ISPAD CLINICAL PRACTICE CONSENSUS GUIDELINES 2022:

Insulin treatment in children and adolescents with diabetes

Eda Cengiz1, Thomas Danne2, Tariq Ahmad3, Ahila Ayyavoo4, David Beran5, Sarah Ehtisham6, Jan Fairchild7, Przemyslawa Jarosz-Chobot8, May Ng9,10, Megan Paterson11, Ethel Codner12

1. University of California San Francisco (UCSF) Pediatric Diabetes Program, UCSF School of Medicine, San Francisco, CA, USA
2. Auf Der Bult, Diabetes Center for Children and Adolescents, Hannover, Germany
3. Pediatric Endocrinology, UCSF Benioff Children's Hospital Oakland, Oakland, CA, USA
4. GKNM Hospital, Coimbatore, India.
5. Division of Tropical and Humanitarian Medicine, Faculty of Medicine University of Geneva and Geneva University Hospitals, Faculty of Medicine Diabetes Centre, Geneva, Switzerland
6. Mediclinic City Hospital, Dubai, UAE
7. Department of Endocrinology and Diabetes, Women's and Children's Hospital, North Adelaide, Australia
8. Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
9. Paediatric Department, Southport and Ormskirk NHS Trust, Southport, UK
10. Department of Women’s and Children’s Health, University of Liverpool, Liverpool, UK
11. John Hunter Children's Hospital, HRMC NSW, Australia
12. Institute of Maternal and Child Research (IDIMI), School of Medicine, University of Chile, Santiago, Chile

Corresponding author:
Eda Cengiz, MD, MHS, FAAP
Professor of Pediatrics
UCSF Benioff Professor in Children's Health
Director, Pediatric Diabetes Program
University of California San Francisco School of Medicine
1500 Owens st. Suite 300, San Francisco, CA 94158

Email: Eda.Cengiz@ucsf.edu
1.WHAT IS NEW OR DIFFERENT
2.EXECUTIVE SUMMARY AND RECOMMENDATIONS
3.INTRODUCTION
4.INSULIN FORMULATIONS
 4.1-Prandial Insulins
 4.2 Intermediate-acting Insulins
 4.3 Basal Insulin Analogs
 4.4 Premix Insulin Preparations
 4.5 Safety of Insulin Analogs
 4.6 Biosimilar Insulins
 4.7 Insulin Concentrations
5.PRINCIPLES OF INSULIN THERAPY
6.GUIDELINE ON INSULIN DOSAGE
7.ADMINISTRATION AND STORAGE OF INSULIN
8.INPERSON INSULIN TREATMENT
9.INSULIN AVAILABILITY AND AFFORDABILITY
10. RESEARCH AND NEW DEVELOPMENTS

This article is a chapter in the ISPAD Clinical Practice Consensus Guidelines 2022 Compendium. The complete set of guidelines can be found at www.ispad.org. The evidence grading system used in the ISPAD Guidelines is the same as that used by the American Diabetes Association. See page 2
1. WHAT IS NEW/DIFFERENT

- Updated insulin treatment sections including new bolus and basal insulin formulations
- Refined recommendations on principles of intensive insulin treatment regimens
- Review of the role and rationale for new insulin analogs, biosimilars and diabetes technology devices for insulin therapy in pediatric diabetology
- Key considerations with regards to access to insulin and affordability

2. EXECUTIVE SUMMARY AND RECOMMENDATIONS

- Insulin treatment must be started as soon as possible after diagnosis (usually within 6 hours if ketonuria is present) to prevent metabolic decompensation and diabetic ketoacidosis. [A]
- Intensive insulin regimens delivered by combinations of multiple daily injections or pump therapy with differential substitution of basal and prandial insulin aiming to have optimal metabolic control have become the gold standard for treatment of diabetes in children across all age groups. [E]
- Insulin therapy must be individualized for each individual in order to achieve optimal metabolic control to reduce complications of diabetes. [E]
- Achieving target glycemic control and improving glycemic control by intensive insulin treatment have been conclusively shown to reduce diabetes complications, comorbidities, and mortality [A]. There is no reason to believe this is not the case also in younger children [E].
- In all age groups, as close to physiological insulin replacement as possible and optimal glycemic control must be the aim using the locally available basal and prandial insulins [A].
• Insulin treatment must be supported by comprehensive education appropriate for the age, maturity and individual needs of the child and family regardless of the insulin regimen [A].

• Aim for appropriate insulin dosage throughout twenty-four hours to cover basal requirements and bolus prandial insulin in an attempt to match the glycemic effect of meals [E].

• Delivering prandial insulin before each meal is superior to postprandial injection and should be preferred if possible [C]. Daily insulin dosage varies greatly between individuals and changes over time. It therefore requires regular review and reassessment [E].

• The distribution of insulin dose across the day shows great individual variation. Regardless of mode of insulin therapy, doses should be adapted to the circadian variation based on the daily pattern of blood glucose (BG) [B].

• All children should have rapid-acting or regular insulin available for prevention and management of diabetes hyperglycemia and ketosis emergencies [E].

• It is essential that a small supply of spare insulin should be readily available to all children and adolescents so that the supply is uninterrupted [E].

• Children and adolescents should be encouraged to inject consistently within the same area (abdomen, thigh, buttocks, arm) at a particular time in the day, but must avoid injecting repeatedly into the same spot to prevent lipohypertrophy [B].

• Insulins need to be administered by insulin syringes or other injection devices calibrated to the type and concentration of insulin being used [E].

• Regular checking of injection sites for site reactions, injection technique and skills to ensure proper insulin delivery remain a responsibility of parents, care providers and health professionals [E].

• Health care professionals have the responsibility to advise parents, other care providers and young people on adjusting insulin therapy safely and effectively. This training requires regular review, pattern recognition, reassessment and reinforcement [E].
3. INTRODUCTION

Insulin has been the core life-saving treatment for diabetes since its discovery in 1921. Near normoglycemia has been well established as a goal of treatment of diabetes of type 1 diabetes (T1D) based on the results of the landmark Diabetes Control and Complications Trial (DCCT). The DCCT study and its follow-up study, the Epidemiology of Diabetes Interventions and Complications study (EDIC), confirmed that an improvement in long-term glucose control by intensified insulin therapy and extensive support and education, can reduce the incidence of complications and delay the progression of existing complications in T1D, in adults as well as in the pediatric population.¹

Despite significant advances in insulin treatment, clinical use of insulin is remarkably complex, and optimal glycemic control can be challenging to achieve and maintain. There is rarely a predictable treatment regimen that always applies to all persons, particularly for children and adolescents with T1D. The insulin requirement of children and adolescents with T1D is never static given the dynamic nature of constant growth, development, hormonal changes during childhood and necessitates frequent dose adjustments. Consequently, young people with T1D require a customized, highly dynamic, and engaging system to sustain glycemic control and tackle multiple disruptors of daily life.

Exogenous insulin administration that recapitulates as closely as possible the physiologic pattern of insulin secretion by pancreatic β-cells has been considered the ideal insulin treatment to achieve optimal glycemic control. The physiology of insulin secretion includes a basal and a prandial pattern.² A healthy pancreatic β-cell secretes a continuous basal (low-level) insulin and an incremental postprandial (high-level) insulin associated with meals to control blood sugar in a tight range.² The fundamentals of pediatric insulin treatment rely on replicating this basal insulin and prandial insulin secretion. This treatment approach has also been known as basal-bolus insulin or multiple daily insulin injection (MDI). This type of treatment allows more flexibility in the daily lives of persons living with diabetes by partially accommodating variable
and sometimes unpredictable eating patterns. Furthermore, in randomized trials, better BG control has been achieved by using MDIs, either by insulin injections or pump treatment compared to a twice daily insulin treatment.1,3

Children with diabetes often require multiple daily injections of insulin, using combinations of rapid-, short-, intermediate-, or long-acting insulin before meals and at bedtime to maintain optimal BG control. Insulin pump treatment is another type of basal-bolus insulin treatment frequently used in children. There is some variation in insulin regimens, both within regions as well as between pediatric diabetologists in the same country, which may be explained by availability, cost or insurance coverage of newer insulin formulations or because of personal preference and experience of the individual with diabetes and their respective diabetes team.

The evolution of insulin formulations over the course of the years has broadened the treatment options for the unique needs of children with diabetes. New insulin analogs and diabetes technology tools have transformed insulin treatment during the past few decades. Regular and NPH/ultralente insulins that were used during the DCCT have been replaced by newer generation insulin formulations in many countries. The rapid-acting and long-acting insulin analogs were developed to provide a more physiologic insulin profile.

