The purpose of this study guide is to explain the testing process and to help you prepare for the Class 2 wastewater operator certification examination.

If this is your first exam attempt, a short history of the current exam development should be of interest. The exam questions were developed by experts in the wastewater field. Each question has been validated through a process of panel review. The panel is comprised of 8 experts who have worked for many years in the wastewater field. Every question with each of the four answer selections has been examined for content, readability, accuracy, and relation to the Task Analysis. The process of validation has taken several years. It is an on-going process with new questions being developed and reviewed each year. You might say the job is never finished since existing validated questions must also prove reliable; that is they must test what they are supposed to test. Reliability can only be established from statistical evidence, which takes a minimum question repetition of 100 times. If statistics show a question to be unreliable, it is removed from the question bank. Unreliable questions are sent back to the review panel for restructuring. Each exam question is related back to one of twenty-eight subject categories; these are:

1. Activated Sludge 15. Math
2. Chemical Addition 16. Motors
3. Collection Systems 17. Preliminary Treatment
4. Digesters 18. Primary Treatment
5. Disinfection 19. Pumps and Pumping
6. Electrical 20. RBC's
8. General Information 22. Rules and Regulations
9. Imhoff Tanks 23. Safety and Health
11. Laboratory 25. Sludge Drying Beds
12. Lagoons 26. Sludge Handling
13. Maintenance 27. Tertiary Treatment
14. Management 28. Trickling Filters

Each Class 2 exam version has 100 multiple choice questions taken from any combination of these twenty-eight categories.

When you take the Class 2 exam, you are given one exam booklet containing questions, formulas and conversion factors; one answer sheet; two sheets of scratch paper; and two pencils. The only item you may bring to the exam site is your calculator which must be non-programmable and
incapable of storing alpha-numeric data. You are allowed a maximum of three hours to complete
the exam. A copy of the conversion factors and formulas are provided at the back of this study
guide. If you familiarize yourself with the format, it should cut down your referencing time
during the examination. Usually within two weeks of exam completion, your results are sent to
your home. Whether or not you passed the exam, you receive a detailed breakdown of your
performance as shown below:

<table>
<thead>
<tr>
<th>NUMBER OF QUESTIONS</th>
<th>NUMBER CORRECT</th>
<th>NUMBER INCORRECT</th>
<th>% CORRECT IN CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOW MEASUREMENT</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>PRELIM TREATMENT</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DIGESTERS</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>LABORATORY</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SLUDGE HANDLING</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ACTIVATED SLUDGE</td>
<td>22</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>PRIMARY TREATMENT</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>DISINFECTION</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>COLLECTION SYSTEMS</td>
<td>14</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>MATH</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>LAGOONS</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TRICKLING FILTERS</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>SAFETY</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>INTERMITTENT S.F.</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>72</td>
<td>28</td>
</tr>
</tbody>
</table>

Should you fail to achieve a score of 70%, you can use these results to determine the areas to
study. In the preceding example, the examinee scored the lowest percent correct on Flow
Measurement (0%), Preliminary Treatment (50%), Digesters (50%) and Laboratory (50%) but
lost the most points on Activated Sludge (6 points). It would be wise to review all five subject
categories. Notice how the category list progresses from lowest percent correct (Flow
Measurement 0%) to highest percent correct (Intermittent Sand Filters 100%). This category list
would appear in different orders for various examinees, depending on each examinee's area(s) of
weakness.

If you score less than 70%, you may reschedule the Class 2 exam without submitting another
application by returning the exam scheduling form provided with your results. When you do
retest, the number of questions per category or the categories themselves may differ on the exam
you are given. If you find a need for additional technical information, there is a list of suggested
reading on page 10 of this study guide.
The following is a list of the main subject areas that may be covered on the Class 2 examination. The questions are provided to show you the type of questions that one might expect to see on the examination; however, these exact questions do not appear on the examination.

