Arctic Sealant Technology & Innovation

Marie Borong
VP R&D
Sika Corporation

Eric Muench
Director Product Management
Sika Corporation

The ideas expressed in this ICRI hosted webinar are those of the speakers and do not necessarily reflect the views and opinions of ICRI, its Board, committees, or sponsors.
The Commercial Sealant Market - $3.5 Bio

USA Building & Construction Demand (2020)

(USA Size: 1.2 billion pounds valued at $3.5 billion)

- On-site Applications [new, repair]: 857, $2,425
- Civil Engineering: 265, $808
- Off-Site applications: 84, $281

Source: ChemQuest
The Sealant Market – Global Trends

Several global trends across a diverse range of markets

<table>
<thead>
<tr>
<th>Trend</th>
<th>Innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift from mechanical fasteners to adhesives</td>
<td>- Bonding/softening dissimilar materials of design</td>
</tr>
<tr>
<td></td>
<td>- NVH Corrosion protection, crackworthiness (load management and distribution)</td>
</tr>
<tr>
<td>Increased use of composites, plastics, and light metal alloys</td>
<td>- Aerospace (Boeing Dreamliner 787)</td>
</tr>
<tr>
<td></td>
<td>- Automotive (2025 CAPE Standards)</td>
</tr>
<tr>
<td></td>
<td>- Implementation of carbon fiber and bonding dissimilar materials</td>
</tr>
<tr>
<td></td>
<td>- Resilient veneer-laminated wood flooring</td>
</tr>
<tr>
<td>Demand for alternative, sustainable energy sources</td>
<td>- Wind Energy</td>
</tr>
<tr>
<td></td>
<td>- Long-term, durable solar panels</td>
</tr>
<tr>
<td>Globally aging population</td>
<td>- Comfortable adult incontinence products</td>
</tr>
<tr>
<td>Electric vehicles and vehicle light-weighting</td>
<td>- Engineered Structural Adhesives</td>
</tr>
<tr>
<td></td>
<td>- Thermally-conductive encapsulants; lightweight adhesives</td>
</tr>
<tr>
<td>Demand for energy efficient buildings</td>
<td>- Highly durable, easy-to-apply insulating adhesives and tapes</td>
</tr>
<tr>
<td></td>
<td>- Adhesive fastening via Direct Glazing</td>
</tr>
<tr>
<td>Micro-electronics and electronic light-weighting</td>
<td>- Shock-resistant component assembly</td>
</tr>
<tr>
<td></td>
<td>- Waterproof and lighter weight next-generation smartphones</td>
</tr>
<tr>
<td>E-commerce and demand for sustainable packaging</td>
<td>- Automated, lower-cost, more sustainable packaging solution for online retailers</td>
</tr>
<tr>
<td></td>
<td>- Flexible packaging innovations substituting rigid packaging</td>
</tr>
<tr>
<td>Emergence Of New Adhesive Types</td>
<td>- The various types of adhesives being developed are dual-stage pressure-sensitive adhesives, pre-cut layered adhesive films and stick-to-skin adhesives</td>
</tr>
<tr>
<td></td>
<td>- Stick-to-skin adhesives are used in monitoring and drug delivery devices</td>
</tr>
<tr>
<td>Building & Construction</td>
<td>- Consumer trend away from U.S brick and mortar retail stores to e-commerce. More warehouse and distribution center construction, less retail.</td>
</tr>
<tr>
<td></td>
<td>- Life Cycle Assessment and demands from end uses and identification community</td>
</tr>
<tr>
<td></td>
<td>- Complex new corrosion challenges</td>
</tr>
<tr>
<td>Increased penetration by meeting previously unmet needs</td>
<td>- Reduce asset out-of-service time during repair</td>
</tr>
<tr>
<td></td>
<td>- Improved manufacturing through productivity</td>
</tr>
<tr>
<td></td>
<td>- Joining mixed materials – Enables joining composites, plastics and metal alloys</td>
</tr>
<tr>
<td></td>
<td>- Enable low-temperature curing</td>
</tr>
<tr>
<td></td>
<td>- Customized packaging options for precision dispensing, remanufacturing waste</td>
</tr>
</tbody>
</table>

Enable Low-Temperature Curing!
Problem To Be Solved

- Greater demand for faster project completion – time pressure.
- Pressure to use existing available products/technology in conditions not meant for.
- Risk for everyone!
CONTRACTORS THAT WANT TO WORK THROUGH THE COLDER MONTHS AND KEEP EMPLOYEES RETAINED.

