In the current state of concrete slab construction, concrete slab repair or correction is **REACTIVE**.

Under present construction practices, the discovery, scheduling and performing of slab repairs, moisture mitigation and leveling occur **late in the job**.

The **realization** of these issues results in delays, change orders and cost overruns, all without accountability.
Early Phase Concrete Management Systems transforms current concrete finishing practices by eliminating the final float/steel trowel finishing steps. Allows specified moisture levels, as well as flatness and levelness tolerances, to be achieved by installing a moisture control system and self-leveling underlayment as part of the initial concrete assembly.
This proactive approach eliminates the rejection of slabs due to excessive moisture levels and/or failure to meet flatness tolerances.
Early Phase Concrete Management Systems

- **Eliminate** the need for moisture testing
- **Eliminate** subfloor preparation change orders
- **Eliminate** disruption to other trades
- **Eliminate** delays in flooring installation
- **Eliminate** arguments about who bears the cost
Using Early Phase Concrete Management Systems, the Concrete Contractor:

- Places
- Consolidates
- Strikes Off
- Bull floats/Re-straightens
- Allows bleed water to dissipate
- Wet cover or membrane cure concrete
Concrete Placement
Using Early Phase Concrete Management Systems, the Concrete Contractor:

- Places
- **Consolidates**
- Strikes Off
- Bull floats/Re-straightens
- Allows bleed water to dissipate
- Wet cover or membrane cure concrete
Concrete Consolidation
Using Early Phase Concrete Management Systems, the Concrete Contractor:

- Places
- Consolidates
- **Strikes Off**
- Bull floats/Re-straightens
- Allows bleed water to dissipate
- Wet cover or membrane cure concrete
Concrete Strike Off
Using the Early Phase Concrete Management Systems, the Concrete Contractor:

- Places
- Consolidates
- Strikes Off
- **Bull floats/Re-straightens**
- Allows bleed water to dissipate
- Wet cover or membrane cure concrete
Concrete Bull Float / Restraighten
Using the Early Phase Concrete Management Systems, the Concrete Contractor:

- Places
- Consolidates
- Strikes Off
- Bull floats/Re-straightens
- **Allows bleed water to dissipate**
- Wet cover or membrane cure concrete
Allow Bleed Water to Dissipate

For concrete slabs on grade, saw cutting would follow this stage (typically no more than 12-hours after placement)
Using the Early Phase Concrete Management Systems, the Concrete Contractor:

- Places
- Consolidates
- Strikes Off
- Bull floats/Re-straightens
- Allows bleed water to dissipate
- **Wet cover or membrane cure concrete**
Wet Cover Cure Concrete
ICRI 2016 Spring Convention

Liquid Membrane Cure Concrete
ASTM C309 – 11: Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete

- Specification for curing compounds applied to fresh concrete to reduce water loss during early hardening
- Also, covers curing compounds used for further curing after form removal or initial wet curing
- Requires that the curing compound be membrane-forming
  - Reactive silicates do not form a membrane and do not meet the requirements of this standard. Their use is NOT approved with ACMS™.
- The loss of water is restricted to not more than 0.55 kg/m2 in 72 hours
- These curing compound shall adhere to fresh concrete, form a continuous film and must be dry to the touch in not more than 4 hours
The Early Phase Concrete Management Systems can be installed utilizing different product combinations and timing of leveling

The Early Timing Installation Option will be presented here, in detail, as the most specifiable and high value system

An alternate Late Timing Option will also be reviewed
After wet cover or chemical cure for 3-7 days, create minimum CSP3 via brush blasting to remove laitance, salt residue and contamination from wet cure.

Install fast-track moisture control system for concrete to receive self-leveling underlayment in four hours.

Survey slab and set level pegs to specified tolerances.

Install self-leveling underlayment.
Prior to performing layout work for interior finishes, shot blast concrete to a minimum CSP 3.

Measure the relative humidity within the concrete, per ASTM 2170.

If the relative humidity is below requirements of flooring manufacturer, proceed with standard acrylic primer and self-leveling underlayment.