I. General Information
 A. Characteristics of wastewater
 B. Basic steps of treatment
 C. Wastewater terminology relating to activated sludge systems

Example Question:

The Kraus process is used when the:

a) settleable solids fraction in raw wastewater is very high
b) nitrogen content in raw wastewater is high
c) ratio of carbonaceous to nitrogenous material is higher than normal
d) sludge digestion works poorly

II. Collection System
 A. Collection system components
 B. Routine operation and maintenance
 C. Sewer installation inspections
 D. Troubleshooting collection systems

Example Question:

Which of the following is a cause of inflow?

a) roof drains to sanitary sewers
b) faulty joints in sanitary sewers
c) cracks in sanitary sewer pipe
d) all of the above

III. Pumps and Pumping
 A. Types of pumps and motors and their application
 B. Operation and maintenance
1. Pumps
2. Motors
3. Controls for motors and pumps

Example Question:

A centrifugal pump is operating but at reduced discharge pressure. Which of the following would probably not cause reduced pressure?

a) partially clogged impeller
b) stuck discharge check valve
c) excessive clearance of wearing rings
d) pump is air-bound

IV. Flow Measurement

A. Purpose

B. Process controls

Example Question:

Flow is measured in a Venturi meter by measuring pressure head:

a) at a point just after the converging section and at the throat
b) at a point of equal distance before the converging section and before the throat
c) midway through the converging section and midway though the throat
d) at a point just before the converging section and at the throat

V. Preliminary Treatment

A. Purpose of preliminary treatment

B. Operation and Maintenance

1. Bar screens
2. Barminutors
3. Comminutors
4. Grit chambers
Example Question:

A lab analysis indicates that an aerated grit chamber is removing 20% of the volatile solids of the incoming influent. An operator should:

a) do nothing
b) reduce velocity of wastewater through grit chamber
c) increase velocity of wastewater through grit chamber
d) decrease aeration

VI. Primary Treatment

A. Purpose

B. Operation and maintenance of primary clarifiers

1. Primary clarifiers

2. Imhoff Tanks

Example Question:

Which of the following parameters is not significantly affected in a clarifier?

a) BOD
b) bacteria
c) suspended solids
d) pH

VII. Secondary Treatment

A. Purpose of secondary treatment

B. Operation and maintenance

1. Lagoons

2. Slow sand filters

3. RBC's

4. Trickling filters

5. Activated sludge units

6. Secondary sedimentation
Example Question:

If a mixed liquor sample is taken from an aeration tank and, after 30 minutes, solids settle to the bottom and then float to the top, what should you do?

a) reduce BOD loading
b) reduce aeration rate
c) add coagulant
d) increase nitrate concentration by adding sodium nitrate to the aeration tank

VIII. Sludge Handling

A. Theory of sludge handling and disposal

B. Operation and maintenance

1. Anaerobic digesters

2. Aerobic digesters

3. Sludge disposal

Example Question:

Which of the following would be the most useful to an operator to avoid anaerobic digester upsets?

a) pH
b) percent of volatile solids
c) alkalinity
d) volatile acids/alkalinity ratio

IX. Tertiary Treatment

A. Theory of tertiary treatment

B. Operation and maintenance

1. Polishing ponds

2. Intermittent sand filters

3. Rapid sand filters
Example Question:

The amount of filter aid needed in a tertiary filter:

a) increases with lower water temperature
b) increases with higher flow rates through the filter
c) increases with a higher turbidity in the influent to the filter
d) all of the above

X. Disinfection

A. Theory of disinfection

B. Operation and maintenance
 1. Gas chlorination systems
 2. Hypochlorite systems

Example Question:

The point of maximum chlorine demand beyond which the residual rises in proportion to the dose is called the:

a) breakpoint
b) hyposaturation point
c) saturation point
d) solution end-point

XI. Laboratory Testing

A. Purpose of testing

B. Process control testing
 1. pH
 5. TSS
 9. Alkalinity
 2. DO
 6. SVI
 10. F/M ratio
 3. Settleable solids
 7. Volatile solids
 11. Sludge age
 4. BOD
 8. Volatile acids
C. NPDES testing
 1. pH 4. Chlorine residual
 2. DO 5. Ammonia
 3. BOD 6. TSS

Example Question:

Which of the following chemicals can be used for dechlorination?

 a) sodium bisulfite
 b) sodium thiosulfate
 c) activated carbon
 d) all of the above

XII. Safety and Health

A. Clothing and apparel

B. Machinery

C. Chemical handling including chlorine

D. Laboratory

E. Collection systems

Example Question:

