Development of Cost Effective Oxy-Combustion for Retrofitting Coal-Fired Boilers

DE-FC26-06NT42747
Annual NETL CO₂ Capture Technology for Existing Plans R&D Meeting – March 24-26, 2009

Hamid Farzan¹, Rajeev Prabhakar², Bruce Sass³, Jose Figueroa⁴
¹Babcock & Wilcox Power Generation Group, ²Air Liquide, ³Battelle Memorial Institute, ⁴US Department of Energy
Who We Are: Babcock & Wilcox PGG

Since 1867, we are the original Babcock & Wilcox with extensive experience in engineering, manufacturing, constructing and servicing steam generating and environmental control systems.

George Babcock

Stephen Wilcox
B&W Oxy/Coal Combustion Experience

- 1979 Numerical Modeling per request of a major oil company
- 2000 Member CANMET

Recent Developments with Air Liquide Collaborations

- 2001-2002 - Oxy-combustion with IL#6 coal performed at 5 million Btu/hr SBS facility, sponsored by the State of Illinois
 - Substituted secondary air with recycled flue gas & oxygen
 - Gained experience with oxygen/flue gas mixing and combustion
- 2003-2004 - Oxy-combustion with PRB, sponsored by DOE
 - Demonstrated oxy-combustion at 5-million Btu/hr, achieved stable low-NO$_x$ flame with acceptable heat transfer conditions
- 2005-2006 - Economic analysis
 - Working with DOE, Parsons, Air Liquide
 - Oxy-combustion compared favorably to amine scrubber
- 2007-2008 – 30 MW$_{th}$ Demonstration at B&W’s CEDF
 - Near-Full scale burner development fed directly from an on-line pulverizer
Development of Cost Effective Oxy-Combustion for Retrofitting Coal-Fired Boilers

- **Funding Sponsors**
 - DOE $2,762,643
 - B&W/Air Liquide $690,644
 - Total $3,453,287

- **Project Duration**
 - March 2006 to September 2009

- **Project Team**
 - B&W
 - Air Liquide
 - Battelle Memorial Institute
Project Objectives

To Significantly Expand the Applicability of Oxy-Combustion:

- Evaluate the effect of coal rank that is currently used in existing boilers (i.e., bituminous, sub-bituminous and lignite) in an oxy-combustion design.
- Determine the equipment requirements for the boiler island, flue gas purification, CO₂ compression, transportation, and storage for different coals and combustion systems (cyclone and wall-fired).
- Investigate the potential for multi-pollutant (NOₓ, SO₂, and particulate) reduction.
- Validate an existing 3-dimensional computational flow, heat transfer, and combustion model for oxy-combustion scale-up to a commercial size boiler.
- Conduct an engineering and economic assessment of the technology for commercial-scale for cyclone and wall-fired units.
Development of Cost Effective Oxy-Combustion for Retrofitting Coal-Fired Boilers

Process Modeling

- **Boiler island**: modeling to predict flue gas compositions

- **Sequestration**: simulations to determine “sequestration-ready” gas specifications

- **CO₂ CPU**: process design to capture CO₂ from flue gas for sequestration purposes

- 3 coals considered
 - North Dakota Lignite
 - Decker coal (sub-bituminous)
 - Illinois #6 coal (bituminous)
Flue Gas Composition from Boiler

- Flue gas compositions predicted assuming high air infiltration rate & minimal SO$_2$ removal with bituminous coal

<table>
<thead>
<tr>
<th></th>
<th>ND Lignite</th>
<th></th>
<th></th>
<th>Decker</th>
<th></th>
<th></th>
<th>Illinois # 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wet mol%</td>
<td>Dry mol%</td>
<td></td>
<td>Wet mol%</td>
<td>Dry mol%</td>
<td></td>
<td>Wet mol%</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>17.41</td>
<td>0.00</td>
<td></td>
<td>17.42</td>
<td>0.00</td>
<td></td>
<td>17.43</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>59.63</td>
<td>72.20</td>
<td></td>
<td>59.57</td>
<td>72.14</td>
<td></td>
<td>58.18</td>
</tr>
<tr>
<td>N$_2$</td>
<td>16.01</td>
<td>19.38</td>
<td></td>
<td>16.32</td>
<td>19.76</td>
<td></td>
<td>17.63</td>
</tr>
<tr>
<td>O$_2$</td>
<td>4.10</td>
<td>4.96</td>
<td></td>
<td>4.00</td>
<td>4.85</td>
<td></td>
<td>4.11</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.3797</td>
<td>0.46</td>
<td></td>
<td>0.1350</td>
<td>0.16</td>
<td></td>
<td>0.1004</td>
</tr>
<tr>
<td>Ar</td>
<td>2.40</td>
<td>2.90</td>
<td></td>
<td>2.50</td>
<td>3.03</td>
<td></td>
<td>2.50</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>0.0619</td>
<td>0.075</td>
<td></td>
<td>0.0248</td>
<td>0.030</td>
<td></td>
<td>0.0380</td>
</tr>
<tr>
<td>CO</td>
<td>0.0165</td>
<td>0.020</td>
<td></td>
<td>0.0165</td>
<td>0.020</td>
<td></td>
<td>0.0165</td>
</tr>
</tbody>
</table>

- Low air infiltration case also considered
 - N$_2$ reduced to 10%
Reservoir and Geochemical Interactions

- Co-sequestration of CO$_2$ and SO$_2$ appears to be technically feasible in many deep saline reservoirs, but the injection lifetime of these reservoirs could be reduced if precipitation reactions take place.
- In carbonate-rich formations, sulfate could be a problem. Geochemical modeling results indicate that screening must be done to identify potential precipitation of sulfate minerals, such as anhydrite, which could reduce injectivity.
- To maintain supercritical state in a mixture of CO$_2$ and noncondensable gases, the flue gas will need to be injected in formations with higher pressure than would be needed for pure CO$_2$.
- In some reservoirs, storage space may be so limited that it is necessary to remove N$_2$ and O$_2$ to maximize the storage capacity.
Development of Cost Effective Oxy-Combustion for Retrofitting Coal-Fired Boilers