If the relative humidity is above the requirements of flooring manufacturer, proceed with fast-track moisture control system and SLU installation.
<table>
<thead>
<tr>
<th>12</th>
<th>15</th>
<th>16</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Concrete – No Leveling – No Mitigation</td>
<td>Normal Concrete – Late Leveling – No Mitigation</td>
<td>Normal Concrete – Late Phase MC &amp; Leveling</td>
<td>Early Phase Concrete Management Systems – Early Timing MC &amp; Leveling</td>
</tr>
<tr>
<td><strong>Concrete</strong></td>
<td><strong>Concrete</strong></td>
<td><strong>Concrete</strong></td>
<td><strong>Concrete</strong></td>
</tr>
<tr>
<td>Concrete Placement</td>
<td>Concrete Placement</td>
<td>Concrete Placement</td>
<td>Concrete Placement</td>
</tr>
<tr>
<td>Consolidation/Strike-Off</td>
<td>Consolidation/Strike-Off</td>
<td>Consolidation/Strike-Off</td>
<td>Consolidation/Strike-Off</td>
</tr>
<tr>
<td>Bullfloat to Straighten</td>
<td>Bullfloat to Straighten</td>
<td>Bullfloat to Straighten</td>
<td>Bullfloat to Straighten</td>
</tr>
<tr>
<td>Bleed Water Dissipates</td>
<td>Bleed Water Dissipates</td>
<td>Bleed Water Dissipates</td>
<td>Bleed Water Dissipates</td>
</tr>
<tr>
<td>Float</td>
<td>Float</td>
<td>Float</td>
<td>Float</td>
</tr>
<tr>
<td>Trowel</td>
<td>Trowel</td>
<td>Trowel</td>
<td>Trowel</td>
</tr>
<tr>
<td>Joint Work – Saw (slab on ground)</td>
</tr>
<tr>
<td>Apply Curing Membrane</td>
<td>Apply Curing Membrane</td>
<td>Apply Curing Membrane</td>
<td>Apply Curing Membrane</td>
</tr>
<tr>
<td><strong>Early Phase</strong></td>
<td><strong>Early Phase</strong></td>
<td><strong>Early Phase</strong></td>
<td><strong>Early Phase</strong></td>
</tr>
<tr>
<td><strong>Late Phase</strong></td>
<td><strong>Late Phase</strong></td>
<td><strong>Late Phase</strong></td>
<td><strong>Late Phase</strong></td>
</tr>
<tr>
<td><strong>Joint Fill</strong></td>
<td><strong>Joint Fill</strong></td>
<td><strong>Joint Fill</strong></td>
<td><strong>Joint Fill</strong></td>
</tr>
<tr>
<td><strong>Brush Blast</strong></td>
<td><strong>Brush Blast</strong></td>
<td><strong>Brush Blast</strong></td>
<td><strong>Brush Blast</strong></td>
</tr>
<tr>
<td><strong>MC 14 mil w/sand to refusal</strong></td>
</tr>
<tr>
<td><strong>Sand Removal</strong></td>
<td><strong>Sand Removal</strong></td>
<td><strong>Sand Removal</strong></td>
<td><strong>Sand Removal</strong></td>
</tr>
<tr>
<td><strong>Leveling (@ ¼&quot;) – CUBE</strong></td>
</tr>
<tr>
<td><strong>Moisture Testing - Pass</strong></td>
<td><strong>Moisture Testing - Pass</strong></td>
<td><strong>Moisture Testing - Fail</strong></td>
<td><strong>Moisture Testing - Pass</strong></td>
</tr>
<tr>
<td><strong>Mechanical Prep</strong></td>
<td><strong>Mechanical Prep</strong></td>
<td><strong>Mechanical Prep</strong></td>
<td><strong>Mechanical Prep</strong></td>
</tr>
<tr>
<td><strong>Joint Fill</strong></td>
<td><strong>Joint Fill</strong></td>
<td><strong>Joint Fill</strong></td>
<td><strong>Joint Fill</strong></td>
</tr>
<tr>
<td><strong>Set Up/Product Load In</strong></td>
<td><strong>Set Up/Product Load In</strong></td>
<td><strong>Set Up/Product Load In</strong></td>
<td><strong>Set Up/Product Load In</strong></td>
</tr>
<tr>
<td><strong>Primer - P51</strong></td>
<td><strong>Primer - P82</strong></td>
<td><strong>Primer - P51</strong></td>
<td><strong>Primer - P82</strong></td>
</tr>
<tr>
<td><strong>Leveling (@ ¼&quot;)- barrel</strong></td>
<td><strong>Leveling (@ ¼&quot;)- barrel</strong></td>
<td><strong>Leveling (@ ¼&quot;)- barrel</strong></td>
<td><strong>Leveling (@ ¼&quot;)- barrel</strong></td>
</tr>
<tr>
<td><strong>Minor Prep</strong></td>
<td><strong>Minor Prep</strong></td>
<td><strong>Minor Prep</strong></td>
<td><strong>Minor Prep</strong></td>
</tr>
</tbody>
</table>
ICRI 2016 Spring Convention

