Electrochemical Treatments to Significantly Extend the Service Life of Reinforced Concrete Structures

Presented by
Brian Pailes, Ph.D., P.E., NACE CP-4
Principal Engineer
Vector Corrosion Services
Outline

• Corrosion basics
• What are electrochemical treatments and how do they work?
• Project case histories
 – I-480 – Omaha, Nebraska – Electrochemical chloride extraction
 – University of Chicago – Re-alkalization
Corrosion

- Electrochemical reaction
- Requires
 - Moisture
 - Electrolyte – concrete
 - Metallic path – steel
- Anode
 - Where rust is formed
- Cathode
 - No section loss
Corrosion of Reinforced Concrete

- Concrete is naturally alkaline
 - pH of about 13
- Steel is naturally passive at this alkalinity
 - Formation of passive layer
- Passive layer can be destroyed by;
 - Chlorides
 - Carbonation
Chloride Induced

• Chloride ions diffuse into concrete and destroy steel’s passive layer

• Source of chlorides
 – Marine environments
 – De-icing salts
 – Chemical/processing plants
 – Cast into concrete

• Chlorides are not consumed in corrosion reaction, therefore, once threshold concentration reached, corrosion can occur unabated
Carbonation

• Carbon dioxide permeates into concrete
• Reduces pH of concrete
 – CO2 reacts with free lime, Ca(OH) 2, resulting in CaCO3 and H2O
• Reduced pH de-passivates steel
• Often seen when
 – Concrete permeability is high
 – Industrial sites
 – Very old structures – carbonation is a result of time and exposure
CONCRETE PRESERVATION PROCESS

PROBLEM
- Cracks
- Spalls
- Delaminations
- Corrosive Environment
- Water Leakage
- Change of Use
- Deflection
- Hazardous Event
- Life Extension
- Wear

EVALUATION
- Visual Inspection
- Non-Destructive Testing
 - GPR
 - Sonic / Ultrasonic
 - Remnant Magnetism
 - Sounding
 - Corrosion Potentials
 - Corrosion Rate
- Destructive Testing
 - Coring/Strength
 - Petrography
 - Chloride Profile
 - Carbonation
- Structural Monitoring

CAUSE
- Environmental Exposure
 - Corrosive
 - Chemical Attack
 - Fire
- Concrete Problems
 - Shrinkage
 - ASR
 - Freeze/Thaw
 - Permeability
- Other
 - Overloading
 - Change of Use
 - Code Change

REPAIR ANALYSIS
- Owner Criteria
 - Urgency
 - Cost
 - Expectations
 - Service Life
 - Aesthetics
- Engineering Criteria
 - Structural
 - Constructability
 - Environment
 - Safety
- Historical Considerations
- Preservation
 - Reduced Footprint
 - Repurpose
- Sustainability
- Environmental Responsibility

REPAIR STRATEGY
- Concrete Repair Methods
 - Crack Repair
 - Surface Repair
 - Structural Repair
 - Stabilization
 - Shotcrete
 - Strengthening
 - Waterproofing
 - Post-Tension Repair
- Cementitious:
- Calcium Silicate
 - LECA
 - Activated Slag
 - Fume

QUALITY CONTROL
- Demolition
- Surface Preparation
- Dough
- Placing
- Finishing
- Cure
- Curing
- Mortar
- Concrete
- Sand
- Stone
- Pre-Cast
- Structural
-ACI
- AGC
- Quality Control
- QC / QA Plan
- Mock-Ups
- Non-Destructive Testing
 - Sounding
 - Sonic/Ultrasonic
- Destructive Testing
 - Bond Strength
 - Compressive Strength
- Record Keeping
 - Batch Numbers & Bag Weights
 - Verification of Quantities
 - Environmental Conditions
 - Material Testing
 - Other Documentation
- Environmental Monitoring
 - Safety
 - Aesthetics
 - Leakage
- Structural Catastrophe
- Service Life Extension
- Use Dysfunction
- Effects on the Environment
- Preventative Maintenance
- Life Cycle Costing
- Rebuild

ARE REPAIRS REQUIRED?

YES

REPAIR / PRESERVATION CONSIDERATIONS
- Safety
- Aesthetics
- Leakage
- Structural
- Service Life
- Use Dysfunction
- Effects on the Environment
- Preventative Maintenance
Electrochemical Chloride Extraction
Electrochemical Chloride Extraction

• Application of temporary impressed current to draw chlorides out of concrete and repassivate the steel.
• Addresses the root cause of chloride induced corrosion
• Chloride levels in concrete are significantly reduced by ECE
• Alkalinity is increased at the level of the steel
 – Increases the chloride concentration required to reinitiate corrosion
• Reinforcing steel is returned to a passive, non-corroding state
 – For as long as chlorides can be kept from the steel
DC Power Source

Concrete

Temporary Anode

Conductive Media

Reinforcement

Cl⁻
DC Power Source

Concrete

Reinforcement

Cl

OH⁻
I-480 Omaha

- Rehabilitation to I—480 included deck replacement and substructure rehabilitation
- ECE completed on hammer head piers in 2002
I-480 Omaha
Chloride Concentration (lbs per yd³ of concrete)

<table>
<thead>
<tr>
<th>Sample Depth (in)</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0"-1"</td>
<td>66%</td>
</tr>
<tr>
<td>1"-2"</td>
<td>76%</td>
</tr>
<tr>
<td>2"-3"</td>
<td>80%</td>
</tr>
</tbody>
</table>

Before ECE

After ECE
Re-Alkalization
Anode Electrolyte

+ve

Electrolyte

Concrete

-ve

Reinforcement
Anode Electrolyte Reinforcement

Concrete

Na$_2$CO$_3$ & NaHCO$_3$
University of Chicago
University Hall Façade Repair

- Corrosion deterioration occurring due to carbonation of the concrete
- Re-alkalization conducted to façade
 - 72,300 ft² of concrete surface area
 - Completed spring of 2018
Prior to Treatment
Temporary Anode
Connection to Reinforcement
Post Treatment
Post Treatment
Sustainability I-480

• 6,700 yd3 of concrete preserved prevents
 – 6,530 pounds of nitrous oxides
 – 3,663 tons of carbon dioxide
 • Equivalent to annual emissions of about 833 people.
 – 13,191 tons of natural resources
 – Potable water to fulfill the daily needs of 1,695 people,
 – Waste generation 15,975 tons
 – Heat to boil 20 Olympic-sized swimming pools.
Sustainability University of Chicago

- 1,300 yd3 of concrete preserved prevents
 - 1,267 pounds of nitrous oxides
 - 711 tons of carbon dioxide
 - Equivalent to annual emissions of about 162 people.
 - 2,559 tons of natural resources
 - Potable water to fulfill the daily needs of 329 people,
 - Waste generation 2,633 tons
 - Heat to boil 4 Olympic-sized swimming pools.
• ICRI
 – 510.1-2013 – Electrochemical Techniques to Mitigate the Corrosion of Steel

• NACE
 – SP 0390 – Maintenance and Rehabilitation Considerations for Corrosion Control of Atmospherically Exposed Existing Steel-Reinforced Concrete Structures
 – SP 0107 – Electrochemical Realalkalization and Chloride Extraction for Reinforced Concrete

• FHWA
 – Bridge Preservation Guide
 – Long-Term Effects of Electrochemical Chloride Extraction on Laboratory Specimens and Concrete Bridge Components FHWA-HRT-10-069
 – Several other SHRP studies on ECE and Realalkalization

• ACI
 – 222.3R-03 - Design and Construction Practices to Mitigate Corrosion of Reinforcement in Concrete Structures
Thank you.
Questions?