1. Executive summary and recommendations

- Continuous subcutaneous insulin infusion (CSII) pump therapy can be used safely and effectively in youth with type 1 diabetes (T1D) to assist with achieving targeted glycemic control (B).
- Insulin pump therapy can assist with reducing episodes of hypoglycemia (B).
- CSII reduces chronic complications of T1D in youth, despite similar hemoglobin A1C (HbA1c) achieved in those on multiple daily injection (MDI) therapy (B).
- Insulin pump therapy is appropriate for youth with diabetes, regardless of age (B).
- Infusion set failures are common and must be recognized early so as to avoid episodes of diabetic ketoacidosis (B).
- Real-time continuous glucose monitors (CGM) can be used effectively for lowering HbA1c, reaching target HbA1c, reducing glucose variability (both for CSII and multiple daily injections (MDI)), and increasing Time in Range (TIR) in the pediatric population with T1D (A).
- Real-time CGM can be used effectively for reducing mild to moderate hypoglycemia and shortening the time spent in hypoglycemia in the pediatric population with T1D (A).
- The effectiveness of CGM in children and adolescents with T1D is significantly related to the amount of sensor use (A).
- Intermittent, retrospective or real-time CGM use may be useful for diagnostic purposes and in evaluating the effects of major changes in treatment regimens (C).
- Use of flash glucose monitoring in the pediatric population is safe (C).
- Sensor augmented pump (SAP) therapy is superior in children and adolescents over MDI with self-monitoring of blood glucose (SMBG) in reduction of HbA1c without an increase in hypoglycemia or severe hypoglycemia (A).
• Low glucose suspend (LGS) systems reduce the severity and duration of hypoglycemia while not leading to deterioration of glycemic control, as measured by HbA1c (A).
• Predictive low glucose suspend (PLGS) systems can prevent episodes of hypoglycemia and have been shown to reduce hypoglycemia exposure (B).
• Automated insulin delivery (closed loop) systems improve time in range, including minimizing hypoglycemia and hyperglycemia (A). Commercial availability of automated insulin delivery systems is currently limited, but patient access to these systems is anticipated to improve in the near future.
• Automated insulin delivery systems have proven to be especially beneficial in attaining targeted control in the overnight period (A).
• There exists a wide spectrum of cell phone apps to aid patients with diabetes. Use of evidence-based apps has shown glycemic benefit for adult patients with type 2, but not type 1 diabetes (A).
• Bolus calculators, either on insulin pumps or as phone apps for MDI users, aid patients with diabetes in determining carbohydrate and correction dosing. Their use is associated with improved glycemic control in patients with T1D and should be encouraged for all patients (A).
• Automated algorithmic adjustment of open-loop pump settings and insulin dosing parameters is an emerging area of research and clinical care in diabetes technology (E). The first system for automated dosing adjustment without health-care provider approval has just received regulatory approval.
• Routine downloading of diabetes devices (blood glucose monitors, pumps, or CGM) is associated with better glycemic control, though overall rates of patients downloading their devices are extremely low (C).
• Telemedicine, whereby patients or providers, receive care from a specialist remotely through video conferencing may assist with improving glycemic control and increase the frequency of visits for patients with diabetes living in remote or rural locations (C).
• Setting realistic expectations for the integration of diabetes technologies is paramount to the success of patients as they adopt new technologies (B).
• Identification and counseling of potential barriers to adoption of new technologies or continued use of devices is critical (B).

2. Introduction

Numerous milestones mark the advance of diabetes care since the discovery of insulin in 1921. Glucose monitoring has progressed from urine to blood to interstitial fluid measurements every 5-15 minutes with continuous glucose monitors (CGM). Similarly, advances in insulin formulations and their delivery include rapid acting and basal insulins as well as insulin pumps to more effectively dose insulin.

While progress has been made in glycemic control, most youth with type 1 diabetes (T1D) do not meet ISPAD targets for hemoglobin A1c (HbA1c) based on data from international diabetes registries (1-5). Additionally, hypoglycemia and severe hypoglycemia continue to plague youth with T1D and prevent optimal glycemic control (2, 6-8). Early advances in diabetes treatment may have inadvertently increased the burden of diabetes care, which for some people may impair quality of life and psychosocial health (9-12). Thus, a body of research has explored how the burdens of these technologies can be offset by the benefits they may provide, determining how to set realistic expectations for what assistance new therapies may provide, and informing the development of the next generation of technologies to minimize the burden they may cause. Therefore, diabetes technology presents an opportunity to improve glycemic control by lowering HbA1c, reducing hypoglycemia, and lowering the burden of care for T1D on children, adolescents, young adults and their families (13).

Since the 2014 ISPAD guidelines, numerous advances have been made in diabetes technology. The purpose of this new chapter is to review evidence on diabetes technology in children, adolescents, and young adults and to provide practical advice and approaches on their use. Topics include: insulin pumps, CGM, sensor augmented pumps (SAP), closed loop systems, diabetes apps and automated decision support systems, downloading technologies, telehealth, quality of life issues related to diabetes technology, and a consideration of how to use these technologies in resource limited situations.

ISPAD Guidelines- Diabetes Technology

Revision 2/26/18
3. Insulin pumps

The dawn of technology use in diabetes care

The first application of technology to improve the care of those living with T1D can arguably be traced to the dawn of insulin pump therapy in the late 1970s (14-16). However, integration of continuous subcutaneous insulin infusion (CSII) pump therapy into the care of youth with T1D remained minimal until the turn of the century. Since then, a very consistent picture has emerged in the literature supporting the use of pump therapy for youth with T1D, namely mean HbA1c decreased 0.2-1.1% (17-30), clinically important hypoglycemia was reduced (17-22, 25-31), and no significant increase in BMI z-score was appreciated (17, 19-30). These data held true regardless of whether the multiple daily injection (MDI) comparator group used NPH (17-26, 29, 32) or glargine insulin (33-36). Randomized controlled trials assessing the use of CSII have yielded conflicting results, with some showing improvement of glycemic control with use of the technology (33, 34). Yet, the RCT studies that have not shown a lowering of HbA1c have highlighted the endorsement of pump therapy as patients randomized to the technology continued its use by the end of the study (37-39), had higher reports of treatment satisfaction (40), and reported decreased diabetes related worry (41). Interestingly, prospective examination of nearly 1000 patients either on pump or MDI therapy found that despite similar HbA1c levels attained, lower rates of retinopathy and peripheral nerve abnormality were noted in the CSII treated group(42). Furthermore, data from meta-analyses conducted by various groups have depicted similar findings with pump therapy. Namely, this mode of insulin delivery is associated with reductions in the mean HbA1c (43-45), lowering of the total daily insulin dose (43, 44), and decreased rates of severe hypoglycemia (45).

With the wealth of participants included and the long-term follow up they afford; registries provide means to assess real-world use of these technologies. Data from the U.S. based Type 1 Diabetes Exchange (T1DX) registry focusing on children <6 years demonstrated lower HbA1c levels for those on pumps, with a tendency for lower HbA1c levels prior to pump initiation,
suggesting selection of an ideal population for pump use may have occurred (46). The SWEET (better control in Pediatric and Adolescent DiabetеS: W оrking to create CEnTers of Reference) centers found that almost half of the 16,000 registry participants used pumps, and this technology was associated with lower HbA1c and daily insulin dose as compared to MDI (47). In a comparison of three large, transatlantic registries, which included the U.S. based T1DX, the German/Austrian Prospective Diabetes Follow-up Registry (DPV), and the English/Welsh National Paediatric Diabetes Audit (NPDA), a pooled analysis of nearly 55,000 pediatric participants, pump use was associated with lower mean HbA1c (pump 8.0±1.2% vs injection: 8.5 ± 1.7%, p < 0.001) (48). DPV database analysis of almost 10,000 participants on pump therapy matched to those on injections therapy showed lower HbA1c levels, total daily insulin doses, rates of severe hypoglycemia, and episodes of DKA observed, favoring pump use (7). Thus, the benefits of pump use have now been echoed in various registry assessments.

**Advanced pump settings**

More advanced features of pump therapy include the ability to set temporary basal rates and alter the pattern of bolus insulin delivery. Temporary basal rates allow for adjustments to the usually programmed basal rate: decreasing the delivery in the case of physical activity or increasing doses for situations like inter-current illness, which may be further exacerbated by steroid therapy as would be used for an asthma exacerbation (49). Similarly, different pre-programmed basal patterns can be utilized when days of differing insulin sensitivity are predictable, for example during menstruation in women. Bolus doses of insulin can be delivered: 1) immediately, known as a standard or normal bolus, 2) slowly over a certain duration of time, deemed an extended or square bolus or 3) a combination of the two, i.e. a combo or dual wave bolus (49). Foods that are higher in fat may lead to the need for an extended or combo bolus as the rise in glucose following the meal will be delayed by the high fat content. Pumps reduce bolus insulin delivery based on the proportion of insulin that is still deemed “active” from the last bolus, which may be a reason lower rates of severe hypoglycemia are appreciated for those on pump therapy.