Early Phase Concrete Management Systems

- Versatility of Systems allow for scheduling flexibility, with installation during early or interior build out construction phases

- System provides a complete specification package
  - 03 30 00 Cast-in-Place Concrete
  - 03 54 16 Hydraulic Cement Underlayment
    - Requires self-leveling underlayment installation to achieve specified flatness and levelness tolerances in accordance with ACI 117
  - 07 26 19 Moisture Control

- Early Phase consistently delivers Specified Overall Value (SOV) of $F_F$ 35 / $F_L$ 25 and Minimum Local Value (MLV) of $F_F$ 25 / $F_L$ 20 with standard process, but can also achieve superflat using a more rigorous process
Early Phase Concrete Management Systems

- Versatility of System allows for scheduling flexibility, with installation during early or interior build out construction phases.

- System provides a complete concrete specification package:
  - 03 30 00 Cast-in-Place Concrete
  - 03 54 16 Hydraulic Cement Underlayment
    - Requires self-leveling underlayment installation to achieve specified flatness and levelness tolerances in accordance with ACI 117
  - 07 26 19 Moisture Control

- Early Phase consistently delivers Specified Overall Value (SOV) of $F_F \leq 35 / F_L \leq 25$ and Minimum Local Value (MLV) of $F_F \leq 25 / F_L \leq 20$ with standard process, but can also achieve superflat using a more rigorous process.
Early Phase Concrete Management Systems

- Versatility of System allows for scheduling flexibility, with installation during early or interior build out construction phases.

- System provides a complete concrete specification package:
  - 03 30 00 Cast-in-Place Concrete
  - 03 54 16 Hydraulic Cement Underlayment
    - Requires self-leveling underlayment installation to achieve specified flatness and levelness tolerances.
  - 07 26 19 Moisture Control

- Early Phase consistently delivers Specified Overall Value (SOV) of $F_F \ 35 / F_L \ 25$ and Minimum Local Value (MLV) of $F_F \ 25 / F_L \ 20$ with standard process, but can also achieve superflat using a more rigorous process.
Early Phase Concrete Management Systems

- Versatility of System allows for scheduling flexibility, with installation during early or interior build out construction phases

- System provides a complete concrete specification package
  - 03 30 00 Cast-in-Place Concrete
  - 03 54 16 Hydraulic Cement Underlayment
    - Requires self-leveling underlayment installation to achieve specified flatness and levelness tolerances in accordance with ACI 117
  - 07 26 19 Moisture Control

- Early Phase consistently delivers Specified Overall Value (SOV) of $F_F \ 35$ / $F_L \ 25$ and Minimum Local Value (MLV) of $F_F \ 25$ / $F_L \ 20$ with standard process, but can also achieve superflat using a more rigorous process
Early Phase Concrete Management Systems

- Versatility of system allows for scheduling flexibility, with installation during early or interior build out construction phases

- System provides a complete specification package
  - 03 30 00 Cast-in-Place Concrete
  - 03 54 16 Hydraulic Cement Underlayment
    - Requires self-leveling underlayment installation to achieve specified flatness and levelness tolerances in accordance with ACI 117
  - 07 26 19 Moisture Control

- Early Phase **consistently delivers** Specified Overall Value (SOV) of $F_F$ 35 / $F_L$ 25 and Minimum Local Value (MLV) of $F_F$ 25 / $F_L$ 20 with standard process, but can also achieve superflat using a more rigorous process
Most hard surface flooring materials require F-numbers in range of $F_F \, 35$ and $F_L \, 20$. 

ACI 302 Flatness and Levelness Table 

ACI 302.1R-04 
Figure 8.7
ICRI 2016 Spring Convention

“Early Phase” Consulting Team

Eldon Tipping
- Principal of SSI
- 40 years of experience
- Leading authority on concrete tolerances for both on grade & elevated slabs
- Past Chair of ACI 117 (Tolerances) & ACI 302 (Concrete Floor Const.)

Allen Face
- Author of F-Number System
- Inventor of Dipstick, D-Meter and F-Meter
- Expert on the design, construction & QC of concrete floor slabs
- Authority on floor profiling specification

Peter Craig
- 41 years of exp.
- Leading consultant on moisture-related flooring problems
- ICRI moisture certification program sub-chair and instructor
- Chair ACI 302.2R (Concrete Slabs Rec. Flooring)
ICRI 2016 Spring Convention

THANK YOU!!

Interface between CONCRETE AND FLOORING RESOLVED

Contact: Michael F. Tracy
mike.tracy@ardexamericas.com