ACI 562-16
A Code For Repair of Existing Concrete Structures
By
Keith Kesner, PhD, PE,SE
Project Manager
CVM Professional

Learning Objectives
• Describe why a concrete repair code was developed
• Give examples of the major changes in ACI 562-16
• Design of concrete repairs using ACI 562-16
• Summarize how ACI 562-16 improves concrete repair practice

Presentation Overview
• ACI 562 – 16
• Overview of code development
• Major changes in 2016
• How to Use ACI 562-16
• Design of repairs using ACI 562-16

ACI 562-16 / GUIDE TO ACI 562-16
• Code Requirements for Assessment, Repairs, and Rehabilitation of Existing Concrete Structures and Commentary
• Approved June 2016

Guide to the Use of ACI 562
• Joint ACI / ICRI Document
• New version published in October 2016
• Discussion of ACI 562 Chapters
• Worked example problems using ACI 562

ACI 562 - 16
• Code for repair of existing concrete structures
• Designed to improve concrete repair practice
• First version published in 2013
• New edition published June 2016
ACI 562-16 – The Concrete Repair Code

- Developed to improve concrete repair practice
- Function with IEBC or as a stand-alone code
- Major changes in ACI 562-16
- Improved definitions and IEBC integration
- Demand / capacity ratios
- Bond of repairs
- Incorporate feedback on 2013 code

Why a Repair Code?

- Long-term industry need
- Variations in practice
- Variations in repair performance
- Establish required minimum practice
- Help for building officials
- Large segment of construction industry
 - ~20% of repair industry
 - 20 Billion dollars
 - 8 Billion dollars in corrosion damage

Challenges to a Repair Code?

- Complicated process
- 10 years to date
- Lack of consensus on practice
- What are minimum requirements?
- Acceptance from community
- Concern about limiting creative solutions
- Fear of something new

ACI 562 – Philosophy

- Emphasize performance based rather than prescriptive requirements
- Encourage creativity and flexibility
- Promote innovation and new materials
- Establish responsibilities
- Enhance life safety (equivalent safety)
- Extend service life
- Provide sustainable and economic alternatives
- Reference ACI and other “code” documents

How to Improve Concrete Repair Practice

- ACI Standard
 - Sets minimum requirements for repair
 - Encourage evaluation
 - Confirm material properties
 - Better evaluation → better repairs
 - Sustainable repaired structures
 - Long-term durability of repairs
 - Consistent reliability
Existing Building Codes

- IBC – Chapter 34
- Existing buildings
- Not in 2015 IBC (reference to IEBC)
- IEBC – International Existing Building Code
- First published in 2003
- ACI 562 developed to work with IEBC
- IPMC – International Property Maintenance Code

Existing Building Codes

- IEBC – Alternate Procedure
 - [AC 114.11] Alternative materials, design and methods of construction, and equipment. The provisions of this code are not intended to prevent the installation of any material or to prohibit any design or method of construction not specifically prescribed by this code, provided that any such alternative has been approved. An alternative material, design, or method of construction shall be approved where the code official finds that the proposed design is satisfactory and complies with the intent of the provisions of this code, and that the material, method, or work offered is, for the purpose intended, not less than the equivalent of that prescribed in this code in quality, strength, effectiveness, fire resistance, durability and safety. Where the alternative material, design, or method of construction is not approved, the code official shall respond in writing, stating the reasons the alternative was not approved.

ACI 562-16 - Organization

- Part I – General
 - General Requirements – Chapter 1
 - Terms / Definitions – Chapter 2
 - Standards / References – Chapter 3 and 11
- Part II – Evaluation Requirements
 - IEBC Criteria – Chapter 4
 - Stand-Alone Criteria – Appendix A
 - Loads – Chapter 5
 - Analysis of Existing Structures – Chapter 6
- Part III – Implementation
 - Structural Repair Design – Chapter 7
 - Durability – Chapter 8
 - Construction – Chapter 9
 - Quality Assurance – Chapter 10

How to Use ACI 562-16

- Applicability
- ACI 562 Process
- Preliminary Evaluation – 1, 4 or Appen. A
- Evaluation – 1, 4, 5, 6, App. A
- Repair Design - 7
- Durability - 8
- Construction and Quality Assurance – 9, 10
- Maintenance Requirements – 1

ACI 562 - Applicability

- Existing concrete structures
- Superstructure, foundations (slabs), precast elements – structural load path
- Structural vs. nonstructural – “Unsafe”
- Composite members – concrete
- Nonbuilding structures when required