**Spanning childhood: incorporation of pump therapy regardless of age or disease duration**
Consensus guidelines have been developed for use of pump therapy in youth with T1D, which based on the indications likely apply to every youngster living with T1D (Table 1) (50). Recently, an ISPAD Clinical Practice Consensus Guideline has been issued entitled “Managing Diabetes in Preschool Children”, which states pump therapy is the preferred mode of insulin delivery for those under the age of 7 years (51). In order to overcome the mechanical barrier dictated by the lowest basal and bolus delivery doses feasible with pump therapy, application of diluted insulin to the youngest population has offered the opportunity to more finely tune insulin delivery (52-55). While concern is sometimes expressed over how paid care providers will adopt this technology, a study by Weinzimer and colleagues highlighted that children whose parents work tended to see the largest improvement in glycemic control with transition to pump therapy (30).

Immediate incorporation of pump therapy at the time of diagnosis has been shown to be successful in terms of glycemic control achieved (56-58). While a theory exists that achieving more targeted control shortly after diagnosis may help to preserve beta cell function, this finding has not been corroborated by these trials (58, 59).

The long-term benefits of pump therapy have been depicted in some of the initial studies of this insulin delivery modality (31, 60) and more recently, continued improvement in glycemic control was seen over 7-years of treatment (61). Furthermore, those with suboptimal control (HbA1c >8.5%) at pump initiation, were found to have persistent benefits even after 4 years of treatment and those on MDI therapy had higher rates of severe hypoglycemia and DKA (61).

**Barriers to adoption of pump therapy and predictors of success**

Despite the literature supporting the benefits of pump therapy in the pediatric population, universal adoption of this technology has not occurred. A T1DX study reported pump use varied widely between centers and concluded healthcare provider preferences influence the proportion of patients using pumps in a given center, similar to a Pediatric Diabetes Consurtium (PDC) study reporting 18-59% use within the 1st year after diagnosis (46, 62). In the PDC study, pump therapy was more common in those with private health insurance, non-Hispanic white race, annual family income over $100,000, and a parent with a college education (62). A more recent analysis has echoed these findings showing sociodemographic factors, namely, income...
and parental education, increased frequency of blood glucose monitoring and CGM use were predictive of pump use (63). The authors also highlight potential barriers to uptake of the technology, which include concerns regarding the physical footprint and interference of the device, therapeutic effectiveness of the technology, and to a lesser extent, financial burdens this mode of insulin delivery may cause (63). In some countries, non-coverage of pump therapy by the health care/insurance system likely influences the low adoption rates of this technology (48).

Distinguishing what makes integration of pump therapy more successful could help guide clinical centers in assuring a smooth transition for patients. Having more pre-programmed basal rates has been found to correlate with more targeted control (64). Others have determined that the total number of boluses delivered daily correlates with HbA1c achieved, more frequent bolusing being associated with more targeted control, and that basal insulin delivery <50% was also important (65). In the adolescent population, increasing basal rates at the expected time of meals has been used to account for missed meal boluses; yet, if someone does not eat at one of these pre-specified time periods they are at increased risk for hypoglycemia, which could be further exacerbated in the setting of an intercurrent illness.

**Frequency and causes of discontinuation of pump therapy**

Generally, discontinuation of pump therapy is uncommon. The DPV registry over the period of 1995-2009 found attrition from this technology to be in general very low at 4% (66). Adolescents aged 10-15 years had the highest rate of pump discontinuation, and those who discontinued were more likely to be female (66) with similar results from the T1DX registry (67). Reasons for discontinuing pump therapy cited by participants included problems with wearability (57%), disliking the pump or feeling anxious (44%), and problems with glycemic control (30%) (67). Higher depressive symptoms, as captured by the Children’s Depression Inventory, has also be seen in those who cease pump therapy (68). From these findings, it appears targeting support to those who are in suboptimal control and/or exhibiting alterations in psychological well-being would be warranted (67).

**Complications of pump therapy: infusion sets and hypertrophy**

One of the major complications of pump therapy remains issues with infusions sets (69-72). Questions remain regarding whether steel cannulas or flexible Teflon are ideal and whether
certain infusions sets are better based on the age of the patient using the pump. As the major concern is occlusion, whether it be full or partial, or dislodgement of the site thereby interrupting the rapid acting analog being delivered subcutaneously and putting the patient at risk for ketoacidosis, some have explored the use of a small dose of basal insulin, like glargine, to help minimize this complication (73). Widespread adoption of this has not occurred, and many groups continue to explore how to develop improved infusion sets (74) or fault detection algorithms to advise a user of when insulin delivery may be interrupted (75, 76).

Lipohypertrophy, or local fat accumulation at the site of insulin administration, is another issue that is frequently encountered with pump therapy (77). Fat loss at the site of prior insulin infusion sites, lipoatrophy, is less common and has been seen more frequently in those with multiple autoimmune diseases (78). Both of these findings are categorized as lipodystrophy and earlier studies have shown a greater risk of these issues in those with higher insulin autoantibodies (79). Lipodystrophy can impact how insulin is absorbed and thus lead to deterioration in glycemic control. Interestingly, use of lipohypertrophied tissues for placement of a CGM was found to not impact the sensor accuracy (80). Thus, while resting the impacted tissue from continued insulin infusion, the hypertrophied space for diabetes related devices may still be utilized for sensor placement.

**Practical considerations**

When preparing to transition patients from MDI to insulin pump therapy, one of the first steps is to have the patient select the pump model they would like to utilize, if insurance coverage does not dictate the decision. To accomplish this, charts and literature describing the differences amongst the models is helpful, with the annual consumer guide published by Diabetes Forecast being an easily accessible, useful online reference. The selection of a pump should be based on features desired by the patient and their family with guidance provided by the multidisciplinary team members.

In determining initial pump settings, oftentimes the total daily insulin dose is used for initial calculations. Table 2 provides some suggestions to determine initial pump settings. Critical to success with the adoption of pump therapy is advising patients on risks of infusion set failure, which if unrecognized can lead to metabolic decompensation and potentially DKA (81). A useful
framework to review these issues and optimize the transition are presented by Diess et al (82). As steel cannulas are less likely to kink or dislodge they may be the ideal infusion set for the youngest patients adopting pump therapy.

Introducing patients to advanced pump features should be done over time as they show proficiency with the basic skills for success with the pump: changing the site every 3 days, bolusing for all carbohydrate intake prior to eating, and correction of hyperglycemia. Temporary basal rates, including complete suspension of basal insulin delivery, have been tested and shown to help mitigate hypoglycemia associated with exercise (83). Incorporation of advanced boluses includes the use of an extended/square wave bolus, which administers insulin slowly over a certain duration of time or a combination/dual wave bolus, which administers some of the insulin immediately with another portion of that bolus extended over time and may be of benefit when consuming a high fat food. For the extended bolus, the user sets the duration of the extension; whereas, for combo boluses they not only choose the duration to extend but also the amount to be delivered upfront (for example 40% of the bolus immediately and the remaining 60% over 4 hours-time).

By uploading pump data, clinic visits become more nuanced in regards to the alterations in the medical regimen that can be prescribed and the data download provides a portal by which clinicians can initiate a conversation on behavioral factors, including frequency of infusion set changes and timing of meal boluses.

4. Continuous glucose monitors

Self-monitoring of capillary blood glucose (SMBG) is an essential tool in the optimal management of diabetes in children and adolescents with type 1 diabetes as established by the landmark DCCT trial (84). The frequency of SMBG correlates with improved HBA1c levels and reduced acute complications (85-87). SMBG should be prescribed at a frequency to optimize each child’s diabetes control, usually six to ten times a day, though the actual number should be individualized (88). However, SMBG has limitations: it only provides single snapshots of glucose concentrations. Consequently, episodes of hyper- and hypoglycemia, in particular nocturnal and
asymptomatic episodes, as well as dynamics in blood glucose concentrations may be missed and not factored into treatment decisions.

CGM devices provide patients, caregivers and healthcare professionals a broad spectrum of information on real-time glucose trends. Currently available CGM devices measure interstitial glucose concentrations subcutaneously at five to fifteen-minute intervals utilizing enzyme-tipped electrodes or fluorescence technology. When interpreting historic data on CGM use, it is critical to take the results in context of the older technology utilized, especially when considering the pediatric age group. Recent advances in these systems have led to improved system performance, accuracy, and user experience; thus, limiting extrapolation of studies conducted with first generation technologies.

**Categories of sensors**

CGM can be divided into three categories: blinded/retrospective CGM, real time CGM, and flash CGM (FCGM).

Blinded CGM is usually applied intermittently over a short period of time providing health care professionals with sufficient information on glucose excursions and patterns to aid with diagnosis, facilitate changes in therapy, and might serve as an educational tool to improve glycemic control.

Real-time CGMs utilize real-time alarms for thresholds and predictions of hypo- and hyperglycemia, as well as rate of change alarms for rapid glycemic excursion. In addition, new technological developments now enable some CGM sensors to transmit signals to the ‘cloud’, and allow for digital remote monitoring, through which caregivers are able to view a patient’s CGM tracing and receive alerts on their own devices, including smartphones, tablets, and smart watches (89).