The availability of new insulins and the use of new technology have improved diabetes clinical landscape. Increased severe hypoglycemia risk was an adverse effect of intensive therapy during the DCCT1. Contrary to the DCCT, diminishing relationship of significant or severe hypoglycemia with lower glycemic targets in people with T1D has been clearly shown by recent large diabetes registry studies.4 On the other hand, the deleterious effect of hyperglycemia on developing brain has been concerning and highlights the importance of controlling both hyperglycemia and hypoglycemia.5
4. INSULIN FORMULATIONS

Insulin formulations (approved for pediatric use) are listed in Table 1 and are classified in three major groups as prandial, intermediate-acting and basal long-acting insulins. In general, prandial insulins consist of rapid-acting insulins that are intended for bolus injection before meals or use in insulin pumps. Basal insulins are long-acting insulins that are intended to be injected not more often than twice or once a day.

Table 1. Types of insulin preparations (approved in pediatrics) and suggested action profiles for subcutaneous (s.c.) administration

<table>
<thead>
<tr>
<th>Insulin type</th>
<th>Onset of action (h)</th>
<th>Peak of action (h)</th>
<th>Duration of action (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prandial Insulins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultra-Rapid-acting analog (Faster aspart)** &****</td>
<td>0.1-0.2</td>
<td>1-3</td>
<td>3-5</td>
</tr>
<tr>
<td>Rapid-acting analogs (aspart***, glulisine and lispro***)</td>
<td>0.15-0.35</td>
<td>1-3</td>
<td>3-5</td>
</tr>
<tr>
<td>Regular/soluble (short acting)</td>
<td>0.5-1</td>
<td>2-4</td>
<td>5-8</td>
</tr>
<tr>
<td>Intermediate Acting Insulin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH*</td>
<td>2-4</td>
<td>4-12</td>
<td>12-24**</td>
</tr>
<tr>
<td>Basal long-acting analog</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glargine***</td>
<td>2-4</td>
<td>8-12</td>
<td>22-24**</td>
</tr>
<tr>
<td>Detemir</td>
<td>1-2</td>
<td>4-7</td>
<td>20-24**</td>
</tr>
<tr>
<td>Glargine U300</td>
<td>2-6</td>
<td>minimal peak</td>
<td>30-36</td>
</tr>
<tr>
<td>Degludec</td>
<td>0.5-1.5</td>
<td>minimal peak</td>
<td>>42</td>
</tr>
</tbody>
</table>
4.1 - Prandial Insulins

Prandial insulin boluses attempt to mimic endogenous insulin secretion in response to a meal. Physiologically, in response to food intake the β-cell releases insulin in a rapid first-phase followed by a sustained second-phase with prolonged release of insulin into the portal circulation. Rapid-acting insulins (RAI) have been developed to more closely mimic the physiological response of endogenous human insulin to food intake, to improve control of postprandial BG excursions, and to reduce the risk of hypoglycemia. Correction insulin bolus dose of RAI can be given premeal or in-between meals to normalize glycemia.

4.1.1 Regular (short-acting) insulin. Regular soluble insulin (identical to human insulin) is still used as an essential component in many parts of the world either:

- As pre-meal bolus injections in basal-bolus regimens (given 20 – 30 min before meals) together with intermediate-acting insulin 2- 3 (or even 4) times daily or a basal analog given once or twice daily.

- Or combined with Intermediate-acting insulin in twice daily regimen.

4.1.2 Rapid-acting insulin analogs (RAI). RAI have been manufactured by modifying human insulin, namely, by changing the amino acid sequence or by the addition of free fatty acid chains to the original molecule that primarily leads to altered absorption from the subcutaneous tissue. These alterations serve one of two main purposes; (1) mimic physiologic prandial insulin secretion by accelerating insulin absorption into the bloodstream for a rapid onset of action relative to human regular insulin and (2) shorter duration of action that provides enough time to control after-meal blood sugar while preventing late hypoglycemia effect.
RAI have a more rapid onset of action and a shorter duration of activity compared to regular human insulin when administered subcutaneously. This glucose lowering action profile of RAI allows for insulin injection closer to meal onset, allowing post-prandial glycemic control with greater flexibility in daily life. In brief, 1 unit of RAI has the same glucose-lowering effect of 1 unit of regular insulin, however the timing profile differs between the regular insulin and the RAI.

Three RAI are approved for use in adult and pediatric persons: insulin lispro (indicated in all persons regardless of age), insulin aspart (≥1 year age), and insulin glulisine (≥6 years age). The three RAI differ in their aminoacidic composition and chemical properties, but no significant clinical outcome difference in time of action and duration has been reported. They all have a rapid onset and shorter duration of action than regular insulin (Table 1).

We recommend considering the following points when using RAI:

- RAI should be given immediately before meals given the strong evidence that the rapid action not only reduces postprandial hyperglycemia but nocturnal hypoglycemia may also be reduced.

- In exceptional cases, with the goal of matching actual food intake and insulin more closely and minimizing the potential for hypoglycemia in erratic eaters, RAI can be given after the meal to more accurately titrate the insulin doses. Nevertheless, premeal insulin dosing results in lower postprandial BG values for children with more predictable eating habits.

- When hyperglycemia is present, RAI should be given in advance of eating.

- RAI correct hyperglycemia, with or without ketosis, quicker than soluble insulin given their faster glucose lowering action.

- Are used as prandial or snack boluses in combination with longer acting insulins (see basal bolus regimens).

- Are used in insulin pumps.
4.1.3 Ultra-rapid-acting insulins. Faster onset and offset of insulin action, replicating physiologic insulin action, is greatly desirable to provide greater glycemic control, minimize hypoglycemic episodes and reduce weight gain. The research and development for new generation ultra-rapid-acting insulins have been mothered by this necessity.

Ultra-rapid-acting insulins are intended to better match the time-action profile of prandial insulins to cover the rapid increase in BG after meals and may be particularly useful for pumps and automated insulin delivery (AID) systems. Because human insulin and RAI generally exist in solution as stable hexamers, the delay in absorption is largely accounted for by the time it takes for hexamers to dissociate into monomers and dimers. Fiasp® (NovoNordisk) is the brand name for faster-acting insulin aspart containing the excipients niacinamide and L-arginine to speed up the monomer formation. This new insulin has a faster onset and offset than aspart insulin (IASp) meaning it should better control initial post-meal spikes in blood sugar and cause less hypoglycemia hours later. The average glucose excursion during the first 1 and 2 h and the maximum glucose excursion were all reduced in children by 1.2–1.6 mmol/L (22–29mg/dl) for faster-aspart versus IAsp in response to a standardised liquid meal (p = 0.005, p = 0.028 and p = 0.044, respectively). A trend in the same direction was seen in adolescents (0.2–0.6 mmol/L), which was not statistically significant. The ultra-fast-acting insulin aspart has been approved by the European Commission (children ≥1year old) and FDA (children ≥2 year old) to manage diabetes.

In children and adolescents with T1D (1-18y), mealtime and postmeal faster-aspart with insulin degludec provided effective glycemic control compared to insulin aspart in a multicenter, randomized, double-blind clinical trial of 26 weeks duration. There were no additional safety concerns for insulin faster-aspart versus insulin aspart throughout the study. Mealtime faster-aspart provided more optimal HbA1c range compared with insulin aspart (estimated treatment difference -0.17% [95% CI -0.30; -0.03], -1.82 mmol/mol [-3.28; -0.36]; P = 0.014. A premixed insulin containing faster aspart and degludec has been evaluated in children and adolescent (see premixed insulin section).
The ultra-rapid-acting lispro is approved for adults with diabetes. The ultra-rapid-acting lispro’s pharmacodynamic and pharmacokinetic action has been investigated by a small scale meal study in children (6-18 year old), however it is not approved yet for young people with diabetes.

There are other investigational ultra-rapid-acting insulin analogs (BioChaperone® Lispro, AT 247) that are being tested in adult subjects with diabetes.

Afrezza inhaled insulin has become the fastest acting exogenous insulin given that the insulin is absorbed quickly from lungs eliminating the delays after subcutaneous injection. It has been approved in adults with diabetes and not yet approved for children. The Afrezza clinical trial for pediatric use is ongoing.

4.2 Intermediate-acting Insulin

For over half a century, isophane NPH (neutral protamine Hagedorn) was the primary form of basal insulin used. The addition of protamine to insulin delayed the dissociation of insulin and slowed down the absorption of insulin monomers into the blood circulation. The duration of action of NPH is longer than that of human regular insulin, but is not sufficient to sustain daily physiological basal insulin needs for people with severe insulin deficiency when given once a day. Its action profile allows twice daily administration which is then sufficient to provide the background insulin needed to regulate lipolysis and hepatic glucose production. The strategy is hampered by a small peak that still occurs 4-7 hours after administration.