Existing Structures

- Defined in ACI 562 and IEBC
 - Structure with a certificate of occupancy
 - Structure currently in use
- ACI 318
 - Deals with new construction
 - Repairs that satisfy new code requirements
ACI 562 - Applicability

- Seismic retrofit
- In accordance with general existing building code
- Procedures in ASCE 41 and ACI 369
- IEBC – references ASCE 41
- Voluntary seismic retrofit is permitted

ACI 562 - Process

- Preliminary Evaluation
 - Determination of design basis code
 - Substantial structural damage
 - Evaluation
 - Repair design
 - Durability considerations
 - Construction and Quality Assurance
 - Maintenance Recommendations

- Preliminary evaluation
 - Evaluation
 - Extent of problems
 - Extent of required repairs
 - Repair design
 - Durability considerations
 - Construction and Quality Assurance
 - Maintenance Recommendations

- Preliminary Evaluation
 - Evaluation
 - Repair design
 - How repairs are to be made
 - Material selection considerations
 - Durability considerations
 - Construction and Quality Assurance
 - Maintenance Recommendations

- Preliminary Evaluation
 - Evaluation
 - Repair design
 - Durability considerations
 - Construction and Quality Assurance
 - Maintenance Recommendations
Preliminary Evaluation / Evaluation

- Start of process – Chapter 1
- Determination of design-basis code
- Substantial structural damage
- Basis of Design Report
- Determines next steps – Chapter 4 / Appen. A
- Detailed evaluation?
- Repair design?

Design Basis Code

- Building code under which repairs are designed
- Possible design basis codes:
 - IBC
 - IEBC
 - Local building code, i.e., NYC Building Code
 - ACI 318
 - Combination of ACI 318 and 562

Substantial Structural Damage

- Defined in IEBC
- Reduction of greater than 33% to the vertical elements of the lateral force resisting system
- Reduction of greater than 20% of the vertical capacity in an area that supports more than 30% of the structures area
- Requirements vary with IEBCC edition
- Trigger for upgrade of structure to current code requirements

Basis of Design Report

- New concept in ACI 562-16 – Section 1.5.3
- Prepared for owner
- Summary of assessment results
 - Building description
 - Document unsafe conditions
 - Members needing strengthening
 - Past repair history
 - Current design-basis criteria
 - Etc.

Maintenance / Future Inspection

- Documented in basis of design report
- Types / frequency of maintenance
- Types / frequency of inspection
- Why?
 - Inform current and future owners
 - Help design professionals

Chapter 4 or Appendix A

- Criteria for determining extent of work
 - IEBCC – use Chapter 4
 - Stand-alone code - Appendix A
- Based upon demand / capacity ratios
 - Unsafe conditions
 - Strengthening required
 - Repairs to original code
When do existing structures need to satisfy current codes?

- IBC / IEBC
- If alterations or additions increase force in a structural element by more than 5%
- Repairs to elements that are found to be unsound or structurally deficient
- When substantial structural damage has occurred
- When required by a local code or building official
- D / C ratio greater than 1.5

Repairs to Conform to Original Code

- When structure is safe
- Most design and construction errors
- When undamaged structure satisfies original design code
- Durability related repairs
- Goal of ACI 562 is not to force strengthening of “good” structures

Unsafe Conditions – Nonseismic

- Loose materials
- Falling debris hazards
- $U_c / \phi R_{cn} > 1.5$
- Report consistent with 1.5.2
- Gravity and wind loads
- Current demand - U_c
- Current capacity - ϕR_{cn}

Demand / Capacity > 1.5

- Example – punching shear
- As built – $d = 0.5 \, d_{\text{design}}$
- $V_{\text{u}} \leq \phi V_n = 0.75 \, (4) \, \sqrt{f'c \, b}$
- Unsafe condition

Demand / Capacity > 1.0

- Example – negative moment capacity
- As built – $d = 0.75 \, d_{\text{design}}$
- $M_{\text{u}} \leq \phi M_n = 0.9 \, f_y \, (d-\alpha/2)$
- Strengthening required

Strengthening Required

- Less than substantial structural damage
- $U_o / \phi o R_{cn} > 1.0$
- Design demand - U_o
- Current capacity - $\phi o R_{cn}$
- Strengthening required
- Design to original building code
Alternate Assessment Criteria