Recently introduced flash glucose monitoring (FCGM) systems (FreeStyle Libre, Abbott Diabetes Care, Alameda, California, USA) do not automatically display glucose readings at regular intervals, but report glucose levels only when the user scans the sensor by holding a reader, or a cell phone, close to the sensor. Real-time interstitial glucose levels and glucose trend arrows as well as a graph of current and stored glucose readings are provided on demand. However, these systems do not alarm. While current CGMs for blinded and real-time use still require calibration
using fingerstick blood glucose monitoring results, FCGM systems are factory calibrated, thus eliminating the need for recalibration and increase ease of use and economic feasibility (90).

Most sensors are self-inserted transcutaneously, and have a life time of 6 to 14 days. In Europe, a new type of long-term up to 3-months implantable sensor for real-time use (Eversense®, Senseonics Inc, Germantown, Maryland, USA) is available as an alternative for transcutaneous CGM.

**CGM use and uptake**

The concept of interstitial continuous glucose monitoring has existed since the 1990s with the first system being released by Medtronic in 1999 (CGMS Gold; Medtronic, Inc., Northridge, California, USA). A niche product in the past, CGM use has now become standard of care in many countries. Along with substantial advancement of CGM technology over the past 5 years, CGM uptake has increased as supported by data from big western diabetes registries. In 2012, an analysis from the prospective DPV diabetes documentation and quality management system from Germany and Austria showed that CGM was used in 4.8% of all patients and in 2.3% of all pediatric patients (91). In 2014, the T1D Exchange registry in the US reported CGM was used by 6% of children <13 years, 4 % of adolescents, and 6% of young adults aged 18-25 (92). Recent data from both registries suggests that overall CGM use is growing exponentially with usage in pediatric age groups reported at 18.4% (DPV) and 21.7% (T1D), respectively, with highest use among preschool-aged and early school-aged children (28.2% DPV; 44.5% T1D Exchange) (93). Higher use in younger children might be due to better hypoglycemia detection even in children who are unable to express symptoms of hypoglycemia, as well as a reduced number of painful fingersticks, and remote monitoring features of the latest system. Apart from technological advances and higher patient satisfaction, greater overall uptake might reflect changes in insurance coverage, provider beliefs, and CGM training practices.

**Efficacy of CGM**

*Impact on metabolic control*
Following its market launch, CGM was widely advocated as a great advance, despite limited accuracy, limited duration of use, and limited usability of early generation systems. However, early clinical studies and meta-analysis have demonstrated mixed results demonstrating only limited overall benefit of CGM, particularly in pediatric age groups with use of these early-generation systems (94-97). The JDRF landmark trial, performed in 2008, and its follow-up studies evaluated the benefit of third-generation CGM compared with SMBG for T1D management (98-101). In adults, CGM use for 26 weeks significantly reduced HbA1c by 0.5% without any increase in hypoglycemia. However, in the younger age groups (8-14 years and 14-25 years) there was no benefit in overall glycemic control associated with CGM use, likely related to <50% adherence in these groups. A secondary analysis of the JDRF cohort demonstrated a benefit across all age groups when the sensor was used ≥6 days/week (100). Furthermore, when restricting the analysis to those already in optimal glycemic control (HbA1c <7.0%), the same group showed that CGM is of benefit, in terms of sustaining HbA1c and reduction in hypoglycemia (99).

Studies and analyses conducted since 2010, utilizing fourth and fifth generation CGM systems, have more consistently shown that use of real-time CGM improves glycemic control in both children and adults with T1D in terms of improved HbA1c levels and reduced glucose variability (92, 94, 101-108). Clearly, the benefit of CGM is seen primarily in those patients with near daily use (94, 101, 106, 109). However, evidence regarding positive impact of CGM on glycemic control in younger children is still limited. Though data from small observational studies suggest that CGM can be used successfully in patients < 8 years (110, 111), an RCT in children aged 4 to 9 years did not demonstrate improvements in glycemic control even over extended CGM use (112). In toddlers <4 years, there was no difference in HbA1c after 6 months of use; however, there was a high degree of parental satisfaction (113).

While earlier analysis and guidelines were favoring CGM use in combination with pump therapy (88, 95, 96, 114), there is now emerging evidence that improvement in glycemic control is equivalent in users of insulin pump therapy and MDI therapy (107, 115-117).

Impact on hypoglycemia
RCTs evaluating the benefit of CGM mainly focused on HbA1c as the primary outcome. Apart from the SWITCH study showing a significant effect of adding CGM to insulin pump therapy on time spent in hypoglycemia (106), most studies failed to demonstrate a significant, or relevant reduction, in mild hypoglycemia (98, 102, 112, 118-122). Notably, RCTs primarily aimed at hypoglycemia prevention did demonstrate a significant reduction in mild hypoglycemia in terms of reducing the time spent in hypoglycemia by approximately 40 percent, and reducing the number of mild hypoglycemic events per day (99, 105). Clear evidence on the positive impact of CGM on severe hypoglycemia is missing. Only one RCT reported a significant increase in severe hypoglycemic events using CGM as compared with SMBG (119). Notably, one RCT in pediatric patients reported a significant decrease in severe hypoglycemia using CGM (123). However, data from meta-analysis published in 2011 and 2012 suggest that there is no significant difference in incidence rates of severe hypoglycemia between CGM and SMBG; yet, this likely represented what was capable with older generation CGM systems (94, 96). In adult patients with type 1 diabetes and impaired hypoglycemia awareness, data from a recent RCT (124) and from an observational study (125) suggest reduced severe hypoglycemia using CGM compared with SMBG; thus, supporting the concept of using CGM in this high-risk population.

*Intermittent use of real-time and retrospective CGM*

Though intermittent application of retrospective or real time CGM may be of use in children and adolescents with type 1 diabetes to detect postprandial hyperglycemia, the dawn phenomenon, asymptotic and nocturnal hypoglycemia, and in evaluating the effect of major changes in treatment regimens (126-128), there are no data that support long-lasting clinical benefits of short-term applications of CGM (129).

*Accuracy of CGM*

The accuracy and precision of first generation CGM systems were notably inferior to those of capillary blood glucose monitors. Over the past 5 years, however, there has been continuing improvement in the accuracy of CGM sensors. Overall accuracy of the latest sensor generations measured as the mean relative absolute difference (MARD) versus a given laboratory standard is in the 8-14% range (90, 130-133), with some sensors reaching the proposed mark sufficient to permit self-adjustment of insulin dosage without confirmatory capillary blood glucose
measurements (MARD, <10%) (134). Sensor accuracy depends on the glucose level and rate of change, with lower accuracy in the hypoglycemic range and at rapidly changing BG concentrations (135, 136). In the REPLACE BG study, Aleppo et al recently demonstrated that non-adjunctive use of CGM (i.e. adjustment of insulin dosage without confirmatory capillary glucose measurement) is as safe and effective as using CGM and confirmatory blood glucose readings in adults with type 1 diabetes (137).

**Non-adjutant use**

Real-time CGM systems were originally approved for adjunctive use, meaning the sensor glucose results needed to be verified by capillary SMBG before taking action. The latest generation of Dexcom sensors (G5™ Mobile CGM, Dexcom, Sand Diego, California, USA) has received FDA and CE approval for non-adjunct use in persons aged 2 years and older (138). Outside the US, FreeStyle Navigator II (Abbott Diabetes Care, Alameda, CA) is approved for diabetes management including insulin dosing when glucose is not changing rapidly. The Abbot Libre Flash Glucose Monitor (Abbott Diabetes Care, Alameda, California, USA) is approved for treatment decisions if the person is not hypoglycemic, if glucose is not changing rapidly, and if symptoms are concordant with the system readings. Practical guidelines for non-adjunctive use are being developed (139-146). However, research and clinical experience on non-adjunctive use of CGM systems are limited in pediatric populations (147).

**Flash CGM**

Recently introduced FCGM systems are factory calibrated, small in size, light weight, have good user acceptance and satisfactory accuracy with an overall MARD of 11 to 14% (117, 148, 149). Outside of the U.S., the device is approved for 2-week wear, as compared to the 10-day approval granted by the FDA. Results of a large multicenter RCT, known as IMPACT, demonstrated that use of a FCGM system statistically reduced the time adults with well controlled type 1 diabetes spent in hypoglycemia, reduced glucose variability, and improved time in range (3.9 to 10.0 mmol/l, 70 to 180 mg/dl) when compared to self-monitoring of blood glucose with capillary strips (117, 150). Benefits were identical for users of MDI and insulin pump therapy. This is supported by a range of non-controlled observational studies highlighting the potential of FCGM technology to improve clinical outcomes including HbA1c in adults with type 1 diabetes.
diabetes (150-152). Limited evidence in terms of effectiveness of FCGM systems is available in the pediatric population. As of February 2018, this system is CE marked for use by adults and by children (age 4 to 17 years). The FDA has approved the device in those aged 18 and over, but has required a longer start-up time (12 hrs. vs. 1hr) and a shorter duration of use per sensor (10 days vs. 14 days). Differences in Consensus error grid accuracy have been noted on the first day as compared to other days of wear (Zone A day 1= 72.0% vs. Day 2= 88.4%), which may have led to the decision for the longer duration prior to availability of sensor glucose data for the device in the United States(90).