Insulin regimens based on intermediate-acting NPH and short-acting (regular) insulins have been used historically to regulate blood sugars, however, are limited in their ability to achieve optimal glycemic control given the limitations of their insulin action profiles. First, the use of NPH requires a fixed scheduled meals throughout the day to avoid hypoglycemic events. Second, even more problematic is the small peak action occurring with the evening NPH dose. This peak (glucose-lowering) action overlapped with the time of minimal insulin needs between midnight and 4 am, increasing the risk of nighttime hypoglycemia. In addition, the dose-effect dissipates in the early morning hours (ie. 4 am to 8 am) during the time of greater insulin requirements,
contributing to morning hyperglycemia and the so-called “dawn phenomenon”23 A third problem of NPH insulin is its high day-to-day variability of glucose lowering action.20 NPH insulin needs to be resuspended by rolling it gently 12 to 15 times prior to injection. The insufficient resuspension of NPH adds to the day-to-day variability of the glucose-lowering effect and is reflected by greater glycemic variability and potential hypoglycemia.24 NPH insulins’ greater variability of glucose lowering action relative to newer basal insulins has been verified by various studies and might create treatment challenges given the unpredictability of blood sugar lowering response.20,25,26

Nevertheless, NPH insulin use has some advantages. It costs less than many other basal insulins. The number of daily insulin injections could be reduced given that NPH could be mixed with RAI. The peak of NPH action given in the morning may provide some insulin coverage for morning snack or lunch for school-going children who have limited resources to inject insulin at school and have lunch at a consistent time with a consistent amount of carbohydrate everyday27,28 NPH has been used with regular insulin to prevent hyperglycemia due to intermittent enteral feeds for persons with T1D and T2D.29,30 In addition, it can be used as a bridge to the longer acting basal insulins given in the evening when transitioning from IV insulin in the morning or during honeymoon period.28,31

4.3 Basal Insulin Analogs. A basal insulin analog is intended to mimic the steady, unprovoked insulin secretion profile of a healthy pancreas during the fasting state. The action of basal insulin secretion is fundamental to stop ketogenesis and hepatic glucose output. Basal insulin coverage may be achieved by subcutaneously injected basal insulin analogs that are grouped as long-acting insulins or continuous subcutaneous infusion of rapid-acting insulin analogs by an insulin infusion pump.

\textit{Glargine}. Insulin glargine is the oldest of the newer generation of basal insulin analogs and largely eliminated the need for twice daily NPH. Glargine has two modifications made to the human insulin structure including a glycine substitution for asparagine on position A21, and two arginine residues attached to the carboxy terminal of the beta chain. The resulting shift of the
isoelectric point makes glargine soluble at a pH of 4, and precipitates in the neutral pH of subcutaneous fat. This allows for the slow steady release of insulin glargine from its crystalline structure over an approximate 24-hour period without a peak. The acidity while in solution form has led to complaints from persons in regards to stinging and burning on injecting, yet overall studies appear to show greater quality of life and satisfaction compared to NPH.32-34

A multi-national randomized controlled trial (RCT) with 125 children aged 2-6 years using continuous glucose sensors showed once a day glargine was as efficacious as twice daily NPH.35 While the ideal is to minimize injections and keep glargine to a once daily administration, there are situations that may warrant twice a day regimens.36,37 One study in adults showed that some individuals may have glargine efficacy for up to 20 hours and others have shown that with refractory morning hyperglycemia, dividing the dose may improve fasting BG.36,38

Detemir. Insulin detemir has the amino acid threonine at B30 omitted and a 14-carbon fatty acid covalently attached to the lysine at B29. The fatty acyl side chain stabilizes the hexamers and prolongs the persistence of insulin detemir at the injection site by slowing hexameric dissociation and subsequent monomeric absorption. In addition, the fatty acyl chain enables binding to serum albumin and reduces the amount of free insulin available for engagement with insulin receptors. Subsequently, the disposition of detemir to peripheral tissues and its clearance from the body are slower than regular insulin. Insulin detemir has a slow onset of action, with a peak at 6 hours and a duration of action up to 24 hours. The complex then dissociates with a time frame between 6 and 23 hours. Anecdotally, detemir insulin causes less local pain compared with the injection of glargine, which is an acidic solution.

Detemir may be administered once or twice daily based on metabolic needs and glucose monitoring, but frequently two daily doses may be required given its shorter duration compared to glargine. In a pediatric study, 70% of the persons used detemir twice daily.39 In another trial twice-daily detemir showed no clinical advantage over once-daily detemir, but those in active puberty often required twice-daily therapy suggesting that the need for twice daily administration, particularly during the time of puberty.40
When performing conversion between other basal insulins and detemir, prescribers should be aware that higher doses of detemir as compared with glargine may be necessary to achieve the same glycemic control. 41

Detemir is characterized by a more reproducible pharmacokinetic profile than glargine in children and adolescents with T1D. In comparison to glargine, detemir was shown in a randomized double-blind controlled trial in children 8 yo to 17 yo with T1D to have less within-subject variability.42 Detemir use has been shown to reduce risk for overall and nocturnal hypoglycemia vs. NPH in a 52 week study 25 and a lower risk of nocturnal and severe hypoglycemia compared to glargine in a multicenter study.43

In adults, studies with detemir have shown less weight gain (59), which has been observed also in children and adolescents (57) Although the precise mechanism remains unclear, it is likely that the weight-sparing effect of insulin detemir can be explained by a combination of mechanisms.44 Human studies have shown changes in cerebral mechanisms leading to decreased appetite with detemir infusion as well as preferential liver utilization over peripheral tissue resulting in less lipogenesis.44-49

Detemir is approved for children by EMA (children ≥1year old) and FDA (children ≥2year old).50

Glargine U300: Glargine U300® is a higher-strength formulation (300 units/mL) of the original insulin glargine U100 product (Lantus®), resulting in flatter pharmacokinetic and pharmacodynamic profiles and prolonged duration of action (>24 h) because of a more gradual and protracted release from the more compact subcutaneous depot. There is less diurnal variation in glucose-lowering activity with U-300 compared to the same dose of U-100 glargine.51 The full glucose lowering effect may not be apparent for at least 3 to 5 days of use. The EDITION 4 trial, which was a randomized study looking at adults with T1D, and the EDITION JUNIOR trial, focusing on persons 6-17 years old with T1D, showed non-inferiority of glargine U300 to glargine with similar rates of hypoglycemia and similar glycemic control.52 However, some studies have shown that glargine U300 has reduced nocturnal hypoglycemia and improved glycemic stability compared to glargine in adults with T1D.53,54
U300 is EMA and FDA approved EMA approved for children ≥6y.55

Degludec. Degludec is a novel ultra-long-acting analog (glucose lowering effect beyond 24 hours after subcutaneous injection). The insulin degludec molecule is structured by omitting the B30 threonine from the human insulin molecule and attaching a side chain to the B29 lysine consisting of glutamic acid and a 16-carbon fatty acid with a terminal carboxylic acid group. Degludec forms soluble multi-hexamers after subcutaneous administration, which then slowly dissociate and results in a slow and stable release of degludec monomers into the circulation. Moreover, the binding of monomers to albumin in the circulation slows the disposition of degludec to peripheral tissues and clearance from the body extending the action for up to 42 hours.56 Because the half-life of degludec is 25 hours, dose adjustments are made every 3-4 days without insulin stacking.57 The pharmacokinetics also allow a lot of flexibility with dose administration and in adults can be given once a day at any part of the day as long as 8 hours has elapsed since the previous injection.58

Results in pediatric persons indicate that the long-acting properties of degludec are preserved also in this age group.59 More consistent glucose-lowering action with degludec is expected once steady state is reached. The long half-life of this basal long-acting analog translates into reduced peak–trough fluctuations and a more consistent glucose-lowering action (flatter time–action profile) over a 24-h period. Furthermore, the ultra-long action profile of degludec should allow children to have a less stringent timing of basal insulin administration from day to day which may be of use in the erratic lifestyles encountered frequently in the adolescent population.

In the pediatric regulatory trial, insulin degludec once-daily was compared with insulin detemir once- or twice-daily, with prandial insulin aspart in a treat-to-target, RCT in children 1-17 yr with T1D, for 26 wk (n = 350), followed by a 26-wk extension (n = 280). Degludec achieved equivalent long-term glycemic control, as measured by HbA1c with a significant reduction of fasting plasma glucose at a 30% lower basal insulin dose when compared with detemir. Rates of hypoglycemia did not differ significantly between the two treatment groups; however, hyperglycemia with ketosis was significantly reduced in those treated with degludec, potentially
offering a particular benefit for persons prone to DKA. Degludec is EMA and FDA approved for children with diabetes ages 1 year and older.

