ISPAD Clinical Practice Consensus Guidelines 2022:
Diabetes Technologies: Insulin Delivery

Jennifer L. Sherr¹, Melissa Schoelwer², Tiago Jeronimo Dos Santos³, Leenatha Reddy⁴, Torben Biester⁵, Alfonso Galderisi⁶, Jacobus van Dyk⁷, Marisa E Hilliard⁸, Cari Berget⁹, Linda A. DiMeglio¹₀

1- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA
2- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia, USA
3- Pediatrics Unit, Vithas Almería, Instituto Hispalense de Pediatría, Almería, Andalusia, Spain
4- Department of Pediatrics Endocrinology, Rainbow Children’s Hospital, Hyderabad, India.
5- AUF DER BULT, Hospital for Children and Adolescents, Hannover, Germany
6- Department of Woman and Child’s Health, University of Padova, Padova, Italy
7- Department of Pediatrics, Life Groenkloof Hospital, Groenkloof, Pretoria, South Africa
8- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, USA
9- Barbara Davis Center, University of Colorado School of Medicine, Aurora, CO, USA
10- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.
Conflicts of interest:
JLS reports having received speaker honoraria from Eli Lilly, Insulet, Medtronic, and Zealand.
JLS also serves on advisory boards of Bigfoot Biomedical, Cecelia Health, Insulet Corporation,
Medtronic Diabetes, JDRF T1D Fund, and Vertex. She has been a consultant for Insulet and
Medtronic. JLS’s institution received research grant support from JDRF, Medtronic, Insulet, and
NIDDK.
MS reports research grant support, paid to her institution, from Tandem Diabetes Care, Insulet,
Medtronic, JDRF, and NIDDK.
TS has no conflict to disclose.
LR reports speaker fees from Sanofi, Pfizer, NovoNordisk
TB reports speaker fees, consulting honoraria or research support from AstraZeneca, Ascensia,
DexCom, Medtronic, NovoNordisk, Roche, Sanofi, and Ypsomed. Since 2021 he is member of
the Expert group for medical devices of the European Medicines Agency
AG received speaker honoraria from Ypsomed. AG’s institution received research support from
the European Commission (H2020 program).
JV has no conflict to disclose.
MEH receives research grant support from NIDDK, JDRF, and The Leona M. and Harry B.
Helmsley Charitable Trust.
CB has been a consultant for Insulet

Corresponding Author:
Jennifer Sherr, One Long Wharf Drive, Suite 503, New Haven, CT, USA 06511
Jennifer.sherr@yale.edu
WHAT IS NEW OR DIFFERENT?

In 2018, the inaugural guideline on diabetes technology was published. Like the technology used in daily life, the field of diabetes technology has seen rapid innovation and incredible growth in the devices used for management. To review technologies more clearly, the present guidelines have broken down into two parts: Diabetes Technologies: Glucose Monitoring (Chapter X) and the present chapter, which focuses on insulin delivery methods. Updates in insulin delivery include the advent of connected pens, which have created a means to utilize technology without requiring on-body devices, though studies in the pediatric population remain sparse. Further, a clear picture has emerged from studies of automated insulin delivery (AID) systems with achievement of improved glycemic outcomes across the age spectrum. Thus, the most advanced insulin delivery technology that is available, affordable, and appropriate for the individual should be offered, with the goal of personalization of care. Use of insulin delivery devices will require special attention to psychosocial aspects of care as well as delivery of structured, yet tailored, education to create the foundation for success, which is also covered in greater detail in this updated chapter.

EXECUTIVE SUMMARY AND RECOMMENDATIONS:

GENERAL PRINCIPLES TO INSULIN DELIVERY TECHNOLOGY

• Youth should be offered the most advanced insulin delivery technology that is available, affordable, and appropriate for them (B).