**Implantable sensors**

In Europe, a new type of long-term up to 6-month implantable sensor (Eversense®, Senseonics Inc, Germantown, Maryland, USA) is available as an alternative for transcutaneous CGM. Safety and accuracy (MARD = 11.1%) of this implantable system was demonstrated in a prospective multicenter pivotal trial (133), with a subsequent study demonstrating improved accuracy with a MARD of 8.8 % (153). Implantable sensors may provide additional ease of use over standard transcutaneous CGM systems, since frequent sensor insertions through the skin are not needed. However, the need for implantation and removal through a minor in-clinic procedure by a trained health care professional is a significant limitation of the system, particularly in regards to its potential application in the pediatric population where there is no data available yet.

**Practical considerations**

Success with CGM requires detailed education and training in diabetes management coupled with extensive training in the use of CGM and high level of contact during the first months of wear (147, 154, 155). Table 3 provides some components that should be considered as sensor therapy is initiated.

Educational materials should also be provided to teachers at school (156). Written individualized health-care plans should be provided and agreed upon between parents, school nurses, professional caregivers, teachers, and the child, when appropriate (157). Decreased supervision during school days could be overcome by recently available remote monitoring capabilities of CGM systems and collaborative intensive diabetes management by parents and
daytime care-collaborative givers (158). Additional discussion of the psychosocial elements of CGM sharing are reviewed later, in this chapter.

CGM systems allow a wide variety of alert settings. Many people with diabetes are willing to accept the burden of alarms. However, many also experience alarm fatigue. Hence, when setting up alerts, it may be inappropriate to enable all of the alert types at once. Hirsch and colleagues suggest initial threshold values of 70 and 250 mg/dl (3.9 and 13.9 mmol/l) and further suggest a stepwise introduction of alarms (159, 160).

Barriers to long-term use of CGM sensors include sensor adhesiveness and skin irritation, particularly in young children where body surface is limited. Supplementary adhesive products (e.g. liquid adhesives, adhesive wipes) and external wraps are recommended to help secure the sensor to the skin (161). The number of reports about (severe) skin reactions to the sensor adhesives is quite limited, but might be underreported (162). Skin issues might become more prevalent due to longtime use of sensors and availability of devices with longer wear time. Transparent dressings, special tapes and barriers could be used in case of allergic reaction to the sensor adhesive or skin irritation from the plastic or metal components of the sensor/transmitter unit. Additionally, regular site rotation to prevent rashes and dry skin due to frequent application, and removal of sensor adhesives are recommended (161). Adhesive remover could be used to make the sensor removal less traumatic for both the patient and the skin (161).

5. Sensor augmented pump therapy

Sensor augmented pump (SAP) therapy, defined as combination of the technologies described above (CSII and CGM), represents the first step on the path towards an artificial pancreas.

A single platform: the beginnings of sensor augmented pump therapy

The first RCT comparing SAP to insulin pump therapy in those with T1D showed similar reductions in HbA1c after 6-months, but, this was associated with significantly increased hypoglycemia exposure in the SMBG group (119). Reduction in HbA1c was appreciated in those who had at least 60% sensor utilization (119).
The Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 study randomized participants to either SAP or maintained them on MDI therapy with conventional SMBG checks for a 1-year study period and reported a greater reduction in HbA1c was associated with an increased frequency of sensor use. Children, defined as those ages 7-12, had a 1.5X higher use of sensors as compared to the adolescent cohort, who were 13-18 years old (163). Those using SAP were more likely to attain the 2010 ADA age adjusted HbA1c targets, have decreased hyperglycemic exposure, and decreased glycemic variability (102, 163). While rates of severe hypoglycemia and DKA did not differ amongst the treatment groups, frequency of these events was relatively low in the entire study cohort.

Glycemic variability, measured as sensor glucose standard deviation (SD) and coefficient of variation (CV) in the STAR3 group was assessed (164). Those with HbA1c <8% in the SAP group were found to have lower sensor glucose SD and CV than those in the control group, suggesting that glycemic excursions may be reduced with use of this technology in an HbA1c independent manner (164). At the end of the year-long STAR3 trial, participants (including children) on SAP maintained HbA1c achieved at the 18-month mark, whereas in the cross-over group HbA1c decreased significantly (104, 164).

**Low Glucose Suspend Systems: Reducing the severity and duration of hypoglycemia**

With integration of CGM data and insulin pump delivery into one device, the next logical step is to alter insulin delivery based on sensor glucose readings. As fear of hypoglycemia may predispose patients and providers to attain targeted control and knowing that suspension of insulin is less “risky” than automating insulin delivery investigation into low glucose suspend (LGS) systems began. Feasibility data on the efficacy and safety of LGS came from early closed-loop studies demonstrating the ability of insulin suspension to mitigate the risk of hypoglycemia (165, 166).

Current LGS systems will interrupt insulin delivery for 2 hours when sensor glucose reaches a pre-defined low sensor threshold and automatically resumes insulin delivery regardless of current sensor glucose levels. The Automation to Simulate Pancreatic Insulin Response (ASPIRE) in-clinic study demonstrated that the mean duration of hypoglycemia was shorter with LGS-On and the nadir glucose was slightly higher (167).
Next, the ASPIRE in home study reported a 37.5% reduction in the primary endpoint – area under the curve (AUC) < 3.9 mmol/L (< 70 mg/dL) for nocturnal hypoglycemia – in the SAP with LGS vs SAP (167, 168). More importantly, percentages of sensor readings <3.9 mmol/L (<70 mg/dL), <3.3 mmol/L (<60 mg/dL), and <2.8 mmol/L (<50 mg/dL) were all significantly reduced in the SAP with LGS as compared to SAP alone; yet, despite this reduction in hypoglycemia there was no deterioration in glycemic control as measured by HbA1c (168). After 2-hours of nocturnal insulin suspensions, sensor glucose was 92.6±40.7 mg/dL (5.1±2.6 mmol/L) and 168.8±64.6 mg/dL (9.4±3.6 mmol/L) at 4 hours post initiation of the suspension (168).

The benefits of a LGS system in those with proven impaired hypoglycemia awareness were shown by a reduction in combined severe (seizures/coma) and moderate hypoglycemia (incidence rate ratio was 3.6 (95%CI, 1.7-7.5; P<0.001)) favoring the LGS versus pump with SMGB group (169). There were 0 severe hypoglycemic events in the LGS arm vs. 6 events in the pump with SMBG (p=0.02) and significantly less percentage of time was spent in hypoglycemia, particularly during the night (169).

Observational studies have corroborated the results from the two RCTs described above. A pediatric observational study included 21 children and compared a 2-week run-in period where low sensor glucose alerts were set to sound at 75 mg/dL (4.2 mmol/L) to 6-weeks with the LGS feature on (threshold 70 mg/dL (3.9 mmol/L) (170). A full 2-hour suspend most often occurred during the night and AUC <70 mg/dL (<3.9 mmol/L) was significantly smaller during LGS-On vs. LGS-Off (170). Finally, an analysis of uploaded data from 935 patients providing 49,867 patient-days (with LGS used for 82%) was performed by Medtronic (171), only 11% of the suspensions lasted for >115 minutes, with the mean sensor glucose during these episodes being 59 ± 12 mg/dl (3.3 ± 0.7mmol/L) at LGS activation, 102 ± 53 mg/dl (5.7 ± 2.9 mmol/L) by the end of the LGS episode, and 150 ± 69 mg/dl (8.3 ± 3.8mmol/L) 2 hours after insulin delivery resumed (170, 171).

To address concerns of what could happen if insulin suspension occurred based off the readings of an inaccurate CGM, random 2-hour pre-programmed insulin suspensions were conducted overnight in a cohort of participants in their home setting as long as pre-bed blood glucose was <300mg/dL (16.7mmol/L) and blood beta-hydroxybutyrate (BHB) levels were

---

ISPAD Guidelines- Diabetes Technology

Revision 2/26/18
<0.5mmol/L (172). A total of 118 suspend nights were compared to 131 non-suspend nights and showed the morning after suspensions, blood glucose was ~50mg/dL (2.7mmol/L) higher but there was no clinically meaningful difference in BHB levels (172).

**Mitigating Hypoglycemia: the benefits of Predictive Low Glucose Suspend**

Furthering the automation process, predictive low glucose suspend (PLGS) systems suspend insulin delivery in hopes of preventing hypoglycemia. In 45 participants between the ages of 15-45 years, the system reduced hypoglycemia exposure (defined as median hypoglycemia area under the curve) by 81% and time spent <60mg/dL (<3.3mmol/L) by 70% (173). The same system assessed in a pediatric cohort reduced median time <70mg/dL (3.9mmol/L), while not leading to a difference in blood beta-hydroxybutyrate levels in the morning (174). The system was found equally efficacious in all groups (175).