If an operator's eyes have been exposed to chlorine gas, one should:

 a) keep patient's eyes closed, cover eyes with bandage, rush to hospital
 b) apply weak solution of boric acid to eyes for 5 minutes
 c) flush eyes with a small amount of water and cover them
 d) flush eyes with a large amount of water for at least 15 minutes

XIII. Recordkeeping

A. Plant operations

B. Laboratory data
C. Financial data
D. Maintenance data
E. Accident data

Example Question

According to NPDES permits, generally speaking, how long must records of your treatment facility be retained?

a) 1 year
b) 3 years
c) 5 years
d) must be kept for the life of the facility

XIV. Rules and Regulations

A. 35 Ill. Adm. Code, Subtitle C: Water Pollution
C. NPDES
D. Local ordinances

Example Question:

Industrial waste ordinances do not usually contain specific limits on:

a) pH
b) DO
c) grease and oils
d) toxics

XV. Mathematics

A. General math
B. Process control math
C. Laboratory math
Example Question:

Given the following data, calculate the primary effluent BOD. Data: F/M = 0.4, Influent flow = 1.0 MGD, MLVSS = 3,000 lbs

a) 112 mg/l
b) 128 mg/l
c) 144 mg/l
d) 162 mg/l
LIST OF SUGGESTED READING

1. MOP 1 Safety and Health in Wastewater Systems
2. MOP 5 Aeration in Wastewater Treatment
3. MOP 11 Operation of Municipal Wastewater Treatment Plants (3 Volumes)
4. MOP 16 Anaerobic Sludge Digestion
6. MOP OM-7 Operation of Extended Aeration Package Plants
7. Wastewater Biology: The Microlife
8. MOP OM-8 Operation and Maintenance of Sludge Dewatering Systems

The preceding eight publications are available through:

Water Pollution Control Federation
Publications Order Department
601 Wythe Street
Alexandria, VA 22314-1994
(800) 666-0206
Website: www.wef.org

9. Manual of Wastewater Treatment

Available through:

Texas Water Utilities Association
1106 Clayton Lane, Suite 101-E
Austin, TX 78723-1033

10. Operation of Wastewater Treatment Plants, A Field Study Training Program
 a. Volume I
 b. Volume II

11. Advanced Waste Treatment, A Field Study Training Program

12. Operation and Maintenance of Wastewater Collection Systems, A Field Study Training Program
The correspondence courses and/or texts for items 10, 11 and 12 are available through:

Office of Water Programs
California State University, Sacramento
6000 J Street
Sacramento, CA 95819-6025
(916) 278-6142
Website: www.owp.csus.edu

and

Correspondence Course Coordinator
Environmental Resources Training Center
Campus Box 1075 - Southern Illinois Univ.
Edwardsville, IL 62026-1075
(618) 650-2030

13. Aerobic Biological Wastewater Treatment Facilities, USEPA 430/9-77-006, SN/055-001-01071-1

14. Anaerobic Sludge Digestion, USEPA 430/9-76-001

Items 13 and 14 are available through:

ORD Publications
P.O. Box 19962
Cincinnati, OH 45219
(513) 569-7562

or

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

15. Math Review for Wastewater Certification

16. Stabilization Pond Filtration

Items 15, 16 and 17 are available through:

Environmental Resources Training Center
Campus Box 1075 - Southern Illinois Univ.
Edwardsville, IL 62026-1075
(618) 650-2030
18. WPCF/ABC Studyguide for Wastewater Treatment and Collection System Personnel, Order No. E0376PC by the Water Pollution Control Federation and the Association of Boards of Certification

Available through:

Water Pollution Control Federation
Publications Order Department
601 Wythe Street
Alexandria, VA 22314-1994
(800) 666-0206
Website: www.wef.org

Available through:

Illinois Environmental Protection Agency
DWPC/Permit Section/Watershed Unit #15
P.O. Box 19276
Springfield, IL 62794-9276
(217) 782-1696
FORMULA SHEETS