PENS

• Connected insulin pens have the potential to improve diabetes management on intensive insulin therapy with multiple daily injections (MDI) (C).
• Connected pens should be offered to interested youth who prefer not to have an on-body device, if available (E).
PUMP THERAPY GENERAL PRINCIPLES

- Continuous subcutaneous insulin infusion (CSII) pump therapy is recommended and appropriate for youth with diabetes, regardless of age (A).
- Infusion set failures are common with any insulin pump therapy and must be recognized promptly to avoid diabetic ketoacidosis (B).

NOT-INTEGRATED PUMPS

- Insulin pump therapy is safe and effective in youth with type 1 diabetes (T1D) to assist with achieving glycemic targets (A).
- Insulin pump therapy reduces episodes of hypoglycemia (B).
- Insulin pumps reduce chronic complications of T1D in youth, even when compared to those with similar hemoglobin A1C (HbA1c) levels on MDI therapy (B).

SENSOR AUGMENTED PUMP (SAP)

- Sensor augmented pump (SAP) therapy is superior to MDI with self-monitoring of blood glucose (SMBG) in reduction of HbA1c without an increase in hypoglycemia or severe hypoglycemia (A). Sensor use must be 60% or above to realize these benefits.

LOW GLUCOSE SUSPEND (LGS) SYSTEM

- Low glucose suspend (LGS) systems reduce the severity and duration of hypoglycemia as compared to not integrated pump and SAP, while not leading to deterioration of glycemic control, as measured by HbA1c (A).

PREDICTIVE LOW GLUCOSE SUSPEND (PLGS) SYSTEM

- Predictive low glucose suspend (PLGS) systems reduce frequency of and exposure to hypoglycemia (A).
- Both LGS and PLGS systems do not lead to a rise in mean glucose, and lead to increased confidence and trust in the technology, more flexibility around mealtimes, and reduced diabetes distress for both persons with diabetes and caregivers (A).
• If Automated Insulin Delivery (AID) systems are not available, PLGS is strongly recommended for all persons with T1D to mitigate hypoglycemia; in cases of limited availability LGS is strongly recommended for all persons with T1D to reduce the severity and duration of hypoglycemia (A).

AUTOMATED INSULIN DELIVERY (AID) SYSTEM

• AID systems, also known as closed loop (CL), are strongly recommended for youth with diabetes (A).
• AID systems improve time in range (TIR), by minimizing hypoglycemia and hyperglycemia (A).
• AID systems have proven to be especially beneficial in attaining targeted glycemia in the overnight period (A).

BEHAVIORAL, PSYCHOSOCIAL, AND EDUCATIONAL CONSIDERATIONS OF INSULIN DELIVERY DEVICES

• It is strongly recommended that diabetes providers/educators implement a standardized training approach when new insulin delivery devices are integrated into care (C).
 o For optimal outcomes, persons with diabetes and their families should be advised to use the AID system as intended (C).
• Counsel youth and their caregivers about realistic expectations for glycemic outcomes and the effort required for successful use of all insulin pump technologies (B). This is especially important in those with suboptimal glycemia, challenges with engagement with the current treatment plan, or higher burnout/mood concerns (C). Examples include:
 o Glycemia will likely improve but will not always be at the desired target, and glucose fluctuations will still occur, especially after meals.
 o There will be an ongoing need for engagement in diabetes management behaviors (including engagement with the AID system), especially around mealtimes. Persons with diabetes should count carbohydrates and deliver meal boluses for most AID systems.
An adjustment period of approximately one month should be anticipated with transition to new devices.
1. Introduction

Despite over 100 years of insulin therapy, glycemia remains suboptimal for many individuals living with diabetes. Data from international diabetes registries highlight that most youth with type 1 diabetes (T1D) do not meet the International Society for Pediatric and Adolescent Diabetes (ISPAD) targets for hemoglobin A1c (HbA1c). Additionally, hypoglycemia and severe hypoglycemia continue to plague youth with T1D. While a moderate level of fear of hypoglycemia may be beneficial, significant fear of hypoglycemia may prevent persons with diabetes, and their caregivers, from attaining targeted control. Yet, population-based assessments show that reductions in HbA1c are not associated with increased risk of severe hypoglycemia (SH). Importantly, use of diabetes technologies have been shown to improve glycemia. Despite this, integration of diabetes technologies into care with children with diabetes remains variable, with evidence of disparities in the care of youth from racial and ethnic minority backgrounds and those of lower socioeconomic status. A recent metanalysis highlighted that most of the existing literature on pump therapy in youth with T1D reflects studies conducted in high-income countries with only 38% reporting race/ethnicity of the population included and <25% of studies providing details regarding family socioeconomic status, parental occupation, and parental education/literacy. Yet, a sub analysis of individuals from historically disadvantaged groups suggested that the use of diabetes technologies improved overall glycemia.