The MiniMed 640G and 670G system (Medtronic, Northridge, CA) come equipped with SmartGuard Technology, which provides the PLGS feature in clinical practice. PLGS is termed “suspend before low” in these systems and interrupts insulin delivery if the sensor glucose is predicted to reach 20mg/dL (1.1 mmol/L) above the preset low glucose limit within 30-minutes and automatically resumes basal insulin delivery after recovery from hypoglycemia. An in-clinic assessment utilized basal rate increases to induce hypoglycemia with the system set at 65mg/dL (3.6mmol/L), hypoglycemia was avoided in 60% of the 69 experiments (176). A RCT conducted in 100 children and adolescents with T1D demonstrated that use of the PLGS feature reduced the number of hypoglycemic events, defined as sensor glucose values <65mg/dL (<3.6mmol/L) (177). However, the authors note that use of the PLGS feature led to a concomitant rise in the time spent in the hyperglycemic range (177). More recently, a 6-month multi-center RCT demonstrated the ability of this feature to reduce time spent with sensor glucose <63mg/dL (<3.5mmol/L), with no change in HbA1c level at the end of the study (178). In a real-world assessment, initiation of the PLGS system while at camp was shown to be possible and there was persistence of sensor use, with 74% of the cohort at 3-months and 66% of the cohort achieving sensor wear at least 70% of the time (173, 179). It was speculated that this continuation of sensor use was due both to adequate education at initiation of therapy as well as the benefits of PLGS feature (179).
Highlighting the safety of a PLGS system, blood beta hydroxybutyrate levels were assessed on 1954 mornings, half of which occurred after an intervention night (180). Frequency of BHB >0.6mmol/L was not different between the two study conditions supporting the recommendation that assessing for ketones should not be different regardless of whether a patient is using a PLGS system (180).

**Practical Considerations:**

Success with SAP, in many ways, hinges on integration and understanding of the system components, namely the CGM and pump. Scaramuzza and colleagues have provided a framework by which to initiate PLGS in children (181). Topics that should be considered when initiating these therapies may include expected frequency of sensor use, and how treatment may vary when breaks from sensor therapy may occur. This may be especially important in those utilizing systems that suspend insulin delivery as behavioral changes may be needed to mitigate the risk of hypoglycemia when the system is not actively being use.

Discussion should be held regarding whether alarms should be set for when suspensions occur. Furthermore, patients are usually encouraged to allow LGS systems to work overnight, but should an alert occur while the patient is awake, they can consume carbohydrates. With a PLGS system, should a hypoglycemic event occur despite insulin suspension carbohydrate intake may need to be decreased as compared to usual treatment strategies to prevent rebound hyperglycemia. Downloads can assist with frequency of suspends and whether changes in insulin doses and treatment for lows is required.

6. **Closed loop systems**

Automated insulin delivery systems consist of three components: an insulin pump, a continuous glucose sensor, and an algorithm that determines insulin delivery. These systems not only suspend insulin delivery, like the LGS and PLGS system discussed above, but also can increase insulin delivery based on sensor glucose values. Single hormone (insulin) and dual hormone systems, which consist of insulin and another hormone like glucagon or pramlintide, have been tested. Several automated insulin delivery platforms exist utilizing various combinations of insulin pumps, continuous glucose monitors and algorithms. There are three core algorithm
constructs: 1) proportional integrative derivative (PID) (182), 2) model predictive control (MPC) (183) and 3) fuzzy logic (184).

**Adopting a hybrid approach**

Early, fully closed loop studies found significant postprandial glycemic excursions compared to a pre-meal bolus (185) due to the delay of insulin absorption and the delayed onset of action of currently available rapid acting insulin analogs. Now, the majority of automated insulin delivery systems use a “hybrid” approach, where background (or basal) insulin is controlled by the algorithm, but the user needs to manually announce meals with carbohydrate estimation combined with capillary glucose level and deliver an insulin bolus. Nevertheless, the technical evolution in automated insulin delivery systems has been rapid, from proof of concept experiments published in 2006 (186) to the first commercial release of a single hormone hybrid system (Minimed Medtronic 670G, USA only, approved for those aged 14 years and over) in 2017, taking just over a decade to see this technology available in clinical care.

**Controlled Studies: from the clinic to transitional settings of camps and hotels**

Early studies focused on demonstrating feasibility of automated insulin delivery in carefully controlled in-clinic studies, and were conducted in a range of patients including children (187, 188), adolescents (187-195), adults (188, 190, 192, 194-202), and in pregnant women (203). These included single hormone (187, 188, 191-193, 197, 198), dual hormone systems (189, 190, 196, 199, 200), and the incorporation of insulin absorption adjuncts (194, 195, 201, 202). In-clinic studies that simulated hypothetical real world challenges including exercise (200, 204-206), alcohol (197), high fat meals (197), and inaccurate continuous glucose sensors (204) followed, and demonstrated that the automated insulin delivery systems remained safe and effective. Accordingly, closely supervised outpatient studies at diabetes camps for children and adolescents (207-214), and hotel studies for adults (215-218) were conducted. All studies consistently showed safety and a 10 – 20% improved time spent in target glucose sensor range of 70-180mgdL (3.9 – 10mmol/L) with a concomitant reduction in time spent hypoglycemic, in comparison to either conventional insulin pump therapy, or sensor augmented pump therapy.

**Free living assessments of Automated Insulin Delivery**
“Free-living” outpatient studies, despite heterogeneous design and a range of different automated insulin delivery systems, have invariably demonstrated safety and efficacy. Very young children (219), adolescents (220-229), adolescents with sub-optimal control (230), and adults (76, 220-222, 224-226, 228, 229, 231-237) all demonstrated a 10 – 20% improvement in time in range compared to CSII, SAP or SAP + LGS, and less time spent with hypoglycemia. Some studies used automated insulin delivery overnight only (220, 222-226, 228, 229, 231, 235, 237), while others applied automated insulin delivery for 24 hours a day (76, 219, 221, 227, 229-232, 234, 236). In the 24-hour use studies, the improvement in overall time spent in range is mainly due to improved overnight glucose levels. In a meta-analysis that included free living, camp and hotel studies, time in target range of 70-180mg/dL (3.9 – 10mmol/L) improved by 12.59% using automated insulin delivery compared to CSII or SAP (238). There have been no reports of severe hypoglycemia or diabetic ketoacidosis during the use of automated insulin delivery.

The longest outpatient RCT published to date by Thabit et al compared a model-predictive-control automated insulin delivery device to SAP for 12 weeks (229). There were two sub studies included; a) a cohort of 33 adult participants who used the system 24hrs per day, and b) a child and adolescent study (n = 25) who used the system only overnight. Adults improved time in target range (3.9 – 10mmol/L) by 11%, and the children and adolescents improved overnight glucose time in target range 70-145mg/dL (3.9 – 8mmol/L) by 24.7% (229). A 3 month non-controlled trial using the only commercially available automated insulin delivery system (Minimed Medtronic 670G) (n=124) demonstrated safety (239), and improved HbA1c in adults (7.3±0.9% to 6.8±0.6%) and adolescents (7.7±0.8% to 7.1±0.6%) (240).

High user acceptability and improved measures of treatment satisfaction have been shown (241-244). However, it should be noted that device alerts and alarms and technical difficulties can negatively affect the overall experience using automated insulin delivery (243).

**Practical Considerations:**

As the first commercially available hybrid closed loop system penetrates the market, clinicians will need to be prepared to assist their patients in adopting this technology. Furthermore, it is expected that in the coming years a number of other companies and academic groups will see regulatory approval of their first-generation systems as their pivotal trials are...
planned. To ensure success with adoption of this technology, it will be important for clinicians to have a framework to integrate this technology. Use of the acronym CARE, has been suggested as a strategy to help clinicians conceptualize the differences between automated insulin delivery systems (245). This acronym can assist clinicians in answering 4 fundamental questions related to the patient and device, and include:

- **Calculate**: How does the system CALCULATE insulin delivery?
- **Adjust**: How to ADJUST insulin doses- immediately and long term?
- **Revert**: When to stop automated insulin delivery and REVERT to pump settings; also, when the system automatically REVERTS to pump mode?
- **Educate**: Where does the user/provider find EDUCATION resources?

It will also be important to reinforce with patients the tasks that will be necessary to utilize automated insulin delivery, which at least will include having a functional CGM and use of a pump, as well as bolusing for carbohydrate intake when using a hybrid closed loop system. Finally, reviewing with patients how to treat both hyper and hypoglycemia will be important. Carbohydrate intake required for hypoglycemia may need to be reduced with prolonged basal insulin suspension. Conversely, patients will need to be reminded about the risk of infusion set failures that may lead to persistent hyperglycemia and the potential for ketosis. While automated insulin delivery holds the promise of reducing glycemic variability, it will be critical to discuss realistic expectations as patients adopt these technologies to help mitigate the frustration they may feel as early systems will likely require user input and not be a set and forget device.

7. **Diabetes Apps, Automated Decision Support and Bolus Calculators—**

*Diabetes Applications*

 Patients with T1D who are on MDI therapy may seek to obtain some of the benefits of the calculators and bolus wizards of an insulin pump via use of a cell phone based mobile application “app” on their smart phone. In addition, patients on pumps and/or CGM may seek to gather all of their data in one place and receive advice on bolusing, carbohydrate amounts, or device tuning. Apps cover a broad spectrum of self-management activities from simple blood glucose logs and dosing reminders (246, 247), to carbohydrate counting and bolus calculators.
(248); also reaching into the realm of providing incentives to bolus and peer support (249). The challenge for many patients, however, is that there are over 165,000 general health-related apps which may aid in assessment of diet and physical activity, and over 1,100 diabetes specific apps from which to choose (250). With this wide variety and rapidly changing landscape, little guidance is available to patients on what app may be right for them. Similarly, physicians and educators may find it difficult to be aware of the spectrum of options for their patients. Most available apps are not evidence based (251), and one study concluded that few are informed by either users or professionals during their development (252). A recent cross-sectional survey by Trawley et al investigated demographic, clinical and psychological variables associated with app use (250). They found that in Australia, 21% of adolescents reported using an app for diabetes management with 89% of those using it for carbohydrate counting assistance (250). App usage was associated with shorter duration of T1D, higher socioeconomic status, and more frequent blood sugar testing. Barriers to app use were identified as lack of awareness of suitable products and the belief that the app would not provide benefit (250).