CONVERSION FACTORS

\[\pi \] = 3.14
1 gallon of water = 8.34 pounds
1 gallon of water = 4 quarts = 8 pints = 3.785 liters
1 Population Equivalent (PE) = 0.17 pounds BOD/capita/day
\[= 0.20 \text{ pounds SS/capita/day} \]
\[= 100 \text{ gallons water/capita/day} \]
1 day = 24 hours = 1440 minutes
1 square foot (ft\(^2\)) = 144 square inches (in\(^2\))
1 square yard (yd\(^2\)) = 9 square feet (ft\(^2\))
1 cubic foot (ft\(^3\)) = 7.5 gallons = 1728 cubic inches (in\(^3\))
1 cubic yard (yd\(^3\)) = 27 cubic feet (ft\(^3\))
1 acre = 43560 square feet (ft\(^2\))
1 horsepower (HP) = 33,000 foot-pounds/minute (ft-lb/min) = 746 watts = 0.746 kilowatts (kw)
1 foot of water = 0.433 pounds/square inch (psi)
1 pound/square inch (psi) = 2.31 feet of water

VOLUMES, AREAS, & PERIMETERS

GIVEN: \(V = \text{Volume, } L = \text{Length, } H = \text{Height, } W = \text{Width, } r = \text{radius, } d = \text{diameter, } \pi = \text{Pi,} \)
\(b = \text{base, } P = \text{Perimeter, } C = \text{Circumference} \)

VOLUMES

Rectangular Solid: \(V = L \times W \times H \)
Cylinder: \(V = \pi r^2 H = \frac{\pi d^2 H}{4} = 0.785 \; d^2 H \)

Sphere: \(V = \frac{4}{3} \pi r^3 \)

Cone: \(V = \frac{1}{3} \pi r^2 H \)

Pyramid: \(V = \frac{1}{3} L \times W \times H \)

PERIMETER

Polygon: \(P = L_1 + L_2 + L_3 + \ldots + L_n \)
Circle: \(C = \pi d \)

AREA

Rectangle: \(A = L \times W \)
Triangle: \(A = \frac{1}{2} b \times H \)

Circle: \(A = \pi r^2 = \pi d^2 = 0.785 \; d^2 \)
Trapezoid: \(A = \frac{1}{2} (b_1 + b_2) H \)
PROCESS FORMULAS

TEMPERATURE

\[{}^\circ F = \frac{9}{5} {}^\circ C + 32 \quad {}^\circ C = \frac{5}{9} ({}^\circ F - 32) \quad {}^\circ K = {}^\circ C + 273 \]

FLOW MEASUREMENT

- 90° V-notch weir: \(Q = 2.5H^{2.5} \)
- Cippolletti weir: \(Q = 3.367LH^{1.5} \)
- Proportional weir: \(Q = 7.57mH \)
- Parshall flume: \(Q = 4WH^{1.52W^{0.026}} \)

ELECTRICITY

\[\text{Power} = \text{Current} \times \text{Voltage} \quad \text{Voltage} = \text{Current} \times \text{Resistance} \]

\[\text{Average Current} = \frac{\text{Line 1 Current} + \text{Line 2 Current} + \text{Line 3 Current}}{3} \]

\[\text{Current Imbalance} = \frac{\text{Average Current} - \text{Maximum Deviation}}{\text{Average Current}} \times 100 \]

MISCELLANEOUS

\[\text{Efficiency} = \frac{(\text{In} - \text{Out})}{\text{In}} \times 100\% \quad \text{Velocity} = \frac{\text{Distance}}{\text{Time}} \]

\[\text{Detention Time} = \frac{\text{Volume}}{\text{Flow Rate}} \]

\[\text{Application Rate} = \text{Concentration} \times \text{Flow} \times \text{Conversion Factor} \]

\[\text{Loading Rate} = \frac{\text{Concentration} \times \text{Flow} \times \text{Conversion Factor}}{\text{Area}} \]