There is ongoing research to develop novel basal insulin analogs intended for once-weekly administration. The Icodec ultra-long acting, weekly basal insulin analog includes three amino acid substitutions (A14Glu, B16His, B25His) that increase molecular stability, reduce enzymatic degradation and insulin receptor-mediated clearance. 20-carbo icosane fatty acid attached to the insulin amino acid chain via a hydrophilic linker to insulin leads to durable binding to circulating albumin and very protracted release. These modifications extend Icodec insulin’s half-life to about 8 days with a flat and stable pharmacokinetic profile, low peak-to-trough variations, and evenly distributed glucose-lowering efficacy with a weekly dosing interval. There is currently no pediatric data for once weekly insulins.

4.4 Premixed Insulin. Premixed insulins contain a fixed ratio mixtures of premeal and basal insulins and are not routinely used for diabetes care of children. Premixed insulins remove the flexibility offered by separate adjustment of the two types of insulin, which is especially useful for children with variable food intake.

Though not recommended, premixed insulins are infrequently used to reduce the number of injections when adherence to the regimen is a problem. There is limited data regarding the use of premixed insulins in young children. There is some evidence suggestive of inferior metabolic control when premixed insulins are used in adolescents. Higher rates of DKA and severe hypoglycemic risk have been reported in children, adolescents, and young adults with TIDM using premixed insulin as, compared to a basal-bolus insulin regimen.

Traditionally, premixed insulins were a mixture of NPH and regular insulin (or rapid-acting). The premixed insulin available in various countries have different ratios of NPH/regular (rapid) insulin: 10:90, 15:85, 20:80, 25:75, 30:70, 40:60, 50:50. Premixed insulins are suitable for use in pen injector devices, but require resuspending the insulin before use by tipping it 20 times to improve its efficacy.
The most recent addition to the premixed insulin analog group is a mixture of rapid-acting insulin aspart (30%) with long-acting insulin degludec (70%). The insulin degludec and aspart premix showed similar pharmacodynamic properties to the two injections being given separately with the rapid absorption characteristics of aspart and flat and stable profile of degludec maintained separately so the dose can be easily titrated.64

Degludec/aspart is approved for children with diabetes by EMA (children ≥2 year old) and FDA (children ≥1 year old).65

4.5 Safety of Insulin Analogs. As insulin analogs are molecules with modified structure compared to human insulin, safety concerns have been raised due to changes in mitogenicity in vitro.66 A potential link between insulin analogs and cancer has been postulated. A series of highly controversial epidemiological papers in Diabetologia had indicated such possibility for glargine.67–69 These studies evaluated mostly subjects with T2D. Ultimately a large randomized study (the ORIGIN trial) was published in 2012 that revealed no association between glargine and cardiovascular risk or cancer among adults with cardiac risk factors plus pre-diabetes or T2D, and similarly a large Scottish observational study found no association between glargine and cancer risk.70–72

In a new statement published online in May 2013 the European Medicines Agency (EMA) has concluded that insulin-glargine–containing medicines (Lantus®, Optisulin®, Sanofi) for diabetes do not show an increased risk of cancer. The EMA also notes that there is no known mechanism by which insulin glargine would cause cancer and that a cancer risk has not been seen in laboratory studies or during the long-term ORIGIN trial.72

4.6 Biosimilar insulins. Biosimilar insulins demonstrate similarity to existing insulins. In contrast to generic drugs, which are believed to be chemically identical to their reference product, biologics such as insulin demonstrate slight differences in their available counterparts given the use of different manufacturing techniques and materials (e.g. host cells, tissues). The FDA regulatory transition of insulins in March 2020 opened a regulatory pathway for biosimilar insulin products in the United States and led to the approval of three glargine biosimilars (Basaglar: FDA
approved for children ≥4 years old; Abasaglar EMA approved for children ≥2 years old; Semglee FDA approved for children ≥6 years old; EMA approved for children ≥2 years old; Rezvoglar FDA approved for children) and a lispro biosimilar insulin for adults and children with diabetes (Admelog FDA and EMA approved for children ≥4 years old 2017, Kixelle insulin aspart approved by EMA 2021 for children ≥1 year old, Sar-Asp EMA approved in 2020 for children ≥1 year old).73,74.

4.7 Insulin concentrations. The most widely available insulin concentration is 100 IU/ml (U 100). The regular and NPH insulins are available as 40IU/ml vials in some countries. The syringe for administering the 40IU/ml (red cap) insulin is different from 100U/ml (orange cap). More concentrated formulations (U-200, U-300, U-500) of some types of insulin are available to treat hyperglycemia in severely insulin-resistant persons (eg, requiring more than 200 total units of insulin daily), most commonly in adults.

Very young children, infants and toddlers, occasionally require small insulin doses, therefore may benefit from diluted insulin to allow for more precise dosing and measurement of insulin in <1-unit increments. Insulin is diluted with diluent obtained from the manufacturer. Aspart, Lispro and NPH insulins have special diluents produced by insulin manufacturers. There has been some reports of using normal saline to dilute certain types of insulin when manufacturer diluent is not available. Rapid-acting insulin can be diluted to 1/10 (U10) or U50 with sterile NPH diluent and stored for 1 month 75 for use in pumps for infants or very young children. Insulin diluted in a 1/5 ratio (U20 insulin; 20units/mL) has been used successfully during automated insulin treatment in young children(3-6year old) with T1D.76-80 Dosing errors with unconventional insulin concentrations can be serious. Special care is needed in dilution and drawing up the insulin into the syringe. Providers must ensure that persons are well educated about how to use concentrated and diluted insulins safely before it is initiated. Care must be taken to ensure that the same concentration is supplied each time new supplies are received. Parents with children using diluted insulin should inform clinicians regarding the type of insulin they have been using if they transfer their child’s care to a new clinic or seek medical care by a clinician who is not familiar with child’s care such as an emergency room clinician to minimize insulin dosing errors.
5. PRINCIPLES OF INSULIN THERAPY

5.1 Insulin Regimens. The choice of the insulin regimens depends on the availability and affordability of supplies that each health system provides and the personal characteristics of each individual. Since lack of insulin is still considered a major factor influencing therapeutic choices particularly in children with T1D worldwide, one of the WHO five global coverage targets to be achieved by 2030 is that 100% of people with T1D have access to insulin and glucose monitoring. Despite clear recommendations for targets of insulin management in children and adolescents with T1D there is considerable variation in the therapeutic regimens and the nomenclature is confusing, but the following classification has been proposed for insulin delivery and is depicted in Figure 1.

I.- Glucose and meal-adjusted injection regimens

- Prandial insulin should be injected before each meal, and ideally giving a dose before snacks as well. Insulin doses are adjusted based on pre-meal glucose level, meal composition (particularly amount and type of carbohydrates) and expected physical activity in the coming hours. Prandial insulin daily requirements are approximately 70-55% of total daily dose.
- Basal/long-acting analog is administered once or twice daily; and is approximately 30-45% of the total daily dose.
- Rapid-acting insulin immediately before \(^{11,12}\) and adjusted to glycemia, meal content and daily activity. Rapid-acting analogs may need to be given 15-20 minutes before the meal to have full effect, especially at breakfast \(^{82,83}\). Ultra-fast-acting analogs may be given closer to the meal \(^{17,84-87}\). If regular insulin is used as prandial insulin, it should be administered 20 – 30 minutes before each main meal \(^{88}\).

II.- Pump therapy (CSII)
Insulin pump therapy is extensively reviewed in the chapter “Technology: Insulin Delivery” (see ISPAD 2022 consensus guidelines Chapter 17 Technology: Insulin Delivery for details).

Insulin pump regimes are standard of care in many places.

Insulin pumps provide convenience for the use of multiple boluses per day without the need for separate injections. Variable basal insulin rate may be programmed.

Pumps integrated with continuous glucose monitoring (CGM) have led to development of incremental automated insulin delivery: sensor-augmented pumps with low-glucose suspend, predictive-low-glucose-suspend hybrid- and advanced hybrid closed loop systems, better known as automated insulin delivery system (AID).

The traditional concepts of “basal” insulin and “bolus” insulin become less useful with AID, as both types of insulin delivery are used to mitigate hyperglycemia and contend with carbohydrate consumption. Instead the term of algorithm modulated insulin delivery better characterizes insulin substitution with AID systems. Current commercial AID systems still require “user-initiated” bolusing for carbohydrate intake.

III. Less-intensive and fixed dose regimens:

- Less intensive regimens include
 - Two or three injections daily using a mixture of short- or rapid- and intermediate-acting insulins.
 - Different variations of the timing of administration have been used, but all these therapeutic schemes require rigid schedule for meals and injections.
 - Prandial insulin is adjusted by glucose levels and carbohydrate content.

- Fixed-dose insulin regimens
 - Set insulin dosage not or minimally adjusted to daily varying meals. Insulin dosage defines the subsequent mealtimes and their amount of carbohydrates. Due to the
limited flexibility this poses significant challenges for matching it with the day-to-day
variability of food intake and activity of children and adolescents.