THIS MEANS WORKING IN WEATHER CONDITIONS THAT ARE NOT IDEAL.
The Decision

• Decision to work on a 2-component polyurethane sealant:

 • Better fit for the construction projects that would desire to continue to work during winter months.

 • Wider range of colors (i.e. on-site color tinting)
2-component PU Sealants
2-component PU Sealants
How Contractors Worked Previously

- Existing sealants must be used above 40F and rising temperatures.
- When material gets too cold or is not conditioned properly it cannot be applied.
- Delays and work stoppages.
Arctic Sealant Project Objective

• Develop a Sealant that:

 • Can be mixed down to 15F – just as regular sealant mixes as room temperature.

 • Can gunned and tooled down to 15F – similar to room temp application of standard product.

 • Will cure down to 15F.
Let’s start with the basics
PU Sealants and Cold Weather

1 Component
• Low temperature
 • Viscosity increase
 • Difficult to gun and tool
• Low moisture
 • Slow adhesion development
 • Slow tensile strength development

2 Component
• Low temperature
 • Viscosity increase
 • Difficult to mix, gun and tool
• Low moisture
 • Slow adhesion development
 • Slow tensile strength development
Important factors – Sealing at Low T

Installation ease
• Mixing (2 component)
• Applying
• Tooling

Cure speed
• Adhesion strength development
• Tensile strength development

Performance in the joint
• Movement during cure
• Compression as Temperature rise
Solution
Cold Temperature Sealing – Patented Solution for 2 C PU

A two-component composition is described which comprises: A) an isocyanate component comprising an isocyanate-terminated polyol polyol or polyether polyol and B) a water component comprising water. At least one of the isocyanate component is component A) and/or component B).

This two-component composition of the adhesive is suitable as a sealant in particular as a joint sealant. Particular advantages are that it is resistant against frost and provides good adhesion, even at temperature variations, such as 0.4°C or below. The substrate to be sealed must have moisture-resistant substrates.
Installation Ease

Extrusion Force Part A

- Newton
- Temperature:
 - 75F
 - 40F
 - 10F
- Comparison:
 - 2C
 - 2c Arctic

Viscosity Comparison Part B

- Centipoise
- Temperature:
 - 75F
 - 40F
 - 10F
- Comparison:
 - 2C
 - 2C Arctic
Installation Ease

✓ Mixing (2 component) ✓ Gunning ✓ Tooling
Cure speed – Adhesion Development

<table>
<thead>
<tr>
<th>Adhesion development on unprimed concrete</th>
<th>Standard 2-component Sealant</th>
<th>2-component Arctic Sealant</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 days @5°F</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>7 days @ 5°F</td>
<td>Red</td>
<td>Orange</td>
</tr>
<tr>
<td>3 days @15F</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>7 d@15F</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>1 day @73°F</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>2 days @73°F</td>
<td>Green</td>
<td>Green</td>
</tr>
</tbody>
</table>

- **RED** = not cured, no adhesion development
- **ORANGE** = not fully cured, adhesion development on substrate
- **GREEN** = cohesive failure on substrate
Cure Speed – shore A development
Cure Speed – Tensile Development

- Tensile Strength
- Elongation at break
- Modulus @100%

Comparisons between 7 days and 21 days:
- 60% Tensile Strength
- 90% Tensile Strength
- 90% Elongation at break
- 60% Modulus @100%
Cure Speed

- Adhesion built up at low temperatures
- Tensile strength development at low temperatures
Movement capability

Installation ease – safer installation as
- ✓ Mixing (2 component)
 - ✓ No pre-heat needed
- ✓ Gunning
 - ✓ Guns easy at 15°F
- ✓ Tooling
 - ✓ Tools easy at 15°F

Cure speed – development at low T
- ✓ Adhesion strength built up
 - ✓ Fully developed in 3 days @ 15°F
- ✓ Tensile strength built up
 - ✓ 0% of ultimate strength reached after 7 days at 15°F
Movement capability

- Externally tested
- +/-35% movement on unprimed mortar
Field Testing Phase – Establish Success

• Two full winter seasons for field testing.

• Market feedback helped adjust to get a final desired product.

• Practical applications and monitoring helps with skeptics.

• Full release with resounding success and acceptance.
Field Testing Phase – Mixing and Applying
Arctic Sealant Application

• Sound, well prepared substrate – just as with any other sealant application.

• No Frost.

• Watch the Dew Point.

• Dry Surface
Where Arctic Sealant is Being Used
Helping Contractors Work Through the Winter
Distribution Center Construction
Warehouse Construction
Questions?

borong.marie@us.sika.com
muench.eric@us.sika.com