- Contained in commentary to ACI 562
- Changes in load intensity with time
 - $U_c > 1.05 U_0 R_c$
 - If $U_c / 0.8 R_c \geq 1.1$ – strengthen to demand of current code
- $U_c < 1.05 U_0 R_c$
 - If $U_0 R_c / 0.8 \geq 1.05$ – strengthen to demand of original code

Demand / Capacity < 1.0

- No strengthening required
- $U_o / 0.8 R_c < 1.0$
- Durability issues
- Serviceability issues

Loads – Chapter 5

- Key points
 - Higher ϕ factors with verification for assessment – ACI 318-14 Chap. 27
 - Load combinations for external reinforcement
 - FRP, External PT, etc.
 - Accidental damage
 - Fire damage

Load combinations

- Min. capacity – no external reinforcement
 - $\phi R_n = 1.1 D + 0.5 L + 0.2 S$ or
 - $\phi R_n = 1.1 D + 0.75 L$
- During fire event
 - $\phi e x R = (0.9 \text{ or } 1.2) D + 0.5 L + 0.2 S$
 - Properties of structure during fire
 - Consider internal restraint

Evaluation of Existing Structures – Chapter 6

- Process to determine:
 - Capacity of structure
 - Extent of damage
 - Impact of damage
 - Strength of materials

Structural Assessment

- 6.2.1 – Investigation and structural evaluation required if the existing structure:
 - 1) exhibits signs of damage, displacement, deficiency, or behavior that is inconsistent with available construction documents or code requirements, or
 - 2) preliminary evaluation indicates strengthening is required
Structural Assessment

- **6.2.3** - Where repairs are required on an element in a structure, it shall be determined if similar elements throughout the structure also require evaluation
 - Repetitive elements
 - Isolated repairs may not be acceptable

Structural Evaluation – Analysis

- **6.2.5** - If an analysis is required, the structural assessment shall document the requirements of 6.2.4 and (a) through (c).
 - (a) As-measured structural member section properties and dimensions.
 - (b) The presence and effect of any alterations to the structural system.
 - (c) Loads, occupancy, or usage different from the original design.

Unknown Structural Capacity

- Lack of design drawings
- Determine geometry
- Determine loads
- In-situ conditions
 - ACI 201
 - ACI 228.1
 - ACI 364
 - ASCE Guidelines

Unknown Structural Capacity

- Unknown material properties
 - Historical values
 - Physical testing
 - # of samples?
 - # of elements?
 - NDT – with correlation

Load Testing

- ACI 437.2-13
 - Code for load testing
 - Why not ACI 318-14 Chapter 27?

Load Testing

- Load testing (ACI 437.2-13)
 - More rational for existing structures
 - Lower DL
 - Cyclic – accepted
 - Service load evaluation
 - Model testing
 - Supplement analysis
Repair Design – Chapter 7

- Key concepts
 - Satisfy strength and serviceability
 - Behavior of repaired structure
 - Bond of materials
 - Interaction and repair sequence
 - Appropriate materials

Strength and Serviceability

- Strength to resist applied loads
- Stiffness to satisfy serviceability

Behavior of Repaired Structure

- Integrate repair into existing structure
- Recognize what loads will occur on repaired structure
 - Live and dead?
 - Live only?
 - Lateral?

Interface Bond – 7.4

- Interface bond strength
 - $v_u \leq 0 \ V_{ni}$
 - v_u – Interface demand
 - Loads – shear, tension
 - Volume change effects
 - V_{ni} – Interface capacity

<table>
<thead>
<tr>
<th>V_u</th>
<th>Refer.</th>
<th>Reinforcement</th>
<th>QA Requ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 30 psi</td>
<td>7.4.2</td>
<td>No</td>
<td>Bond-integrity testing</td>
</tr>
<tr>
<td>30 to 60 psi</td>
<td>7.4.3</td>
<td>No</td>
<td>Quant. testing – bond strength</td>
</tr>
<tr>
<td>Greater than 60 psi</td>
<td>7.4.4</td>
<td>Yes</td>
<td>Quant. testing – bond strength</td>
</tr>
</tbody>
</table>

- Bond integrity testing
 - Hammer sounding, NDE, other methods

Interface Bond – 7.4

- Bond capacity
 - Based upon ACI 318-14
 - Testing – $V_u > 30$ psi
 - Quant. bond testing
 - ASTM C1583
 - Interface reinforcement
 - No testing required
Interaction and Repair Sequence / Detailing

- Consider in repair design
- Interaction / engagement of existing structure
- Repair detailing
- Maximize performance
- ICRI Guidelines
- ACI 546