While classically care has focused on achievement of consensus guideline targets for HbA1c, in recent years, there has been more widespread adoption of time in range to guide clinical decision making and define treatment goals. See ISPAD 2022 Consensus guidelines Chapter 8 Glycemic Control Targets and glucose monitoring in Children, adolescents and youth with diabetes. Studies demonstrate a correlation between Time in Range (TIR), defined as 3.9-10.0mmol/L (70-180mg/dL), and HbA1c concentration. Also of central importance are metrics to assess disease management that extend beyond glycemia, particularly patient-reported outcomes. These assessments are especially critical as early advances in diabetes treatment may have inadvertently increased the burden of diabetes care, detracting from quality
Thus, a body of research has explored how the burdens of these technologies can be offset by the benefits they may provide, determining how to set realistic expectations for what assistance new therapies may provide, and methods to ensure transition to more advanced technology is associated with appropriate training on device use.

In 2018, ISPAD created the first consensus guidelines on Diabetes Technology. However, with the rapidly evolving technology landscape, future iterations of these guidelines will be divided. Information on Insulin Delivery will be covered herein, and Glucose Monitoring with discussion of both capillary fingerstick glucose measures and continuous glucose monitoring (CGM) will be presented in ISPAD 2022 Consensus Guidelines Chapter 16 Diabetes Technologies: Glucose monitoring. These two chapters are undeniably intertwined, but the purpose of this chapter is to review insulin delivery technologies in children, adolescents, and young adults and to provide practical advice and approaches on their use. Topics include connected insulin pens, insulin pumps, sensor augmented pumps (SAP), low glucose suspend (LGS), predictive low glucose suspend (PLGS), and automated insulin delivery (AID), and culminates with behavioral, psychosocial, and educational considerations of insulin delivery devices.

2. Connected Insulin Pens

Insulin pens remain a popular insulin delivery modality in pediatric patients with diabetes due to their ease of use and increased dosing accuracy compared to insulin delivery using vials and syringes. While the number of children utilizing insulin pump therapy continues to rise, many children and adolescents do not wish to be tethered to a device and desire the less visible nature of multiple daily injections (MDI). Pen device technology has advanced significantly over the past 40 years, including the addition of a memory function in some pens. More recently, “smart” or connected insulin pens or pen cap devices that pair with smart phone applications and CGMs have been developed, allowing pen users access to key benefits such as data collection, alerts and reminders, and dosing calculators that take insulin on board into account.

Data on the use of connected insulin pens in children remain limited. A number of studies have reported high patient satisfaction and ease of use in pens with memory function, without significant improvement in glycemia compared to use of insulin pens.
without memory function or baseline glycemic measures.40, 41 One study noted that youth aged 2-18 years using the NovoPen ECHO device demonstrated increased rates of self-injection as compared to the mode of insulin delivery used prior to the study, which included conventional insulin pens or syringes.41 Literature on the use of Bluetooth-enabled pen cap devices suggest these devices can accurately detect insulin dosing and provide the person with diabetes and healthcare team with useful data, including assessing engagement with the prescribed regimen and the opportunity to optimize insulin doses through retrospective report review.42-44

Recently, a Swedish study reported increased TIR of nearly 2 hours per day in adults using the NovoPen 6 device when paired with a CGM, which was achieved with a reduction in both level 1 hyperglycemia, defined as Time Above Range (TAR) $> 10\, \text{mmol/L} (>180\, \text{mg/dL})$, and level 1 hypoglycemia, classified as Time Below Range (TBR) $< 3.9\, \text{mmol/L} (<70\, \text{mg/dL})$.45 However, this study was observational, uncontrolled, and limited by a small sample size (n=94). Based on the data from this study, a cost-effectiveness analysis reported that connected pens could improve life expectancy compared to standard of care with a cost savings due to lowered frequency and delayed onset of complications.46 Further studies are needed in youth with diabetes to determine the impact connected pens will have on glycemic measures, including both TIR and HbA1c, as well as usability and satisfaction with these devices.