Providing evidence-based recommendations on diabetes apps has been similarly difficult. In 2016, Hou et al conducted a review and meta-analysis of 14 randomized trials on apps and their impact on HbA1c identifying 1,360 participants in 14 studies (253). They found that for patients with type 2 diabetes, there was a significant overall improvement in HbA1c of -0.49 (-0.68, -0.30)% in the app-use groups compared to the control groups (253). For patients with T1D, however there was no significant improvement in HbA1c -0.36 (-0.87, 0.14)% (253). Another review from 2017 by Wu et al attempted to identify functions of apps associated with glycemic efficacy (254). They identified 974 participants across 12 trials, with some trial overlap with the Hou review. They similarly identified significant HbA1c improvement in patients with type 2 diabetes with HbA1c reduction of -0.52 (-0.85, -0.18), without significant improvement in patients with T1D (254). App characteristics associated with greater HbA1c improvement included having a complication prevention module and having a structured display. They did not find having a clinical decision-making function to be associated with HbA1c reduction (254).

Table 4 provides a good starting point for app recommendation as of this writing in 2018. Some apps such as Calorie King and My Fitness Pal are general health apps that provide...
information beneficial to patients with T1D. These apps may assist patients with carbohydrate counting as well as exercise tracking. More diabetes-specific apps such as Bant, Glooko, mySugr, One Drop, and Tidepool enable patients to maintain a digital diabetes log on their phone, often interacting directly or indirectly with their BGM, some even assist with carbohydrate counting and insulin bolus calculations. Indeed, the Dreamed Advisor Pro, which analyzes the volumes of data that fill each patient’s life including insulin dosing, blood glucose readings, and other factors such as carbohydrate intake and then suggests alterations in insulin dosing, has recently received regulatory approval in Europe and is currently under review by the FDA. For patients on CGM or insulin pumps these apps may allow uploading of their device data to be reviewed by their diabetes health care team.

**Bolus Calculators**

Despite advances in other areas of technology, accurately counting carbohydrates and bolusing based on an insulin to carbohydrate (I:C) ratio prior to meals will remain a key to optimal diabetes therapy for the near future. The need to perform calculations for the I:C may also be complicated for some patients and is prone to simple human error. Insulin pumps have long offered bolus calculators which handle the I:C and correction factor calculations and account for active insulin on board (IOB), generally resulting in a positive impact on glycemic control (255). Similar bolus calculators are now available on some commercial blood glucose meters or as cell phone apps (256, 257). The Automated Bolus Advisor Control and Usability Study (ABACUS) showed that significantly more patients using the bolus calculator achieved an HbA1c reduction of >0.5% compared to the control group (56 vs 34%; p<0.01) (258). A recent study showed a significant increase in the number of patients achieving HbA1c targets and a reduction in hypoglycemia in the bolus calculator use group compared to the active control group (259, 260). In patients on insulin pump therapy, the rate of bolus calculator use has been correlated with improved glycemic control in both the adult and pediatric populations (255, 261, 262). Overall, these studies show that for MDI and conventional insulin pump patients, use of a bolus calculator reduces burden, improves glycemic control, and improves quality of life.

**Automated Decision Support Systems**
Beyond the simple arithmetic of calculating insulin dosing for meals is the more complex tuning of insulin dosing parameters. To better aid patients with insulin dosing adjustments between visits, multiple groups are developing automated decision support systems that may be used to algorithmically optimize dosing recommendations. Such adjustments may be beneficial for patients on MDI therapy, conventional pump therapy, and may even help tune emerging artificial pancreas systems. Wang et al conducted a pilot study assessing a learning-type artificial pancreas, which showed significant improvement in the time spent in target range with use of this learning system vs. open loop control (p=0.02) (263). Dassau et al conducted a randomized crossover trial where algorithmic adjustment of open-loop settings was conducted prior to AP control and was compared to AP control without algorithmic adjustment, similar time in range was noted between the two groups (264). No automated decision support systems are currently available outside of a research setting. Further work in this area is ongoing with extension to the MDI population in several studies starting in 2017-2018.

8. Downloading Technologies

Insulin pumps, continuous glucose monitors, and most blood glucose meters have the ability to be downloaded onto either the manufacturer’s platform or a uniform secondary service. Downloading of device data enables patients and their caregivers to visualize graphics, see summary statistics and review trends in glycemic data. It also enables clinicians and diabetes educators to review such data remotely between visits and make more frequent dosing adjustments. Wong et al found that routinely downloading and reviewing glycemic data was associated with a significantly lower HbA1c (7.2±1.0% vs 8.1±1.6%; p=0.03) (265). Despite this positive association, they showed that only 31% of adults and 56% of caregivers reported ever downloading data from devices, and even fewer routinely reviewed the downloaded data (265). In a commentary to this article, Beck presented previously unpublished data from the T1D Exchange showing that participants reported rarely or never downloading their devices for BGM (75%), CGM (51%), and insulin pumps (59%) (266). To date, there have been no published reports investigating barriers to device downloading, but anecdotal experience suggests that patients have difficulty with the downloading software, do not remember their log in information, do not
have the necessary cables, and may not find the downloaded information to be directly beneficial to them. More patient centered platforms such as Glooko/Diasend, Tidepool, and One Drop seek to bridge this divide and empower patients to download and visualize their own data via improved connectivity and user interfaces. In addition, many device manufacturers are working towards perpetually connected devices which utilize cell phone and Wi-Fi connectivity to continually download data; thus, relieving the burden of periodic downloading placed on patients. These efforts may reduce or eliminate user burden associated with device downloads in the future, though review of the data by the patient, or their care provider, will still be necessary for optimal benefit to be seen.

9. Telehealth

As the vast majority of youth fail to meet glycemic targets, consideration needs to be given to alternative care models to help improve care. Telemedicine is a practice by which video conferencing is utilized to deliver health care to patients in their local region. Telemedicine has a particularly valuable role in allowing specialized tertiary centers to reach out to patients and health care professionals in rural or remote locations (267, 268). Typically, video tele-consultation is operated in real-time providing a virtual face-to-face meeting online with a specialized provider. The clinician has access to the patient medical record and provides oral and written advice to the patient. Various consultation models are used, including the patient situated in a primary care medical facility, with or without a trained health worker alongside them, or with consultations provided directly to the patient in his/her home.

**Telemedicine advantages and limitations:**

ISPAD guidelines recommend that all patients with T1D have their care reviewed every 3 months (269). The greatest advantage of telemedicine is the ability to provide access to specialized care in remote locations. Reduction in traveling costs and saved working days for parents and school days for children may overcome some of the barriers to adhering to the frequency of follow up recommended. One method that has been employed previously is having a clinician travel to more remote locations to see patients; yet, in assessing the efficiency of such
satellite clinics one would need to consider the travel time and travel cost to the clinician. Thus, telemedicine has the benefit of delivering specialized care while reducing costs of travel to both patients and clinicians and potentially increasing the likelihood of follow up visits being completed.

However, telemedicine is limited by access to the required technology at the remote site. Additionally, concerns exist regarding reimbursement for the visits and whether one must hold a license in the location where they practice as well as the location where the patients are being seen. Further, the remote site (either the home, or primary care facility) must have the ability to download glucometers and insulin pumps when applicable to in order for the specialized team to review clinical data that informs decisions. Body language might be more demonstrative than verbal language and these physical cues may be missed in a teleconference. Additionally, unless the visit is conducted in a medical facility it may not be possible to conduct some recommended components of these quarterly visits including anthropomorphic measures, pubertal staging, and assessment of general health. In a survey of health care providers, the biggest concerns reported in a qualitative assessment of telemedicine were problems with the technology components and a concern about the lack of physical contact with patients (270). Finally, specifically with respect to adolescents with T1D, discussions regarding risk taking behavior and psychological aspects may be limited due the challenge of creating a confidential consultation environment. Therefore, consideration should be given to conduct face to face consultations with a specialized service at least annually.

Data on telemedicine application to those with diabetes

Data on the use of telehealth in patients with diabetes is encouraging. Telemedicine To Reach, Education, Access, and Treatment (TREAT) is a program that included adults with diabetes residing in rural communities, which found participants were generally satisfied with this mode of care delivery, had improvement in HbA1c values, and a better understanding of diabetes (271).

Assessment on the application of telemedicine in Denmark has been conducted over a 7-year period in those with both T2D and T1D (272). The program has shown good results in diabetes treatment parameters and has been associated with improved cost-effectiveness and patient satisfaction (273).
The telemedicine intervention of the Informatics for Diabetes Education and Telemedicine (IDEATel) project, offered in-home telemedicine visits with a diabetes educator for elderly rural adults with diabetes. While some noted difficulties related to the use of the computer (274), telemedicine resulted in net improvements in self-management, glycemic control, LDL-cholesterol and blood pressure levels over one year (275), and over 5 years of follow-up in an ethnically-diverse, elderly, rural population (276). Of note, the immediate cost of implementing the telemedicine intervention was high (277). However, today, less costly smartphones, iPads, and laptop devices are widely available and there are other less well-defined economic benefits due to a positive impact on either the health care system and/or business productivity.

