Anchorage Improvement in CFRP Structural Strengthening

Prepared By: Khiam Sarwar C.E.O
Prepared For: ICRI Fall Convention
Dated: 09-11-2018
Email: ceo@fawchem.com | fawchem@gmail.com
Website: www.fawchem.com
Description

CFRP (Carbon Fiber Reinforced Polymer) materials are widely used for strengthening of RCC Members like Columns, Beams, Slabs, Foundations, Shear Walls, Silos etc. as External Strengthening System. Anchorage Capacity of CFRP materials can be improved by the following two techniques.

1- Using Epoxy Adhesive of Different Densities.
2- Increasing Anchorage Depth of Epoxy Adhesive
1. Using Epoxy Adhesives of Different Densities

Epoxy Adhesives are used for fixing of CFRP Laminates to Concrete, and as Saturating Resins for Carbon Fiber Fabrics to Concrete and as a fixing material for NSM (Near Surface Mounted) CFRP Bars to Concrete. For every case mentioned above, the Epoxy Resins mostly used have density ranging 1.08 kg/Lit - 1.65 kg/Lit. But for one case normally Density is not varied which leads to lesser efficiency. After grinding or Sandblasting the concrete surface its Roughness factor is increased. But, adhesive of higher density may not penetrate into Micro pores of roughened concrete surface, which may lead to cavitation and inhibit bonding. So if we use Epoxy adhesive of lesser density e.g. 1.08 kg/Lit as Primer then the surface can absorb Epoxy Adhesive and Enrich the bonding bridge at interface of Concrete and Epoxy adhesive for fixing of CFRP. Hence Anchorage/Slip Resistance of Overall CFRP Strengthening System is improved.

2. Increasing Anchorage Depth of Epoxy Adhesives

The CFRP Strengthening System is entirely based upon bond strength of Epoxy Adhesives. Sometimes the concrete surface Shear strength is lesser than expected and can cause CFRP De-Lamination. If we develop holes of nominal depth in concrete cover and fill with same Epoxy Adhesive which we use for CFRP Laminate bonding or use CFRP Anchor Pins we can increase the Anchorage Capacity of Strengthening System. By increasing Anchorage Capacity we can use the unused load bearing reserve of CFRP Tensile Strength and can manage to use lesser CFRP materials to strengthen the buildings.
Light House
Structural repair and strengthening

Before treatment

After treatment
Complete
Refurbishment

Before treatment

After treatment
Jetty Structure
Shear Strengthening

Flexural Strengthening
Bridge Strengthening
Flexural Strengthening

Positive Side

Negative Side
Bridge Strengthening

Pre Stressed CFRP
High Rise Buildings
High Rise Buildings

Column Strengthening
Slab Strengthening
Institutional Structures

Column Strengthening
Cement Silo
Industrial Strengthening

Beams and Slabs Strengthening
1. Using Epoxy Adhesives of Different Densities

Our Density Variation in this case lies between 1.08 kg/Lit – 1.30 kg/Lit
Type #1
1- Grinding / Sandblasting

2- Cleaning

3- Epoxy Primer (1.08 Kg/lit)

4- Epoxy Adhesive + Saturator (1.16 Kg/lit)

5- Carbon fibre application fabric (Unidirectional)

6- Allowed to cure

7- Crushed (7214 psi)
Type #2
1- Primer (1.08 Kg/lit)
2- Adhesive + Saturator
 (1.16 Kg/lit)
3- Carbon Fibre Fabric 300 Gsm
4- Curing 30 C
5- Crushing Strength (7992psi)
Type #3
1- Epoxy Primer (1.08 Kg/lit)

2- Epoxy Adhesive (1.3 Kg/lit)

3- Epoxy Saturator For Carbon Fibre (1.16 Kg/lit)

4- Allow to Cure

5- Crushing Strength (8162 psi)
2. Increasing Anchorage Depth of Epoxy Adhesives

The CFRP Strengthening System is entirely based upon bond strength of Epoxy Adhesives. Sometimes the concrete surface Shear strength is lesser than expected and can cause CFRP De-Lamination. If we develop holes of nominal depth in concrete cover and fill with same Epoxy Adhesive which we use for CFRP Laminate bonding, we can increase the Anchorage Capacity of Strengthening System. By increasing Anchorage Capacity we can use the unused load bearing reserve of CFRP Tensile Strength and can manage to use lesser CFRP materials to strengthen the buildings.
Type #4
Increasing Anchorage Depth

1- Drilling the concrete
2- Filling the holes with adhesive (1.3kg/lit)
3- Epoxy Primer (1.08Kg/lit)
4- Epoxy Adhesive (1.3Kg/lit)
5- Carbon Fibre Application
6- Curing 07 days
7- Crushing (6789psi)
Type #5
Increasing Anchorage Depth + Application of CFRP PIN

1- Drilling the concrete
2- Filling the holes with adhesive (1.3kg/lit)
3- Epoxy Primer (1.08 Kg/lit)
4- Epoxy Adhesive Saturation (1.3 Kg/lit)
5- Carbon Fibre Application
6- Fixing CFRP Pins in wet condition
7- Curing
8- Crushing (7108 psi)
Type #6
Combination Of Variable Density & CFRP Anchor Pins

1- Drilling the holes
2- Filling the holes with epoxy (1.3kg/lit)
3- Epoxy Primer (1.08 Kg/lit)
4- Epoxy Adhesive (1.3 Kg/lit)
5- Carbon Fibre Application
6- Fixing CFRP Pins in wet condition
7- Curing
8- Crushing (8593psi)
Un strengthened Concrete | 4000 PSI

- **Compressive Strength**
- **TYPE 01**: 7214
- **TYPE 02**: 7992
- **TYPE 03**: 8162
- **TYPE 04**: 6789
- **TYPE 05**: 7108
- **TYPE 06**: 8593

Legend:
- **DENSITY VARIATION TYPE**
- **CFRP ANCHORE PINS**
- **COMBINATION OF BOTH**
Un strengthened Concrete | 2500 PSI

- **Compressive Strength**

<table>
<thead>
<tr>
<th>Type</th>
<th>Compressive Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 01</td>
<td>5407 PSI</td>
</tr>
<tr>
<td>Type 02</td>
<td>6593 PSI</td>
</tr>
<tr>
<td>Type 03</td>
<td>6910 PSI</td>
</tr>
<tr>
<td>Type 04</td>
<td>6537 PSI</td>
</tr>
<tr>
<td>Type 05</td>
<td>6811 PSI</td>
</tr>
<tr>
<td>Type 06</td>
<td>7118 PSI</td>
</tr>
</tbody>
</table>

- **Legend**
 - DENSITY VARIATION TYPE
 - CFRP ANCHORE PINS
 - COMBINATION OF BOTH
Conclusion

The Anchorage capacity of CFRP Laminates and Amalgamates can be improved either by using Epoxy Adhesives of variable densities or by increasing Anchorage Depth of Epoxy Adhesives or by combination of both.
Merits

1- Lesser CFRP materials required for strengthening
2- Lesser time consumed for strengthening works of a building
3- Minimal weight added to the structure.
4- Cost of Refurbishment / Re-strengthening projects can be reduced.
5- Structures with low concrete strengths i.e. >2500 psi can also be Strengthened.
6- Building codes for CFRP Strengthening can be revised.

Demerits

1- Additional Cost of Epoxy Adhesives can be applied.
2- Accuracy of Drilling is required so expertise are important
Thank You!