Practical Considerations for Connected Pens:

“Smart” or connected pens transfer the burden of dose calculation from the individual with diabetes to the device. Further, the insulin on board feature may aid with reduction of hypoglycemia from stacked correction doses that are given too frequently in response to hyperglycemia. Like pump therapy, success hinges on ensuring persons with diabetes have the information necessary to program the dose calculator. Set up of the dose calculator requires instruction on the correction factor, target glucose, duration of insulin action, and insulin to carbohydrate ratios to be used, with the opportunity to program different settings in the calculator by time of day. Meal coverage with some connected pens allows for a more simplified approach where the size of the meal (small, medium, large) is used to select a discrete insulin dose to be delivered. Long-acting insulin dose reminders, temperature tracking, and information about the units of insulin remaining in the pen can also aid with daily diabetes
management. Currently, one system provides tracking of both rapid and long-acting insulin doses with delivery of the dose recorded, but not the discrete amount administered. Many connected pens allow for half-unit dosing increments, which can be especially helpful with the pediatric population. For youth with diabetes, who go back and forth between home and school settings, an ability to have more than one rapid acting insulin pen paired can allow for one pen to be kept at school. Downloading device data obtained with these pens is essential to have the best success with dose optimizations.

3. Insulin pumps

Insulin pump therapy is recommended for all youth with diabetes. This mode of insulin delivery has been found to be safe and effective for children, adolescents, and adults. Additionally, insulin pump therapy is the foundational component of more advanced insulin delivery methods, which are discussed later in this chapter.

The dawn of technology use in diabetes care

The first attempts at using technology to facilitate insulin delivery to improve the care of those living with T1D can arguably be traced to the dawn of insulin pump therapy in the late 1970s.47-49 However, integration of continuous subcutaneous insulin infusion (CSII) pump therapy into the care of youth with T1D remained minimal until the turn of the century. Since then, a very consistent picture has emerged in the literature supporting pump therapy for youth with T1D, namely among pump users, with mean HbA1c decreases of 0.2-1.1%50-63 and clinically important hypoglycemia reduction50-55, 58-64 without associated increases in BMI z-scores.50, 52-63 These data hold true regardless of whether the multiple daily injection (MDI) comparator group used NPH50-59, 62, 65 or glargine insulin.66-69 Randomized controlled trials (RCTs) assessing the use of insulin pumps have yielded conflicting results, with some showing improvement of glycemic control with use of the technology.66,67 Even in RCTs where no lowering of HbA1c was appreciated, continued use of the devices after the end of the study,70-72 higher reports of treatment satisfaction,73 and decreased diabetes-related worry highlight that benefits extend beyond glycemic metrics.74 Interestingly, a prospective examination of nearly 1000 youth on
either pump or MDI therapy found that despite similar HbA1c concentrations in both groups, lower rates of retinopathy and peripheral nerve abnormality were noted in the insulin pump treated group. Data from meta-analyses conducted by various groups have depicted similar findings with pump therapy including reductions in the mean HbA1c, and decreased rates of severe hypoglycemia. Additionally, a reduction of total daily insulin dose with use of pump therapy has been documented.

