOE - Oxy Firing Tasks with ICCI Scope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.0 - Project Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.0 - Assessment of Oxy Firing Design Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.1 - Oxy Firing Boiler System Process Screening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.2 - Oxy Firing System Design Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>DOE Contract Award</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Milestone 1 - Project Kickoff Meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.0 - Benchscale Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.0 - Large Pilot-scale Combustion Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.1 - Test Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Milestone 2 - BSF Modification Design, Test Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.2 - Test Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4.3 - BSF Oxy Firing Shakedown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.4 - BSF Test Campaign 1 - PRB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Milestone 3 - Completion of BSF Campaign 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Milestone 4 - Project Review Meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Milestone 5 - Phase 2 Funding Decision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.5 - BSF Test Campaign 2 - Low S Bit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>4.6 - BSF Test Campaign 3 - Dried Lignite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>4.7 - BSF Nozzle/Windbox Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.8 - BSF Test Campaign 4 - Illinois Coal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Milestone 6 - Completion of Pilot Scale Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>5.0 - Data Analysis and Documentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Milestone 7 - Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Milestone 8 - Project Review Meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Project General Approach

• Establish technical information needed during Reference and Design Studies and Small Tests
• Use engineering tools and CFD modeling to screen T-fired design concepts (FGR scenarios, O2 Injection)
• Evaluate selected designs under realistic tangentially fired conditions in large pilot (15 MWt) testing - Proven Test Facilities and Methodologies
• Optimize and define performance characteristics of selected T-fired design and burner testing at 15 MWt
• Expand range of database by testing different coal types
• Use detailed performance data (including furnace mapping of temp and gas species) for commercial design and to evaluate and improve model predictions
Approach:

- Use Previous Reference Design Base Case (850 MWe SC Boiler)
- Setup ALPRO for Oxy Process (FGR, FF, FGD, Condenser)
- Compare ALPRO outputs with Reference Case Values

Major Variables:

- Gas Recycle Take-off Locations
- Oxygen Injection Locations
- Oxygen Heating
- Recycle Rate / Furnace Surfacing

Results:

- Mass & Energy Balances, Performance Impacts
- Economics -Relative CAPEX & OPEX
CFD Screening for Oxy Firing System

Approach:
- Incorporate Oxy Improvements Into Fluent™
- Use BSF Model for Screening
 - Grid Size, Submodels (radiation, gasification, reaction set), and runtimes
 - Calibrate With Available BSF Test Data for Air-firing
- Compare BSF Simulations with Commercial (850 MWe) Air- and Oxy-fired Simulations

Design Variables:
- Gas Recycle Ratio (Gas Flow Rates)
- Gas Recycle Composition
- Oxygen Injection Method/Distribution
- Windbox Design (Compartments, Vel., Angle)
- OFA Design (Location, Vel, Angle)
850 MWe CFD Modeling

- Used existing design and air-fired performance data to setup and calibrate
- Generated very detailed model of the furnace (Grid >8 million cells)
- Setup for Boiler MCR conditions
- Oxy case same geometry, but maintained velocity ratios for recycle gas flow inputs

850 MWe T- Fired SC Unit
15 MWt BSF Firing System

\[\alpha = \text{CFS yaw angle} \]
\[\phi = \text{firing angle (2.5°)} \]
Oxy T-Fired 15 MWt Pilot Testing

Test Campaigns:

• BSF Campaign 1 -
 - Subbituminous Coal (PRB)
 - Baseline Air-firing and Oxy-firing
 - Evaluate Broad Range of Oxy Process and Firing System Design Options

• BSF Campaign 2
 - Bituminous Coal
 - Optimize Selected Design

• BSF Campaign 3
 - Lignite – Vattenfall 30 MWt Fuel
 - Establish Link With Schwarze Pumpe

• BSF Campaign 4 (with ICCI Support)
 - High Sulfur Illinois Coal
 - Gas Recycle Before and After FGD
Oxy T-Fired 15 MWt Pilot Testing

Key Measurements

- Operating Conditions- Online Data Acquisition System (Flows, Temperatures, Pressures)
- Gas Composition At Various Locations (CO₂, O₂, H₂O, NOx, SO₂, Total Hydrocarbons)
- Furnace and Convection Pass Gas Temperatures – Suction Pyrometer
- Mercury, Trace Metals, and SO₃ Measurements at Selected Stable Conditions
- Deposition and Corrosion Probes - Analyze the Probes and Collect Deposits for Further Evaluation
- Detailed Furnace Mapping – Temperature, Gas Composition, Particulate Sampling
Oxy T-Fired 15 MWt Pilot Testing

Major New Equipment

- Oxygen Supply and Injection System (Multiply locations, O2 Diffusers, Lances)
- Gas Recycle Systems (FGR Fan and Ducting)
- Air In-Leakage (Boost Fan, Sootblower, Ports, Welded Duct Construction)
- Fabric Filter for Particulate Removal and NID Scrubber

General Design

- Operate Both Air- and Oxy-fired
- Flexibility to Operating 5 Different Gas Stream Configurations
- Oxygen Injection Control – Premixed and Lance, Various Locations and Concentration
- Instrumentation and Controls, Sampling Access, Safety/Hazard Control
T-Fired 15 MWt Boiler Simulation Facility

North View of BSF - Excavation For Fabric Filter Foundation

South View of BSF - Excavation For Oxygen Supply Foundation
ISBF Test Campaign

- Focus on Hardware Requirements
 - Detailed Firing System Component Design (Nozzles, Lances, etc)
 - Materials and Overheating
- Near Field Behavior
 - Flame Stability and Scanner Performance
 - Combustion and Pollutant Formation
- Various Recycle Schemes
Oxy T-Fired Boiler Development Project

Summary

• This project provides a comprehensive evaluation of key oxy process and boiler design parameters under large scale pilot testing.

• An innovative oxy tangential firing system will be developed and optimized.

• Key technical data will be obtained defining oxy firing impacts on boiler performance and operation.

• Engineering and CFD modeling tools will be refined and validated with test results.

• Project results will provide design guidelines and performance data that, along with results of other Alstom oxy projects, provide a strong foundation for the next step of demonstration of an oxy tangentially fired boiler (~250 MWe).