Repair Design with ACI 562

- Design Basis Code + Engineering Logic
- Key Concepts
 - Strength and stiffness requirements
 - Consider
 - In-situ structure
 - Integration of repair with structure
 - Sequence of work

Durability – Chapter 8

- General
- Cover
- Cracks
- Corrosion and deterioration of reinforcement and metallic embedments
- Surface treatments and coatings

Design Service Life

- A goal established by the licensed design professional (LDP) to achieve an economical repair that satisfies both safety and serviceability requirements
- Estimated by LDP in consultation with the owner and consideration of the properties of the materials
- ACI 562 does not establish a design service life

Durability

- Performance-based requirements
- Durability considered by LDP in repair design
- Individual repairs
- Overall repaired structure
- Interaction of repair area and structure

Durability - General

- Repair materials and methods shall be selected that are intended to be compatible with the structure, durable within the service environment, and consider the anticipated maintenance.
Durability - General

So what does this mean?

- Specify materials based upon service environment
- New materials need to be compatible with existing
- Identify potential maintenance issues
- Make owner aware of maintenance requirements

Goals

- Reduce common causes of repair material failures
- Greater repair durability
- Reduce future problems for LDP

Cover

- In accordance with the design basis code
- Alternative materials and methods, an equivalent cover that provides sufficient corrosion protection and fire protection shall be in accordance with 1.4.2
- Sufficient anchorage and development for the reinforcement shall be provided regardless of methods used to provide corrosion protection

Cracks

- The design of repairs shall consider the effects of cracks on the expected durability, performance, and design service life of the repair.
- Consider the causes, movement, size, orientation, width, complexity of the network of cracks, characteristics of the substrate, location, and evidence of water transmission

Cracks

Crack Repair Considerations:
- Cause
- Orientation
- Deleterious materials
- Performance of structure
- Movement
- Etc.

Corrosion and deterioration of reinforcement and metallic embedments

- Considered in the durability design
- Quality of existing concrete and ability to protect reinforcement from corrosion and deterioration shall be considered
- Address anodic ring effect

Coatings and Surface Treatments

- Consider moisture transmission through the structure & influence of surface treatment on the durability of the structure
- Surface treatments, coatings, sealers, and membranes may have a shorter service life than the concrete
- Encapsulation of moisture and deleterious materials by surface treatment may cause or accelerate deterioration
Coatings and Surface Treatments

What does this mean?
• Coating service life
• Future maintenance problem
• Coatings can trap water
• Trapped water can lead to coating failures
• Trapped water can lead to corrosion problems

Goal of provision is to make LDP aware of potential issues with coatings

Construction – Chapter 9

• Stability and shoring
 • Designed by an LDP
 • Consider: sequence, in-situ conditions, changes in conditions

Construction – Chapter 9

• Temporary conditions
 • ASCE/SEI 37 when feasible
 • Stalled projects?
 • Environmental
 • Instructions to contractor
 • Report new conditions
 • Control of debris

Quality Assurance – Chapter 10

• Inspection
 • Consistent with general building code
 • Detailed commentary listing possible inspection items
 • Concealed conditions
 • Testing and Construction Observations
 • Consistent with project specifications

ICRI – Concrete Repair Technician

• Concrete repair inspectors
• Project personnel
• Written and field training
• QA / QC procedures
• Understand
 • Why and how of good repair practices

ACI 562-16 - Summary

• Performance-based code
• Can be used as a reference standard
• Existing concrete structures
• Not intended for new design
• Evaluation, design, durability, QA, and maintenance provisions
Impact on Concrete Repair Practice

- ACI Standard
- Sets minimum requirements for repair
- Encourage evaluation
- Confirm material properties
- Better evaluation = better repairs
- Sustainable repaired structures
- Long-term durability of repairs
- Consistent reliability

Additional Resources

- ACI 563 – Specifications
- To be published in 2016
- Specifications for common concrete repair types
- Concrete International
- ACI 562-16 – article series
- Expanded information on ACI 562

Webinars on ACI 562-16

- Guide to the Use of ACI 562-16
- Held September 27th – 29th
- 6 part webinar series – available online
- Overview of Guide to Use of ACI 562
- 5 Worked examples

Acknowledgements

- Members of ACI 562 Committee, especially
 - Larry Kahn
 - Gene Stevens
 - Kevin Conroy
 - Fred Goodwin
 - Jay Paul
- Webinar series presenters
- ACI Staff