Such regimes of two injections daily of a mixture of short or rapid and intermediate-acting
insulins (before breakfast and dinner/the main evening meal) may be chosen to reduce
the number of injections when compliance (or adherence) to the regimen is a problem,
during the honey-moon period, or if there is very limited access to diabetes care.

Basal insulin only/premixed insulin only/free-mixed insulin combinations are not
recommended for the treatment of T1D, unless there is no other option.

6. GUIDELINE ON INSULIN DOSAGE

The right amount of insulin dosage is one that will achieve the best glycemic control for an
individual without causing hypoglycemia, hyperglycemia and reducing the likelihood of
development of long-term complications. Insulin dosing may be dependent on many factors
such as:

- Age
- Weight
- Stage of puberty
- Duration and phase of diabetes
- State of injection sites
- Nutritional intake and distribution
- Exercise patterns
- Daily routine
- Results of BG monitoring and glycated hemoglobin
- Intercurrent illness
- Menstrual cycles
It is common for a newly diagnosed child’s diabetes to enter a partial remission phase, also known as the honeymoon phase, with an increase in endogenous insulin production within several weeks after the initiation of insulin therapy. During the partial remission phase, the total daily insulin dose is usually <0.5 IU/kg/day.

Prepubertal children (outside the partial remission phase) usually require 0.7 to 1.0 IU/kg/day and during puberty, insulin dose requirements may rise to between 1-2 IU/kg/day. The elevated requirements of insulin during puberty are in part explained by the higher growth hormone (GH) secretion that characterizes this period which induces insulin resistance; a phenomenon that is observed during adolescence in persons living with and without diabetes, but is exacerbated in those with diabetes. Higher BG levels may be observed during luteal phase of menstrual cycle mediated by the endogenous progesterone level.

Distribution of Daily Insulin Dose: In children and young people on basal-bolus insulin regimens, the basal insulin may represent between 30%-50% of total daily insulin and is administered as follows:

- Glargine is often given once a day at approximately the same time each day. However, many children may need to receive two daily doses of glargine or to be combined with NPH to provide full day-time basal insulin coverage. Glargine can be given before breakfast, before dinner or at bedtime with equal effect, but nocturnal hypoglycemia occurs significantly less often with breakfast injection. When transferring to glargine as basal insulin, the total dose of basal insulin needs to be reduced by approximately 20% to avoid hypoglycemia. After that, the dose should be individually adjusted according to BG trends.

- Detemir is most commonly given twice daily in children. When transferring to detemir from NPH, the same doses can be used to start with, but may require increase in detemir dose according to SMBG results. Twice daily regimen NPH injection in the morning and detemir injection at night time with RAI for breakfast and dinner has been used to optimize
Glycemic control during honeymoon phase of T1D as a bridge to insulin pump treatment. Broad range of dose adjustments have been described in various small scale studies while switching from glargine insulin to degludec (0-150% of the glargine dose). Minor increase in basal insulin ratio with respect to total daily dose of insulin has been experienced in prepubertal subjects.

- Degludec is administered once daily and can be given at any time. In pediatric persons, degludec is generally given at the same time of the day, but, in adults, it can be given at any time of the day as long as 8 hours has elapsed since the previous injection. This benefits those with erratic schedules, like adolescents, those who have shifting work hours, or individuals traveling across time zones. It is also convenient when transitioning back and forth from insulin infusion pump therapy to injections, as experienced by athletes or adolescents wishing to take a break from the insulin pump. However, given the > 24 hour insulin duration of degludec, care should be taken to reduce the basal pump settings by ~20% for the first 1-2 days when making a switch to the pump to avoid hypoglycemia.

- Glargine 300U is administered once daily at approximately the same time of day. Given its concentrated form of glargine 100U and subsequent longer duration of action, it is particularly helpful for those with high basal insulin needs, or those that desire morning basal insulin administration without the need for an additional evening basal insulin injection.

- NPH insulin has been used in the morning to help cover daytime basal insulin need and glycemic excursions after lunch and snacks, and could be injected at night to replace basal insulin in those places that do not have basal analogs available (twice daily regimen).

Calculation of bolus insulin doses. For intensive insulin treatment, a fundamental aspect is calculating bolus insulin dose based on carbohydrate content and glucose levels.

- The “500-rule” is often used to obtain an initial ratio when starting with carbohydrate counting (divide 500 by the total daily dose—basal and bolus insulin—to find the amount of carbohydrates in grams that 1 unit of bolus insulin (short/rapid/faster acting insulin) will cover). However, the 500 rule may need to be individually adjusted to allow more insulin
for breakfast and less insulin for a meal in connection with exercise. This rule may be different in toddlers and very young children and a 330 or 250 rule (gives 50%-100% more insulin) instead of 500 might be used in the preschool age children. To evaluate and further tailor the child’s insulin dosing it is necessary to repeatedly observe and calculate the correct proportion between insulin and CHO from real life meals. See ISPAD 2022 Consensus Guidelines Chapter 23 on Management of Diabetes in Preschoolers for further details.

- The insulin:carbohydrate ratio (ICR) for an individual meal, for example breakfast, can be calculated by dividing the carbohydrate content in grams by the insulin dose in units. This method often gives the most accurate results for an individual meal and can preferably be used for breakfast when there usually is an increased insulin resistance. If the BG before and after the meal differ more than 2 to 3 mmol/L (20-30 mg/dL), the correction factor (see below) can be used to calculate out how much more (or less) insulin should be given for a certain meal.

- Some centers also count protein and fat-protein unit (FPU) for calculating insulin requirements when using a pump. One FPU equals 100 kcal of fat or protein and requires the same amount of insulin (as an extended bolus) as 10 g of carbohydrates. This may result in post-meal hypoglycemia, and more recent studies have found a lower need of insulin for protein, around 200kcal equaling 10g of carbs. See ISPAD 2022 Consensus Guidelines Chapter 10 on Nutritional Management in Children and Adolescent with Diabetes for further details.

- Correction doses (also called insulin sensitivity factor (ISF), correction factor) can be used according to the “1800 rule,” that is, divide 1800 by total daily insulin dose to get the mg/dL that 1 unit of rapid-acting insulin will lower the BG; for more groups that are more insulin resistant, the insulin sensitivity factor has also been calculated dividing 1500 by the total dose. For mmol/L, use the “100 rule,” that is, divide 100 by total daily insulin dose. The “1500 rule” maybe used when regular insulin is used for correction dosing.
6.2 Insulin Dose Adjustments. Insulin adjustments are essential to reach glycemic goals. The daily or weekly BG patterns and trends measured by self-monitoring of blood glucose (SMBG) or CGM patterns should be taken into account when adjusting insulin doses. The family should be educated and empowered to perform these adjustments.

6.2.1 Soon after diagnosis. Insulin adjustments should be made frequently to achieve the target BG levels soon after new diagnosis of T1D. Many centers make daily insulin dose adjustments during the first few week of diagnosis.104 The appearance of the honeymoon period requires drastic and fast decreases in insulin daily dose to avoid hypoglycemia.105,106

6.2.2 Insulin dose adjustments for well-established diabetes. Adjustments of insulin dosing are made before meals and adjusted based on glucose levels, obtained either by frequent SMBG or sensor glucose (CGM).96 The long-acting basal insulin dose is titrated to regulate overnight, fasting glucose level. Postprandial hyperglycemia is best controlled by a well-timed injection of prandial insulin and sufficient insulin coverage for the food intake. Correction dose could be added to the prandial insulin dose if premeal glucose level is above target range. Post-prandial glucose testing performed at the time of the prandial insulin peak (1.5-2 hours after the injection) is essential to determine the glucose lowering effect of prandial insulin dose.

6.3 Advice for Persistent Trend Deviations from Target Blood Glucose

- For elevated glucose level before breakfast – the advice is to increase pre-dinner or pre-bed intermediate or long-acting insulin dose (glucose determination during the night are recommended to ensure that this change does not result in nocturnal hypoglycemia).
• For elevated glucose level after a meal – the advice is to increase pre-meal ultra-rapid/rapid/regular insulin dose.107

• For elevated BG level before lunch/dinner meal – the advice is to increase pre-breakfast basal insulin or increase dose of prebreakfast ultra-rapid/rapid/regular acting insulin if on basal-bolus regimen. However, snacking before the meal without an insulin dose should be ruled out. When using rapid-acting insulin for basal-bolus regimen, the dose or type of basal insulin may need to be adjusted if BG levels rise during post-prandial fasting state as the analog insulin has most of its effect within 2 to 3 hours after injection.103 Missed mealtime insulin boluses seem to be the major cause of suboptimal glycemic control in children and adolescents with diabetes. Forgetting >1 meal-related injections per week would lead to an increase in HbA1c of 0.3–0.8 % points, and similarly 0.2–0.3% points related to forgotten injections of the long-acting insulin.108,109 There are new and promising adherence metrics that may be easily interpreted and used for early intervention to improve treatment adherence during clinic visits.110

• Administration of rapid-acting insulin analogs approximately 15 minutes before mealtime results in lower postprandial glucose excursions and more time spent in the 3.5-10.0 mmol/l range, without increased risk of hypoglycemia.83

• When using carbohydrate counting, persistent elevations of post-meal glucose levels may require adjustment in the insulin to carbohydrate ratio.111 In the case that post-prandial hyperglycemia persists after correction insulin dosing, a review of the insulin sensitivity factor should be carried out.