- Existing CO₂ pipeline specifications are mainly for gasification units
 - No NOₓ guidelines
 - Limited SOₓ guidelines
 - Significant variation in other specifications
 - H₂O: -5°C to -40°C dew point
 - O₂: 10 to 100 ppmv

- Specifications assumed for this study:
 - 175 bara
 - 90% CO₂ capture (DOE target)
 - H₂O reduced to 30lb/MMSCF (~600ppmv)
 - existing Kinder Morgan specification
 - No restriction on other gas components
 - Possibility of co-sequestration
 - Chance to assess tradeoff between purification cost and sequestration cost
Basic CO₂ CPU Process

- **3 processes**
 - No purification
 » only drying to Kinder Morgan specifications
 - Partial condensation at cryogenic conditions (cold box)
 » 95% CO₂ purity target
 - Cold box, including distillation
 » 1 ppm O₂ target
Operating Energy Requirement of CPU

- Addition of a cold box REDUCES specific energy requirement!
 - Will a different pipeline pressure requirement give different results?
• Above 125 bar (1815 psi) pipeline pressure, cold box + distillation has lowest specific energy requirement
Operating Energy Requirement of CPU

- Low air infiltration reduces power need by 15-18%

Compare with 150-160 kWh/ton
- Due to high pipeline pressure requirement, CO$_2$ purification reduces specific energy (Compare to compression only case)

- Air Infiltration has a significant effect on overall energy requirement of oxy-coal combustion

- It has to be evaluated (experimentally) whether the wet compressors can handle the SO$_x$ and NO$_x$ levels in the wet flue gas from the boiler island
 - Not in the scope of this project
Pilot-Scale Process

Diagram includes:
- Furnace
- Convection Pass
- Trim Heater
- Flue Gas Cooler
- SA Heater
- Baghouse
- WFGD
- Stack
- ID Fan
- Recycled Flue Gas (RFG) to Boiler
- Raw Coal Feeder
- Mill
- Pulverizer Air Heater
- PA Heater
- BTH
- PC
- Primary Oxynator
- Secondary Oxynator
- Secondary O₂
- Primary O₂
- Primary Air (PA)
- Secondary Air (SA)
- SA Fan
- PA Fan
- Cooling Air Fan
- Vent Air
- Vent
- Furnace Water In
- CP Water In
- Furnace and CP Blowdown
- Burner Lance O₂
- Overfire Oxidant
- Primary RFG
- Secondary RFG
Significantly Expand Applicability
- Bituminous, PRB, lignite
- Cyclone firing

New Oxy-Combustion ready Facility
- 6 million Btu/hr – SBS- II
- Cyclone and Wall-firing
- Dry/Wet Scrubber
- Construction Completed
- Just passed EPA performance

Currently Planning for:
- DOE Oxy-cyclone
- USC Materials Oxy-combustion

2nd to 4rd Quarter 2009 Testing
<table>
<thead>
<tr>
<th>U.S. State</th>
<th>Vintage</th>
<th>MW_e</th>
<th>Eff. (HHR)</th>
<th>Coal Type</th>
<th>SOx (ppm)</th>
<th>SO2 Control</th>
<th>NOx Control</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illinois</td>
<td>1967, 1968</td>
<td>2x 660</td>
<td>33%</td>
<td>Sub-bituminous</td>
<td>200-300</td>
<td>No</td>
<td>OFA/-SCR</td>
<td>Good Location (primary and secondary targets)</td>
</tr>
<tr>
<td>Indiana</td>
<td>1974</td>
<td>521</td>
<td>32%</td>
<td>Sub-bituminous</td>
<td>200-300</td>
<td>No</td>
<td>OFA/-SCR</td>
<td>Marginal Location (locally shallow; needs long pipeline)</td>
</tr>
<tr>
<td>North Dakota</td>
<td>1977</td>
<td>440</td>
<td>30%</td>
<td>Lignite</td>
<td>700-800</td>
<td>Yes</td>
<td>OFA</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>Missouri</td>
<td>1972, 1977</td>
<td>2x 600</td>
<td>33%</td>
<td>Sub-bituminous</td>
<td>200-300</td>
<td>No</td>
<td>SCR</td>
<td>Near seismic zone</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1963</td>
<td>2x 650</td>
<td>35%</td>
<td>Bituminous</td>
<td>2000</td>
<td>Yes</td>
<td>OFA/-SCR</td>
<td>Near fault zone</td>
</tr>
</tbody>
</table>
Path to Commercialization

B&W & Air Liquide have performed the following activities:

- Pilot-scale proof of concept – Sponsored by DOE and State of Illinois
- Near-full scale demonstration at B&W’s 30 MW_{th} CEDF
- Engineering and System integration studies
- **Significantly expand the applicability of the technology – this project**
- We are currently planning for a commercial demonstration of the technology
Development of Cost Effective Oxy-Combustion for Retrofitting Coal-Fired Boilers

LEGAL NOTICE

ACKNOWLEDGMENT: “This material is based upon work supported by the Department of Energy under Award Number DE-FC26-06NT42747.”

DISCLAIMER: “This report was prepared by Babcock & Wilcox Company (B&W) Power Generation Group, as an account of work sponsored by an agency of the United States Government. Neither the United States Government, Babcock & Wilcox Company Power Generation Group, nor any agency or person acting on their behalf: makes any warranty express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, Babcock & Wilcox Company Power Generation Group or any person or agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”