LABORATORY

\[\text{BOD}_5 \text{ (mg/l)} = (\text{Initial DO} - \text{Final DO}) \times \frac{\text{Bottle Volume}}{\text{Sample Volume}} \]

\[\text{SS Concentration (mg/l)} = \frac{\text{Weight of Solids (g)}}{\text{Amount of Sample (ml)}} \times \text{Conversion Factor(s)} \]

\[\% \text{ Capture} = \frac{\text{Sludge SS} - \text{RAS SS}}{\text{Wet Sludge}} \times 100 \quad \% \text{ Solids} = \frac{\text{Dry Sample}}{\text{Wet Sample}} \times 100 \]
\[
\text{% Moisture} = \frac{\text{Wet Sludge} - \text{Dry Solids}}{\text{Wet Sludge}} \times 100
\]

\[
\text{% Volatile Solids} = \frac{\text{Dry Sample} - \text{Ash}}{\text{Dry Sample}} \times 100
\]

\[
\text{% Reduction in Volatile Matter} = \frac{\text{In} - \text{Out}}{\text{In} \times \text{Out}} \times 100
\]

CLARIFIER

\[
\text{Detention Time} = \frac{\text{Volume}}{\text{Flow Rate}}
\]

\[
\text{Weir Overflow Rate} = \frac{\text{Flow}}{\text{Length}}
\]

\[
\text{Surface Settling Rate} = \frac{\text{Flow}}{\text{Surface Area}}
\]

PROCESS CONTROL

\[
\text{F/M} = \frac{\text{lbs of BOD}}{\text{lbs of MLSS}}
\]

\[
\text{(Q + RQ) MLSS} = \text{RQ} \times \text{RAS}
\]

\[
\text{MLSS (mg/l)} = \frac{\text{MLSS (lbs)}}{\text{Volume} \times \text{Conversion Factor(s)}}
\]

\[
\text{SDI} = \frac{\text{MLSS (mg/l)}}{\text{Settled Sludge Volume (ml) (30 minutes)} \times 10} \times 100
\]

\[
\text{SVI} = \frac{\text{Settled Sludge Volume (ml) (30 minutes)} \times 1000}{\text{MLSS (mg/l)}}
\]

\[
\text{Gould's Sludge Age} = \frac{\text{lbs of MLSS [Aeration Tank(s)]}}{\text{lbs of TSS (Influent)}}
\]

\[
\text{MCRT} = \frac{\text{lbs of MLSS (Aeration Tank)} + \text{lbs of Solids (Clarifier)}}{[(\text{RAS(mg/l)} \times \text{WAS Flow}) + (\text{Effluent SS(mg/l)} \times \text{Flow})] \times \text{Conversion Factor}}
\]

\[
\text{Mixed Concentration} = \frac{(\text{Upstream Flow} \times \text{Upstream Concentration}) + (\text{Effluent Flow} \times \text{Effluent Concentration})}{\text{Downstream Flow}}
\]
SLUDGE LAND APPLICATION

lb/ton = mg/l x 0.002

1 mg/kg = 0.002 lbs/ton

gal/acre = wet tons x 2000 lbs x 1 gal
acre ton 8.34 lbs

mg/l (dry) = mg/l (wet) x ______ 100
% Total Solids

Dry Tons = Wet Tons x % Total Solids

100

Plant Available Nitrogen(PAN)(mg/kg) = Ammonia Nitrogen(mg/kg) + Organic Nitrogen(mg/kg)

Organic Nitrogen(mg/kg) = Total Kjeldahl Nitrogen(TKN)(mg/kg) - Ammonia Nitrogen(mg/kg)

WEST PROCESS CONTROL METHOD FOR ACTIVATED SLUDGE

F = 31.2 lbs/ft² x H² x L

\[R_Q = \frac{\text{MLSS} \times Q}{\text{RAS} \times (1 - \text{MLSS})} \]

\[\text{CFP} = \frac{\text{ATC} - \text{FEC}}{\text{RSC} - \text{ATC}} \]

\[\text{ATC} = \frac{(\text{CFP} \times \text{RSC}) + \text{FEC}}{\text{CFP} + 1.0} \]

\[\text{RSC} = \frac{\text{ATC} + (\text{ATC} - \text{FEC})}{\text{CFP}} \]

\[\text{WCR} = \frac{\text{MLTSS}}{\text{ATC}} \]

\[\text{RSP} = \frac{\text{ATC} - \text{PEC}}{\text{RSC} - \text{ATC}} \]

\[\text{SLU} = \frac{\text{Volume} \times \text{Centrifuged Concentration}}{100} \]

\[\text{SSC} = \frac{1000 \times \text{ATC}}{\text{SSV}} \]