• Unexplained hypoglycemia requires re-evaluation of insulin therapy and dose. Unexplained hyperglycemia may be caused by a “rebound phenomenon,” which is described as hypoglycemia followed by hyperglycemia that is potentiated by excessive eating to treat the hypoglycemia along with hormonal counter-regulation

• Day-to-day insulin adjustments may be necessary for variations in lifestyle routines, especially exercise or dietary changes.
Special advice may be helpful when there are changes of routines, travel, school outings, educational holidays/diabetes camps, or other activities which may require adjustment of insulin doses.

7. ADMINISTRATION AND STORAGE OF INSULIN

7.1 Insulin Injection and Absorption

7.1.1 Injection Technique (IT)

Proper insulin injection technique is essential to optimize glucose control and insulin use safety. Insulin should be injected into subcutaneous tissue, not intramuscularly given that intramuscular injection can lead to unpredictable insulin absorption and variable effects on glucose. The insulin injection sites are shown in Figure 2, and most important aspects of IT are described in Table 2.

Table 2. Most important aspects of the injection technique.

1. Have individuals demonstrate their injection technique, either by performing an actual injection or by injecting into a pad or foam pillow. Use this as a teaching occasion, praising what they do correctly and correcting any improper practices.
2. Injections should only be given into clean, healthy sites using clean hands. Disinfecting the skin is generally not required.
3. Injections must be given subcutaneously, not intramuscularly. The 4-mm pen needle has the lowest risk of IM injection and allows wider zones for rotation.
4. Needles that are 12.7 mm in length are not recommended for anyone and persons using 8-mm needles should be switched to shorter ones.
5. The 4-mm needle is preferred for all injectors regardless of age, sex, ethnicity, or BMI. It should be inserted perpendicular to the skin (90° to skin surface)—not at an angle—regardless of whether a skinfold is raised.
6. Very young children (≤6 years of age) and very thin adults (BMI <19 kg/m²) should always inject with the 4-mm needle into a lifted skinfold. Other children, adolescents, and adults may inject without a skinfold.

7. Inspect injection sites during each visit, at a minimum annually, both visually and by palpation using gel to aid in detection of lipohypertrophy. Make persons aware of the presence of any lipohypertrophy (LH), and instruct them not to inject into it. Use the LH lesion to teach them what to feel and look for and engage them in surveying their injection sites.

8. If lipohypertrophy is found, switch injections to normal tissue while decreasing the dose of insulin. Reductions often exceed 20% of the original dose. Monitor SMBG results closely.

9. Rotate injections systematically to avoid lipohypertrophy, injecting at least 1 cm (approximate width of an adult finger) from previous injections.

10. If possible, avoid reusing needles, which are sterile, one-use devices. Excessive reuse (more than five times) has been associated with lipohypertrophy.

Several other aspects are important when considering the injection technique;

- **Needle length.** The traditional needle length of 8—13 mm (27 G) were replaced by 4-6 mm needles given that longer needles might increase the risk of intramuscular (IM) injections. The probability of IM injection with the 6- versus 4-mm needle was reported to be dramatically higher in children and adolescents. 112

- **Insulin injections with 4mm needles has been shown to be the safest strategy for preventing IM injections in children and adolescents.** 113.

- **Children<6 years old or very thin adults might inject perpendicularly in to raised skin.** A two-finger pinch technique is recommended for all types of injections to ensure a strict subcutaneous injection, avoiding intramuscular injection 114. The pinch-up technique with 4mm needle is recomended for children ≤6 years old. It should be noted that a ‘pinch up’ method with 5mm needles may paradoxically facilitate IM injections when children use this technique in the thigh. 115
• With 4 – 6 mm needles, the injections can be given perpendicularly without lifting a skin fold but only if there is enough subcutaneous fat, which often is the case in pubertal girls (at least 8 mm as the skin layers often are compressed when injecting perpendicularly)116. Lean boys, however, have a thinner subcutaneous fat layer, especially on the thigh116,117. When injecting into the buttocks, the subcutaneous fat layer is usually thick enough to inject without lifting a skin fold. There is a risk of intradermal injections if 4 – 6 mm needles are not fully inserted into the skin.

• Rotation of insulin injection sites, within the same injection region, should be taught from diagnosis.

• Pen injection technique requires careful education reinforcing the importance of a 2 unit air shot before every injection to ensure the pen is working correctly.

• The NPH vial should be gently rolled (not shaken) at least 10, preferably 20 times19, to mix the insulin suspension before carefully drawing it up into the clear insulin. The position in which NPH is stored may also affect its activity19.

• Injecting cold insulin can sometimes make the injection more painful, therefore it is recommended that insulin is injected when it is at room temperature.

• A delay of 15 seconds after pushing in the plunger helps to ensure complete expulsion of insulin through the needle118.

• Leakage of insulin is common and cannot be totally avoided. Encouraging slower withdrawal of needle from skin, stretching of the skin after the needle is withdrawn, or pressure with clean finger over the injection site could minimize leakage of insulin.

• Bubbles in insulin should be removed whenever possible. If the bubble is not big enough to alter the dose of insulin it should not cause problems. When using insulin pens, air in the cartridge can cause drops of insulin appearing on the tip of the pen needle, if withdrawn too quickly.

• Inspection of injection sites and screening for lipohypertrophy regularly is essential to detect insulin injection site scar tissue. Injection sites should be inspected and palpated by diabetes care professionals at every clinic visit and more frequently if lipohypertrophy is detected. Self-inspection of insulin injection sites is recommended in between clinic visits.
Self injection. There is great individual variation in the appropriate age for children being able to self-inject, depending on developmental maturity rather than chronological age. Most children over the age of ten years either give their own injections or help with them.

Younger children sharing injection responsibility with a parent or other care provider may help to prepare the device or help push the plunger and subsequently under supervision be able to perform the whole task successfully. Self-injection is sometimes triggered by an external event such as overnight stay with a friend, school excursion or diabetes camp. Parents or care providers should not expect that self-injection will automatically continue and should accept phases of non-injection with the need for help from another person. Younger children on multiple injection regimens may need help to inject in sites difficult to reach (e.g. buttocks) to avoid lipohypertrophy.

Self-mixing of insulin. When NPH is mixed with short or fast acting insulin, it is most important that there is no contamination of one insulin with the other in the vials. To prevent this, the regular (clear insulin) is drawn up into the syringe before NPH. Insulins from different manufacturers should be used together with caution as there may be interaction between the buffering agents. Rapid-acting insulin analogs may be mixed in the same syringe with NPH immediately before injecting. It is recommended that neither glargine insulin nor detemir insulin be mixed with any other insulin before injection, because this mixture lowers the early glucose lowering action and prolongs the time-action profile of the rapid-acting insulins as compared with the separate injection of the analogs.

7.1.2 Injection Site Adverse Events

Lipohypertrophy is a common complication of insulin therapy. Injection site rotation is necessary to avoid lipohypertrophy, an accumulation of subcutaneous fat in response to the adipogenic actions of insulin at a site of multiple injections.
• Lipoatrophy has been relatively reduced since the introduction of highly purified insulins, however recent reports suggest that the frequency of lipohypertrophy remains high. 123 Reduction of lipohypertrophy is proven to improve glycemic control. Examination of insulin injection sites for the presence of lipohypertrophy and other site reactions should be performed during each clinic visit, including examination and palpation of injecting sites given that some lesions can be more easily felt than seen. 124.

• Painful injections are a common concern in children. We recommend checking angle, length of the needle, and depth of injection to ensure injections are not being given intramuscularly and that the needle is sharp if there are concerns regarding painful injections. Reused needles can cause more pain 125 126 A proportion of people with diabetes have a severe long-lasting dislike of injections which may influence their glycemic control. For these persons, an indwelling catheters (Insufilon®, i-port®) or insulin pump therapy can decrease injection pain 126-128 and may improve compliance 128. These devices may help with frequent injections in the very young child. 126

• Local hypersensitivity reactions to insulin injections are uncommon but when they do occur, formal identification of the insulin (or more rarely preservative) responsible may be possible with help from the manufacturers. A trial of an alternative insulin preparation may solve the problem. If true allergy is suspected, desensitization can be performed using protocols available from the manufacturers.