A retrospective analysis of US Army soldiers with T1D who used telemedicine as their mode of care delivery documented clear success based on glycemic parameters with A1c levels trending to targeted control (baseline A1c 9.8%, 3-month 7.3% and end of study 6.9%) (278) Use of telemedicine over a 1-year period in a pediatric diabetes clinic has also been conducted at the Barbara Davis Center, which has a large catchment area including neighboring states. While telemedicine resulted in no alteration in HbA1c levels, frequency of annual visits was increased, the frequency of missed school/work was reduced and financial burdens were decreased (279). As there is a tendency for deterioration of glycemic control during adolescence, likely secondary to the increased insulin resistance associated with puberty (280), this lack of rise in HbA1c levels is quite compelling. Others have corroborated these findings through their use of telemedicine in rural areas (281).

Telemedicine can also be applied in the school setting. A study run with children 5-14 years old showed the benefits of once a month telemedicine communication between the school nurse and the diabetes team in addition to the regular care. Children in the telemedicine group had lower HbA1c, improvements in the Pediatric Diabetes Quality of Life questionnaire, and fewer hospitalizations/emergency department visits (282).

Building on the traditional telemedicine model, Project ECHO (Extension for Community Healthcare Outcomes) employs primary care clinicians who receive “telementoring” from a
specialist to guide the management of their own patients with complex medical conditions (283). Ongoing assessment of this model is being conducted in those with diabetes, with the primary clinician working in consort with a multi-disciplinary team, with longitudinal assessment of this approach planned (283).

**Adoption of telemedicine into clinical practice**

Telemedicine has the potential to help to reduce disparities in diabetes management especially in remote regions, by improving access to care and reducing healthcare costs as demonstrated in this study of older adults (284). While a recent meta-analysis found a mean reduction in HbA1c of 0.18% with use of telemedicine, given the paucity of data available and heterogeneity of the studies included in the analysis, the findings are limited (285). When impact of telemedicine was investigated by subpopulation, its use was noted to be successful in adolescents with a mean difference in HbA1c of -0.32% between groups (285). Importantly, those studies with longer duration (>6 months) and those that recruited individuals with higher baseline HbA1c values (>9%) demonstrated greater benefit (285). Thus, a cautious optimism can be used when considering application of this technology in the future.

For pediatric patients, one must consider a few important factors in the integration of telemedicine into clinical care. First and foremost, at diabetes onset the initial management and education should be given in person by a multi-disciplinary diabetes team staffed by subspecialists. In regions with established telemedicine programs, the follow up appointments could alternate between on-site and remote consultations, as body weight and pubertal staging are important factors to consider when adjusting insulin therapy and provides the opportunity to assess any deviations in normal growth and development (286, 287). Taking into account the few, encouraging available studies and the comfort level of both the adolescent age group and parents, there is hope that telemedicine could become an option, interspersed with face-to-face visits for children and adolescents from underserved locations.

**Limited resource settings**

Provider availability is critical in improving health care accessibility (268). In underserved, undeveloped regions, the first step is to train local health workers to improve diabetes diagnosis and early management. The second step is to encourage health policies, philanthropic
organizations and industry to focus on increasing access to insulin, glucose test strips and diabetes education, since advice may be useless if patients do not have the basic supplies need to comply with medical advice. As a third step, telemedicine might be developed to deliver specialized advice in regions with limited access or care (275, 276, 284, 288). Nevertheless, electricity, internet and technological devices may not be available in some rural underdeveloped areas where remote consultation may be a challenging goal to achieve (289).

10. Quality of Life/Patient Satisfaction/Burden with use of Technologies

Uptake and use of diabetes devices and technologies are associated with psychosocial and family factors. Psychosocial factors are broadly defined as behavioral, emotional, and social variables that characterize an individual across both dimensions of promoting health (e.g., resilience) and having negative effects on health (e.g., depression). The focus on psychosocial factors in relation to diabetes device and technology use has grown out of the broader interest in understanding how these factors impact diabetes management and health outcomes. For example, it is well established that personal strength and resilience factors, along with positive family communication, are associated with optimal management and outcomes (290, 291). Likewise, psychosocial factors such as diabetes distress and depression and family conflict are common in youth with diabetes and often lead to suboptimal management and outcomes (292, 293). Herein, the current understanding of the association between psychosocial factors and device and technology use will be highlighted.

Prior ISPAD guidelines on the psychosocial care of youth and the recently released American Diabetes Association guidelines for the psychosocial care of people with diabetes (10) highlight that attending to the psychosocial needs of all youth and their families is critical. Similarly, when considering whether diabetes devices and technologies should be recommended or encouraged, understanding the psychosocial aspects of the user and family will help optimize a good fit for the device. The most evidence is available for insulin pumps and CGM. Notably, youth on insulin pumps tend to experience a benefit in health-related quality of life (223-225),
but factors such as depression lead to discontinuation of insulin pump use (68). As noted previously, CGM is linked to optimal glycemic outcomes and many users report greater treatment satisfaction (227). However, there are reports of heightened worries (294) among adolescents and young adults and many discontinue CGM for a variety of reasons including cost, too many alarms, issues with accuracy, and discomfort wearing a device on one’s body (12). Thus, setting realistic expectations for potential users and their families and providing referrals for any psychosocial need that may serve as a barrier to optimal use, are indicated. In addition, the following recommendations are made when considering device and technology use in diabetes care practices:

- Portray the use of diabetes devices and technologies as an option that can be a good fit for many youth and families; provide education and encourage youth and families to review vetted websites and device informational materials.
- Encourage uptake and refrain from having youth and families “earn” the right to use devices (i.e., achieve a certain hemoglobin HbA1c before considering starting a device). If payers/insurance companies require logging or other documentation prior to device approval, convey that directly instead of a requirement of the diabetes care practice.
- Conduct a brief assessment of barriers to uptake and use. Common barriers are cost (often noted by parents of youth), wearing multiple devices, sensation of wearing a device on changing and growing body, frequent alarms and maintenance of device.
- Problem solve with the youth and their family on ways to break down barriers. This may require referral to a psychological care provider to teach problem solving skills (10).
- If psychosocial needs are reported or identified, refer to psychological care provider. (10)

Beyond insulin pumps and CGM, two other areas with psychosocial components and considerations are automated insulin delivery/closed loop technologies and digital health applications. Given the rapidly advancing state of closed loop described earlier, there is a need to understand psychosocial factors leading to the uptake and use of these systems as well as whether they offer psychosocial benefits. As noted, to maximize benefit from closed loop systems, users will need to wear an insulin pump and CGM continuously. However, rates of
uptake of these technologies are lagging. Thus, the above recommendations are relevant for each component of the closed loop system. In a recent report of 284 potential users of closed loop in the US and UK (295), three themes were identified as critical for uptake: developing trust in the system and degree of control of it; features of the closed loop systems; and concerns about the everyday barriers to adoption. Children and adolescents differed from parents in that youth primarily identified needs specific to their immediate contexts (e.g. school and peers). Parents were most concerned about the accuracy and ensuring that systems stabilize glucose levels and reduce risk for long-term complications. Other reports emphasize these same ideas of setting realistic expectations (231,232) and potential benefits on quality of life and well-being are already being realized with closed loop systems (228,230,233).

In addition to these developments over the past decade, there have been developments in the realm of mobile applications which can serve as adjunct strategies for improving diabetes management and outcomes. Several thousand diabetes-related applications are available in the Apple iTunes store and Android Play store (296). Some apps target health behaviors such as physical activity, sleep, and nutrition, while others target blood glucose monitoring, provide diabetes education, and/or enable users to share their diabetes data with others. For example, applications such as ‘bant’(www.bantapp.com), which enables users to link their blood glucose meter directly to an application that synthesizes data, has been shown to increase rates of glucose checking in adolescents (249). While promising and exciting, the documentation of the effectiveness of these applications to facilitate behavior change lags behind the pace that these applications hit the marketplace. Research has shown the utility of a mobile and web-based program called YourWay (297) to improve the management and glycemic outcomes of adolescents with type 1 diabetes. Further, another study found that for adolescents with type 1 diabetes, use of technology (e.g. social networking, websites, pump/glucose meter software) was associated with better diabetes self-management behaviors (298).

In sum, the current evidence base points to psychosocial and quality of life benefits from using insulin pumps, and growing evidence of benefits with CGM, closed loop, and digital health. However, more clinically-translatable research is needed on the best ways to break down barriers to device and technology use and prevent discontinuation. This likely rests in setting realistic
expectations, teaching effective problem-solving skills (general and technology specific), and viewing digital health applications as a scaffolding for youth to internalize the salience and routine of specific health behaviors.

