Underwater Pile Repair and Protection of Marine Structures

Brian Foster
Simpson Strong-Tie
bfooster@strongtie.com

Objectives

• What is Pile Encapsulation?
• Why Do Piles Fail?
• Pile Jacket Installation
• Future Trends

Marine Infrastructure Overview

Bridges
Wharfs
Piers
Jetties
Dolphins
Transmission Towers
Sea Walls
Marine Applications

Concrete

Wood

Steel

Deterioration in Marine Environments

- Marine organisms
- Chemical attack
- Corrosion
- Mechanical damage
- Freezing and thawing damage
- Salt scaling

Repair Zones for Typical Pile Repair

- Total Zone:
 - Corrosion
 - Biological/chemical attack
 - Mechanical damage
- Splash Zone:
 - Corrosion
 - Biological/chemical attack
 - Mechanical damage
- Marine:
 - Mechanical damage
- File Caps:
 - Corrosion
 - Mechanical damage
Prior to Pile Encapsulation Systems

Complete replacement – or – Repair in place

In-place repairs were made using the same materials used in original construction

Drawbacks to this type of repair:

- Subject to same issues that caused deterioration
- Unending repair cycle
- Costs:
 - Cofferdams are often required to dewater the repair area
 - Lengthy repair times
 - Loss of structure function during repair

Composite Systems for Pile Encapsulation

System to Repair and Protect damaged and deteriorated piles

Provides an “in-place” repair

- No dewatering
- No loss of service

Impervious repair:

- Suffocates the splash zone
- Improves resistance
- Chemical
- Biological
- Freeze thaw

Proven technology for over 40 years

Advantages of Pile Encapsulation

Components are Underwater & Marine Grade

- Effective above and below waterline
- Effective in salt water, fresh water, and brackish water
- Jacket and fillers can be placed and cure underwater
- No dewatering required
- Environmentally safe to marine life
- Cost effective!
Advantages of Pile Encapsulation

Benefits to contractors, owners & engineers:

- User-friendly; can be modified in field; maintenance-free
- Jackets are manufactured per project needs
- Epoxy is both pourable and pumpable; fills all voids
- Epoxy grout bonds tenaciously to jacket
- Complete barrier system protects against additional corrosion and deterioration
- Restores structural integrity
- No need to shut down structure during installation

Components of a Jacketing System

Stay in Place Form
- Fiberglass jacket

Filler
- High-strength grouting materials
- Marine epoxy grout
- Underwater cementitious grout

Accessories
- Forming hardware
- Temporary bottom seals
- Pumping ports
- Stainless steel screws

Made from fiberglass fabric and polymer resin

Shape and size made per project

Jackets are 1/8” to 1/2” thick

Integral tongue & groove joint

Spacers added to maintain annulus

Bottom Seal

Self-tapping screws
Type of Filler Material

Depends on Section Loss

- **Less than 25%**: Epoxy grout
- **Greater than 25%**: Epoxy & cement grout

What About Complete Pile Section Loss?

- Jackets may still provide solution
- Engineer-of-record to determine

- Additional repair material may be appropriate
 - Rebar cage (wood or concrete piles)
 - Welded steel plates (steel piles)

Surface Preparation

Clean existing surface from loose debris

Prepare surface:

- **Concrete**: Mechanically, remove unsound concrete to the damaged area
- **Steel**: Prepare surface by high-pressure water jetting or other mechanical means up to specification
- **Fiberglass Jacket**: Fiberglass surfaces must be sound, clean, and free of all contaminants

Means & Methods

- Mechanical Sandblast
- Water Blasting
- Abrasive

Installation Procedure

- Gun epoxy into T&B joint
- Place jacket around pile
- Close jacket Position 18"-24" beyond repair area
- Mark bilateral bearing Mark nerves to secure T&B joint

Installation Procedure

- Bottom seal Install epoxy grout
- All-epoxy systems Fill joint with epoxy grout
- Epoxy/cement system Fill remainder with epoxy grout
- Top seal Apply epoxy mortar

Installation Details

- Grout Port
- Bell Joint
- Jacket formwork
Future Trends with Jacketing Systems

Stay in Place Forms
Strengthening Applications
Passive Cathodic Protection Systems
Active Cathodic Protection Systems

Underwater Pile Repair and Protection of Marine Structures

Thank You!

Brian Foster
Simpson Strong-Tie
bfoster@strongtie.com