\[\text{ATC} = \frac{(\text{RSP} \times \text{RSC}) + \text{PEC}}{\text{RSP} + 1.0} \]

\[\text{CFP} = \frac{\text{ATC}}{(\text{RSC} - \text{ATC})} \]

\[\text{RSC} = \frac{\text{ATC} + (\text{ATC} - \text{PEC})}{\text{RSP}} \]

\[\text{ATC} = \frac{\text{CFP} \times \text{RSC}}{\text{CFP} + 1.0} \]

\[\text{CSU} = \frac{\text{BLV} \times \text{CSC}}{100} \]

\[\text{RSC} = \frac{\text{ATC} + (\text{ATC})}{\text{CFP}} \]

\[\text{CDT} = \frac{\text{CV} \times 24}{\text{CFI}} \]
ASU = \frac{AV \times ATC}{100} \quad \text{CSDT} = \frac{CSU}{CSUO}

RSU = \frac{RSF \times RSC}{100} \quad \text{OFR} = \frac{CFO}{CFA}

\text{ADT} @ \text{AFI} = \frac{AV \times 24}{AFI} \quad \text{SAH} = \frac{\text{ADT} \times 24}{\text{ADT} + \text{CSDT}} \quad \text{AGE} = \frac{\text{ASU} + \text{CSU}}{\text{TXU/day}}

\text{ADT} @ \text{TFL} = \frac{AV \times 24}{AFI + \text{RSF}} \quad \text{AAG} = \frac{\text{AGE} \times \text{SAH}}{24}

\text{CSFD} = \frac{RSF \times (RSC - ATC)}{SSC - ATC}

\text{SCR} = \frac{SSC60}{RSC}

\begin{align*}
\text{AAG} & \quad \text{- Aeration Age} \\
\text{ADT} & \quad \text{- Aeration Tank Detention Time} \\
\text{AFI} & \quad \text{- Aeration Tank Wastewater Flow(In)} \\
\text{AGE} & \quad \text{- Sludge Age} \\
\text{ASU} & \quad \text{- Aeration Tank Sludge Units} \\
\text{ATC} & \quad \text{- Aeration Tank Concentration} \\
\text{AV} & \quad \text{- Aeration Tank Volume} \\
\text{BLV} & \quad \text{- Sludge Blanket Volume} \\
\text{CDT} & \quad \text{- Final Clarifier Detention Time} \\
\text{CFA} & \quad \text{- Final Clarifier Area} \\
\text{CFI} & \quad \text{- Final Clarifier Flow(In)} \\
\text{CFO} & \quad \text{- Final Clarifier Flow(Out)} \\
\text{CFP} & \quad \text{- Final Clarifier Sludge Flow Percentage} \\
\text{CSC} & \quad \text{- Final Clarifier Sludge Concentration} \\
\text{CSDT} & \quad \text{- Final Clarifier Sludge Detention Time} \\
\text{CSF} & \quad \text{- Final Clarifier Sludge Flow} \\
\text{CSFD} & \quad \text{- Final Clarifier Sludge Flow Demand} \\
\text{CSU} & \quad \text{- Final Clarifier Sludge Units} \\
\text{CSUO} & \quad \text{- Final Clarifier Sludge Units Out of Clarifier} \\
\text{CV} & \quad \text{- Final Clarifier Volume} \\
\text{FEC} & \quad \text{- Final Effluent Solids Concentration} \\
\text{MCRT} & \quad \text{- Mean Cell Residence Time} \\
\text{MLSS} & \quad \text{- Mixed Liquor Suspended Solids} \\
\text{MLTSS} & \quad \text{- Mixed Liquor Total Suspended Solids} \\
\text{MLVSS} & \quad \text{- Mixed Liquor Volatile Suspended Solids} \\
\text{WCR} & \quad \text{- Sludge Weight to Concentration Ratio} \\
\text{XFP} & \quad \text{- Excess Sludge Flow} \\
\text{XSC} & \quad \text{- Excess Sludge Concentration} \\
\text{XSF} & \quad \text{- Excess Sludge Flow to Waste} \\
\text{XSU} & \quad \text{- Total Excess Sludge Units to Waste}
\end{align*}