• Bruising and bleeding are more common after intramuscular injection or tight squeezing of the skin. Use of thinner needles have been shown to result in significantly less bleeding at the injection site.

7.1.3 Insulin Absorption

Insulin activity profiles show substantial variability both day to day in the same individual and between individuals. Many factors affect speed and consistency of insulin absorption and it is important to be aware of these and to minimize those factors which are modifiable. Young people and their caregivers should be aware of the modifiable factors that can affect insulin absorption.
Factors affecting absorption of insulin: 129-131

- **Insulin concentration, volume and dose (the subcutaneous depot).** Smaller subcutaneous depot 131, lower insulin concentration 132 and lower insulin doses are associated with faster absorption.

- **Mixture of insulins in the same syringe.** Mixture of certain insulins in the same syringe affects absorption. 121,122

- **Injection site.** Regular insulin is absorbed fastest from the abdomen, slower from the arm, followed by the thighs and buttocks 133 (Figure 1). These regional differences are less apparent with rapid and long-acting insulin analogues 129,130,134,135. The absorption of glargine 136 and degludec are not significantly influenced by the injection site 137.

- **Intramuscular (IM) injection.** IM administration route is associated more rapid insulin absorption, which is more evident during exercise 138,139 Accidental IM injection may explain variability in pharmacokinetics between injections in lean individuals and site selection and technique can avoid this.

- **Temperature.** Insulin absorption is increased by local or ambient heating, in both pump and MDI therapy 140,141.

- **Exercise.** Insulin absorption can be increased with exercise, with the location and depth of the injection being contributing factors 142. Leg injection with leg exercise leading to faster absorption 143. Glargine is not affected by exercise 144,145.

- **Lipohypertrophy.** Lipohypertrophy significantly delays insulin absorption 146.

- **Obesity.** Increased subcutaneous fat delays insulin absorption due to a reduction in subcutaneous blood flow 147.

Two devices which apply heat to the injection site have been developed which have been shown to decrease insulin requirements and enhance insulin absorption leading to an earlier peak of insulin action together with less hypoglycaemia. \textit{Insupad} is a device that warms an area 2 x 4cm just prior to injection of bolus insulin and \textit{Insupatch} was developed for insulin pump therapy with an integrated heating element that is activated when a bolus is delivered. 140
7.2 Devices for Insulin Delivery

Insulin syringes. Syringes are available in a variety of sizes in different countries, ensuring accurate dose delivery, but the following recommendations are desirable.

- Plastic fixed-needle syringes with small dead space are preferable to glass syringes.
- Plastic fixed-needle syringes are designed for single use. Reuse should be discouraged if there is concern about hygiene or injection pain as they become blunted when reused.
- Small syringes with half or 1 unit per mark (e.g. 0.3 ml, 100 U/ml) are preferable for use in small children, making it possible to dose in half units.
- Insulin syringes must have a measuring scale consistent with the insulin concentration (e.g. U 100 syringes).
- The insulin syringe must match the insulin concentration being used. 40 U/mL syringes (red cap) and 100 U/mL syringes (orange cap) have different markings and can not be interchanged.
- Syringes must never be shared with another person because of the risk of acquiring blood-borne infection (e.g. hepatitis, HIV).
- It is advisable that all children and adolescents with diabetes should know how to administer insulin by syringe because other injection devices may malfunction.
- Appropriate disposal procedures are mandatory. Specifically designed and labeled ‘sharps containers’ may be available from pharmacies and diabetes centers. Special needle clippers (e.g. Safeclip®) may be available to remove the needle and make it unusable. Without a ‘sharps container’, syringes with needles removed may be stored and disposed of in opaque plastic containers or tins for garbage collection.

Pen injector devices. Pen injector devices containing insulin in prefilled cartridges have been designed to make injections easier and more flexible. They eliminate the need for drawing up from an insulin vial; the dose is dialed up on a scale and they may be particularly useful for
insulin administration away from home, at school or on holidays. When using a pen, it is advisable to count to 10 slowly or 20 quickly (wait about 15 seconds) before withdrawing the needle from the subcutaneous tissue, in order to give time for any air bubble in the cartridge to expand118,148. Pen needles need to be primed before use, so that a drop of insulin shows at the tip of the needle.

Special pen injection needles of small size (4 – 6 mm) and diameter are available and may cause less discomfort on injection149. Pen injectors of various sizes and types are available from the pharmaceutical companies. Some pens can be set to 1/2 unit increments that are useful for dosing in young children and small dosing increments are needed. A few pens have a memory for taken doses, which can be practical especially for teenagers. Pen injector devices are useful in children on multiple injection regimens but are less acceptable when mixing of insulins are used. Availability is a problem in some countries since they are a more expensive method of administering insulin.

Insulin pens, vials, cartridges should not be shared.

Subcutaneous indwelling catheters. Such catheters (e.g. Insuflon®, i-port®) inserted using topical local anesthetic cream, may be useful to overcome problems with injection pain at the onset of diabetes[147-149]126, especially in the very young child.[148] The use of indwelling catheters does not affect metabolic control negatively128. In children with injection problems, HbA1c has been lowered by using Insuflon127. However, the use of a basal analog and a short or rapid-acting insulin at the same injection time in an indwelling catheter is not advisable in case of possible interaction of the two insulins121,122,127. Indwelling catheters should be replaced every 2-4 days to prevent scarring and a negative effect on insulin absorption150,151.
Automatic injection devices. Automatic injection devices are useful for children who have a fear of needles. Usually a loaded syringe is placed within the device, locked into place and inserted automatically into the skin by a spring-loaded system. The benefits of these devices are that the needle is hidden from view and the needle is inserted through the skin rapidly. Automatic injection devices for specific insulin injectors are available 152.

Jet injectors. High pressure jet injection of insulin into the s.c. tissue has been designed to avoid the use of needle injection. Jet injectors may have a role in cases of needle phobia. The use of jet injectors has resulted in metabolic control comparable both to conventional injections and CSII 153, but problems with jet injectors have included a variable depth of penetration, delayed pain and bruising 154. In a recent study, using a jet injector for insulin administration was associated with slightly altered variability in pharmacokinetic endpoints, but with about similar variability in pharmacodynamic endpoints compared to conventional administration 155.

Continuous subcutaneous insulin infusion (CSII). The use of external pumps is increasing and is proving to be acceptable and successful, 153-162 even in young infants 156,157. For extensive review of CSII read Chapter 22 “Diabetes Technology: insulin delivery”.

7.3 Storage of Insulin

Insulin Storage Recommendations for insulin not in use. Insulin undergoes chemical and physical degradation over time, leading to reduced potency. This degradation is accelerated by exposure to high temperatures, direct sunlight, shear stress through agitation and increased air-liquid surface, which occurs as the volume of a vial decreases 163.

Refrigeration problems may be more frequent than apparently thought, household refrigerators often do not meet manufacturers recommendations, with temperatures often
dropping below freezing point. Mail order insulin, increasing popular in some countries, might also increase exposure to extended temperature variations.

Insulin should therefore always be inspected before use and discarded if it has been frozen or if there is any evidence of clumping, frosting, discoloration or precipitation. Individual manufacturer’s recommendations for storage and expiry date should be adhered to where possible, and reduced insulin potency considered as a possible cause, when insulin requirements increase unexpectedly. For more information on how insulin is stored in absence of electricity, see ISPAD 2022 Consensus Guidelines Chapter 25 on Managing Diabetes in Limited Resource Settings.

- When not in use, insulin can be stored in a refrigerator at 2°-8° C, until the expiration date (not in or too near the freezer section or cooling element).
- Insulin should be discarded if it has been frozen, as freezing can compromise the integrity of both the formulation and the vial itself.

Insulin Storage Recommendations for insulin in use. When in use, insulin is regularly exposed to the previously mentioned environmental risk factors and in the case of insulin pumps, which is worn close to the body, not only is the temperature in the reservoir increased, but constant movement can accelerate fibril formation.

- When in use, insulin can be stored at room temperature (below 25° or 30°C) up to four weeks.

- The time period recommended for use after opening varies between 10 days to 8 weeks for different insulin formulations. We recommend following manufacturing company guidelines and drug inserts. Utilizing smaller volume penfills rather than vials will avoid wastage in children on smaller doses of insulin.
- Insulin used in insulin pumps, should be changed more often, with manufacturers recommending insulin aspart and insulin lispro be kept in the pump reservoir at room temperature for no longer than 6 and 7 days respectively. Ideally, the insulin in the
reservoir should be changed with infusion set/line changes every 48-72 hours. Product information on insulin glulisine states that it can be kept in the pump reservoir for 2 days at 37°C.