11. Conclusion-

Just as our everyday lives have vastly changed with integration of new technologies including computers, smartphones, and the increased connectivity of devices, the management of diabetes is in the midst of a technological revolution. It is likely that the years ahead will see significant growth in this realm of diabetes care with the hopes that these mechanical solutions may afford patients, and their families, the ability to achieve glycemic targets while reducing the burden of this chronic medical condition. Furthermore, as both diabetes care providers and patients now recognize the importance of not just relying on HbA1c to determine adequacy of control, a shift is occurring to define clinically meaningful outcomes such as time in range (defined as 70-180mg/dL (3.9-10mmol/L), measures of hypoglycemia, and glycemic variability (299). Through the use of CGM this data can be collected in both research and clinical settings, and the true test of new technologies will be to see how they can reduce glycemic variability by achieving a greater proportion of time in range. This chapter has reviewed evidence on diabetes technology in children, adolescents, and young adults with the aim of providing practical advice and approaches on their use. Further updates are anticipated in this rapidly evolving area of research and practice.
References:

ISPAD Guidelines- Diabetes Technology

Revision 2/26/18
93. DeSalvo D, Miller K, Hermann J, Maahs D, Hofer S, Clements M, et al. Continuous Glucose Monitoring (CGM) and Glycemic Control Among Youth with Type 1 Diabetes (T1D): International comparison from the T1D Exchange (T1DX) and the DPV Initiative. 43rd Annual Conference of the International Society for Pediatric and Adolescent Diabetes; Innsbruck, Austria2017.


152. McKnight JA, Gibb FW. Flash glucose monitoring is associated with improved glycaemic control but use is largely limited to more affluent people in a UK diabetes centre. Diabet Med. 2017;34(5):732.


ISPAD Guidelines- Diabetes Technology

Revision 2/26/18


ISPAD Guidelines- Diabetes Technology 52

Revision 2/26/18


**Table 1: Indications for use of CSII in Pediatrics -adapted from reference (50)**

<table>
<thead>
<tr>
<th>Conditions under which CSII should be considered</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Recurrent severe hypoglycemia</td>
</tr>
<tr>
<td>- Wide fluctuations in blood glucose levels regardless of A1c</td>
</tr>
<tr>
<td>- Suboptimal diabetes control (i.e. A1c exceeds target range for age)</td>
</tr>
<tr>
<td>- Microvascular complications and/or risk factors for macrovascular complications</td>
</tr>
<tr>
<td>- Good metabolic control but insulin regimen that compromises lifestyle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circumstances in which CSII may be beneficial</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Young children and especially infants and neonates</td>
</tr>
<tr>
<td>- Children and adolescents with pronounced dawn phenomenon</td>
</tr>
<tr>
<td>- Children with needle phobia</td>
</tr>
<tr>
<td>- Pregnant adolescents, ideally preconception</td>
</tr>
<tr>
<td>- Ketosis prone individuals</td>
</tr>
<tr>
<td>- Competitive athletes</td>
</tr>
</tbody>
</table>
Table 2. Basic guidelines for starting insulin pump therapy

Total daily dose (TDD) prior to pump initiation
• May be used to determine initial pump settings
• Consider reducing total daily dose in those at targeted glycemic control or patients with frequent or severe hypoglycemia.

Proportion basal vs. bolus insulin delivery
• In older children and adolescents expect a 50/50 split
• In children <7 years, basal insulin delivery may make up ~30-35% of the TDD(49)

Determination of Basal Rates
• Take the amount to be delivered as basal (i.e. 50% of the TDD) and divide by 24 for the number of hours in a day. (if basal insulin per day will be 20 units then hourly rate would be set at 0.8 units/hr)
• Increases in basal rates in early morning hours are often needed in adolescents who experience the dawn phenomenon(300, 301)
• Pre-school aged children may have higher basal insulin requirements between 9p.m. and 12a.m. and then lower basal rates during early morning hours(301)

Determination of Correction Factors/ Insulin Sensitivity Factors
• If using a correction factor prior to transition to the pump, start with the usual factor.
• Otherwise, a correction factor can be determined by dividing 1800 by the TDD if glucose readings are in mg/dL (or dividing 100 by the TDD if glucose readings are in mmol/L). Depending on insulin sensitivity, the 1800 rule can be adjusted upward (2000/TDD) for those who are insulin sensitive or downward (1500/TDD) for those who are more insulin resistant.

Determination of Insulin to Carbohydrate Ratios
• If using a carbohydrate ratio prior to transition to the pump, start with the usual factor.
• Otherwise, carbohydrate ratio can be determined by dividing 500 by the TDD
• Young children may need more aggressive meal coverage (302, 303) and a 350 rule may be employed

Close monitoring following initiation
• Consider frequent blood glucose checks prior to and 2-hours post-meals to help inform insulin dose titrations
• Consider overnight checks at midnight and 3a.m. to assess overnight basal rates
• CGM readings may be used in place of SMBG
Table 3. Basic guidelines for starting sensor therapy

Insertion and adherence
- Time spent at initiation of sensor therapy to ensure adequate insertion technique will allow for easier incorporation of the device.
- Use of supplementary adhesive products may be required. These include:
  - Wipes: skin tac IV prep, skin prep
  - Dressings and barriers: tegaderm, IV-3000, hypafix
  - External Wraps: Coban, Pre-Wrap
- Adhesive removers may be required to help remove the sensor. These may include specialized adhesive removers like unisolve or detachol, or products one may have at home, like baby oil.

Calibration
- For those sensors requiring calibrations, discussion of frequency of calibrations and ideal times to calibrate should be held.
  - Consider pre-emptive calibration schedule. If calibrations are required every 12 hours, encourage patients to calibrate three times a day (for example, prior to breakfast, dinner and bedtime)
  - Discuss calibrating when glucose is relatively stable (no arrows present, no rapid change on sensor glucose graph)

Alerts and alarms
- Consider leaving alerts off as patients initiate sensor therapy. This may help prevent alarm fatigue.
- When incorporating alerts, personalize them and use wide thresholds at first (i.e. 70-250mg/dL (3.9-13.9mmol/L)). These can be adjusted over time.
  - For those with recurrent hypoglycaemia, set low alert first.
  - For those with sub-optimal control, set high alert first.
- In the beginning, do not employ rate of change or predictive alerts. Consider how these additional alerts may be actionable moments prior to incorporating them. This will help prevent alarm fatigue.

Retrospective Review
- Encourage downloading, if this is required to review data.
- Encourage retrospective review of data to help inform insulin dose titrations.

Real-time data
- As appropriate discuss, non-adjunctive use of sensor data
- Consider recommendations on adjustments of insulin doses based on sensor glucose values. This may be based off of an individual’s correction factor to guide alterations in insulin dosing (147)
<table>
<thead>
<tr>
<th>App</th>
<th>Category</th>
<th>Website</th>
<th>Phones Supported</th>
<th>Cost</th>
<th>BG Meter Integration</th>
<th>Pump and/or CGM Integration</th>
<th>Decision Support</th>
<th>Evidence Based Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bant</td>
<td>Diabetes</td>
<td><a href="http://www.bantapp.com">www.bantapp.com</a></td>
<td>iPhone and Android</td>
<td>Free</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Calorie King</td>
<td>General Health</td>
<td><a href="http://www.calorieking.com">www.calorieking.com</a></td>
<td>iPhone and Android</td>
<td>Free</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
</tr>
<tr>
<td>Glooko / Diasend</td>
<td>Diabetes</td>
<td><a href="https://glooko.com">https://glooko.com</a></td>
<td>iPhone and Android</td>
<td>Free Subscription</td>
<td>Over 60 BGM's digitally uploadable</td>
<td>Animas, Dexcom G4 or G5, Omnipod, Medtronic, Tandem</td>
<td>No</td>
<td>Yes, FDA Cleared, HIPAA Compliant</td>
</tr>
<tr>
<td>My Fitness Pal</td>
<td>General Health</td>
<td><a href="http://www.myfitnesspal.com">www.myfitnesspal.com</a></td>
<td>iPhone and Android</td>
<td>Free for Basic $5 for Pro</td>
<td>N/A</td>
<td>N/A</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>mySugr</td>
<td>Diabetes</td>
<td><a href="https://mysugr.com">https://mysugr.com</a></td>
<td>iPhone and Android</td>
<td>Free for Basic $5 for Pro</td>
<td>Any BGM via photo of number</td>
<td>FreeStyle Libre or Medtronic CGM</td>
<td>In Pro version (EU only)</td>
<td>Yes</td>
</tr>
<tr>
<td>One Drop</td>
<td>Diabetes</td>
<td>onedrop.today</td>
<td>iPhone and Android</td>
<td>Free Subscription</td>
<td>Via One Drop BGM, other BGM via Apple Health</td>
<td>Dexam integration via Apple Health</td>
<td>Via coaching subscription</td>
<td>Yes</td>
</tr>
<tr>
<td>Sugar.IQ</td>
<td>Diabetes</td>
<td>none</td>
<td>iPhone</td>
<td>Free for Medtronic users</td>
<td>Via Medtronic Pump</td>
<td>Medtronic pump and CGM</td>
<td>Yes</td>
<td>Yes, FDA Approved</td>
</tr>
<tr>
<td>Tidepool</td>
<td>Diabetes</td>
<td><a href="https://tidepool.org">https://tidepool.org</a></td>
<td>iPhone and Android</td>
<td>Free for user version</td>
<td>Bayer, Abbott, and OneTouch</td>
<td>Animas, Dexam G4 or G5, Omnipod, Medtronic, Tandem</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>