Young people and their caregivers should be aware of the importance of optimal storage to maintain potency of their insulin, in particular the avoidance of exposure to high temperatures (eg. pumps left in the sun when disconnected, insulin stored in car glove box). A number of new insulin delivery devices (pumps, smart pens or pen caps) have an integrated temperature sensor and there are several products available to protect vials and pens from heat. Products dedicated to monitoring insulin temperature using a sensor and mobile app can be kept with any type of insulin and warns when temperature limits are exceeded.

Storage of insulin when travelling. The following recommendations for transporting insulin during traveling are advised.

- There are several products (bags or cases) on the market for protecting insulin pens and vials from heat, although their performance has not been studied. When using ice packs insulin pens or vials should never be kept directly on ice to avoid freezing. (Hotel refrigerators could be less reliable)
- Insulin should not be in the checked-in baggage, but rather be carried in the cabin.
- Traveling with extra, back-up insulin is recommended.

8. **INPATIENT INSULIN TREATMENT**

Insulin use during inpatient treatment of children with T1D would be appropriate during diabetic ketoacidosis (DKA), peri-operative management and severe infections. Intravenous insulin infusion is preferred in critically ill children. Regular and rapid-acting and ultra-rapid insulins are
equally suited for IV therapy. Regular insulin has been used for IV infusion traditionally for inperson management of diabetes. Non-critically ill children admitted for hospital care could be treated with the currently used sub-cutaneous insulin regime with some alterations to the dose.

Therapy with insulin in an inpatient setting might be necessary in certain other scenarios such as hyperglycemia induced by stress peri-operatively, parenteral steroids, use of immunosuppressants during chemotherapy (L-asparaginase, tacrolimus, cyclosporine, sirolimus), neurologic drugs used during status epilepticus (valproate, phenytoin), and children with severe burns. But, DKA remains the predominant reason for inpatient treatment with insulin.

DKA in children is treated with intravenous insulin infusion around the world. But, some centers are using subcutaneous insulin effectively in the management of DKA in adults and children. The replacement of fluids and electrolytes remain the same in both forms of insulin administration during the management of DKA.

Intravenous insulin treatment. DKA treated with slow continuous insulin infusion at the rate of 0.05 to 0.1 units/kg/hour resulted in improvement of ketoacidosis with fewer complications in comparison to higher doses of insulin. This is the standard of care in treatment of pediatric DKA and is extensively reviewed in the DKA Guideline.

Subcutaneous insulin. While low dose insulin infusion is the standard of care for DKA, subcutaneous insulin therapy with aspart or lispro or regular insulin have been used in the management of DKA in adults and children in certain hospitals around the globe. The treatment with subcutaneous insulin was important for the treatment during COVID19 pandemics and was recently reviewed as an ISPAD Guideline Consensus). The new DKA guideline suggests to use subcutaneous administration of short-acting (regular) insulin every 4 hours as an another alternative treatment method in mild DKA when IV infusion or rapid-acting insulin analogs are not available. A suggested starting dose is 0.13-0.17 units/kg/dose of regular insulin every 4 hours (0.8 – 1 unit/kg/day in divided doses). Doses are increased or decreased by
10-20% based on the BG level before the next insulin injection. Dosing frequency may be increased to every 2 or 3 hours if acidosis is not improving.

9. INSULIN AVAILABILITY AND AFFORDABILITY

Children and adolescents with T1D are dependent on insulin for survival and should have access to adequate amounts of at least regular and NPH-insulin. ISPAD and the International Diabetes Federation (IDF), through Life for a Child program, are working towards making insulin available for all children and adolescents with diabetes and promoting universal insulin labeling.

Although 2021 marked the Centenary of the discovery of therapeutic insulin, access to this life-saving medicine remains problematic in many settings. The concept of access to insulin needs to be considered with two factors in mind. Firstly, availability, is insulin at the facility or pharmacy when the individual goes to get it. Next, the concept of affordability, namely can the individual pay for their insulin.

Multiple global, national and health system factors impact the prescription of insulin and need to be considered to ensure that barriers present do not impact the care provided to individuals by health professionals. Thus, an understanding and discussion of barriers to insulin access should be part and parcel of the interaction between healthcare providers and the people they treat. Health professionals should have intimate knowledge of the price of insulin; if insulin is available or not; and what insulin formulations are available in their country in both public and private sectors. This knowledge should help guide persons with diabetes to find the most affordable option to guarantee adherence to their insulin regimen.

In parallel health professionals can also play an active role in ensuring access to insulin by advocating for insulin to be included in the Universal Health Care packages in their countries.
10. RESEARCH AND NEW DEVELOPMENTS

A century after its discovery, insulin treatment continues to evolve. While insulins with faster on and off glucose lowering continue to be a hot topic, there has been significant progress in developing ultralong-acting insulins. Clinical trials investigating the use of weekly insulin formulations have been promising in adult subjects and not yet tested in children. Another exciting development is the smart insulins. Smart insulins are glucose responsive insulin formulations that are chemically activated only if the glucose is above the target range; the insulin action ceases once BG is normalized. There are different investigational methods that are used to deliver smart insulins, and smart insulin formulations might be a gamechanger in diabetes treatment in the future if proven to be safe and efficient.

Combination of insulin with adjunct medications is another novel intervention to enhance insulin treatment. Long-acting insulin (insulin glargine or degludec) and glucagon-like peptide-1 (GLP-1) receptor agonist pre-mixed injectable products are approved as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus inadequately controlled on basal insulin. Adjunct treatment with pre-mixed insulin has a potential utility to address additional treatment challenges during T1D treatment such as the increasing rates of overweight and obesity in persons with T1D.

Insulins of today continue to save lives of children with diabetes, and insulins of tomorrow will be key to improve the way we treat diabetes and ease the burden of diabetes for people with diabetes.

Acknowledgement

We would like to thank Dr. Laya Ekhlaspour for her assistance with formatting and references. We would also like to thank the UCSF Pediatric Diabetes Clinic Certified Diabetes Educators and
nurses (Monica Mueller, RN, CDE; Mary A. McDonell, MSN, RN, RD, CDE; Betty Katherine-Casto Hynes, MS, RD, CDCES; Nicole Rotter, CPNP) who gave insight and knowledge that considerably aided the revision of the insulin injection section.
Figure 1. Schematic representation of frequently used regimens for insulin therapy in children with diabetes.

Figure 2. Schematic representation of injection sites and relative timing of insulin absorption.
Injection sites and speed of absorption

<table>
<thead>
<tr>
<th>Area</th>
<th>Approximate Time</th>
<th>Absorption Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdomen</td>
<td>~15 min</td>
<td>quick</td>
</tr>
<tr>
<td>Lateral aspect of arm</td>
<td>~20 min</td>
<td>intermediate</td>
</tr>
<tr>
<td>Front of thigh/lateral thigh</td>
<td>~30 min</td>
<td>slow</td>
</tr>
<tr>
<td>Lateral upper quadrant of the buttocks</td>
<td>~30 min</td>
<td>slow</td>
</tr>
</tbody>
</table>
References

47. Smeeton F, Shojaee Moradie F, Jones RH, et al. Differential effects of insulin detemir and neutral protamine Hagedorn (NPH) insulin on hepatic glucose production and peripheral glucose uptake during

51. Becker RH, Dahmen R, Bergmann K, Lehmann A, Jax T, Heise T. New insulin glargine 300 Units . mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 Units . mL-1. *Diabetes Care*. Apr 2015;38(4):637-43. doi:10.2337/dc14-0006

52. Danne T, Tamborlane WV, Malievsky OA, et al. Efficacy and Safety of Insulin Glargine 300 Units/mL (Gla-300) Versus Insulin Glargine 100 Units/mL (Gla-100) in Children and Adolescents (6-17 years) With Type 1 Diabetes: Results of the EDITION JUNIOR Randomized Controlled Trial. *Diabetes Care*. Jul 2020;43(7):1512-1519. doi:10.2337/dc19-1926

10.1159/000197874

Kurnaz E, Aycan Z, Yildirim N, Cetinkaya S. Conventional insulin pump therapy in two neonatal diabetes patients harboring the homozygous PTF1A enhancer mutation: Need for a novel approach for
50

132. A F. Injection and absorption of insulin. PhD Thesis: Faculty of Medicine, Karolinska Institute, Stockholm, Sweden.; 1992;

176. Puttha R, Cooke D, Subbarayan A, et al. Low dose (0.05 units/kg/h) is comparable with standard dose (0.1 units/kg/h) intravenous insulin infusion for the initial treatment of diabetic ketoacidosis in children with type 1 diabetes—an observational study. *Pediatric Diabetes*. 2010;11(1):12-17.