Given that persons recruited into RCTs generally do not reflect the general population of children with T1D, real-world registries provide important data regarding the benefits of pump use. In a cross-sectional comparison of three large, transatlantic registries, which included the U.S. based Type 1 Diabetes Exchange clinic registry (T1DX), the German/Austrian Prospective Diabetes Follow-up Registry (DPV), and the English/Welsh National Paediatric Diabetes Audit (NPDA), a pooled analysis of nearly 55,000 pediatric participants, pump use was associated with lower mean HbA1c (pump 8.0±1.2% vs injection: 8.5 ± 1.7%, p < 0.001). Increased rates of pump use over time have been demonstrated both in the T1DX (2010-2012 vs. 2016-2018) and the DPV (1995 vs. 2017). Notably, the rise in pump use was most pronounced in the pediatric population of both registries. The SWEET (Better control in Pediatric and Adolescent Diabetes: Working to crEatE CEnTers of Reference) centers found that almost half of the 16,000 registry participants used pumps, and this technology was associated with lower HbA1c and lower daily insulin dose as compared to MDI. More recent data have corroborated this finding.

Registry data have offered a window into rates of acute diabetes complications, like SH and diabetic ketoacidosis (DKA), noted with use of pump therapy. A DPV database analysis of almost 10,000 children, adolescents, and young adults on pump therapy matched to individuals on injection therapy showed lower rates of severe hypoglycemia and reduced frequency of DKA favoring pump use. Additionally, an observational study of data on children with T1D in Nordic countries found insulin pump use was associated with a decreased rate of severe hypoglycemia.

The long-term benefits of pump therapy have been demonstrated with sustained improvement in glycemia, as well as lower rates of DKA and SH over 7-years of treatment. Data from Western Australia demonstrate children with diabetes on pumps have lower HbA1c
over 6-years of follow up after pump initiation as compared to a matched cohort of injection users.85

Incorporation of pump therapy regardless of age, HbA1c or disease duration and clinical follow up

In 2007, a consensus guideline on use of pump therapy in youth with T1D was published.86 This guideline (adapted in Table 1) provides solid evidence that every child with T1D is recommended to be on pump therapy.86 Indeed, as evidenced by the accumulated data presented above, standard insulin pump therapy is recommended as a minimum for all youth with diabetes if access to more advanced diabetes technologies including sensor augmented pump therapy (SAP), low glucose suspend systems (LGS), predictive low glucose suspend systems (PLGS), and Automated Insulin Delivery (AID) (described fully later in this chapter) is limited. Further, the ISPAD 2022 Clinical Practice Consensus Guideline Chapter 23 on “Managing Diabetes in Preschoolers” states pump therapy is the recommended mode of insulin delivery for those under the age of 7 years.87 While concern is sometimes expressed over how daycare providers/school personnel will adopt this technology, one study suggests that children whose parents work outside of the home tended to see the largest improvement in glycemic control with transition to pump therapy.63

Data demonstrate that pump therapy can be successfully used in children who have suboptimal glycemia prior to the transition to this mode of insulin delivery. In a study of 125 youth, those with the highest HbA1c levels (>9.0%) showed the largest decrement in HbA1c once pump therapy was initiated.88 Immediate incorporation of pump therapy from the time of diagnosis has been shown to be successful in terms of glycemic control achieved.89-92 While it has been theorized that achieving more targeted control shortly after diagnosis may preserve beta cell function, this has not yet been substantiated.91, 93

Barriers to adoption of pump therapy and predictors of success

Despite the potential benefits of pump therapy in the pediatric population and favorable perceptions from healthcare professionals who recommend device use, universal adoption of
this technology has not occurred, with wide variation in implementation noted between centers, even centers with similar populations.94 A Pediatric Diabetes Consortium (PDC) study demonstrated frequency of pump use within the first year after diagnosis varied between the 8 clinical centers, ranging from 18 to 59\% of participants.95 Pump therapy initiation within a year was more common in those with private health insurance, annual family income over $100,000, a parent with a college education, and were of non-Hispanic White race.95 A T1DX study also reported widely variable pump use between centers and concluded healthcare provider preferences influence the proportion of patients using pumps in a given center.96 Consistent findings of inequities of pump and CGM use in those of lower socioeconomic status and racial disparities with integration of these technologies have also emerged from the literature.19-24 Further potential barriers to uptake of the technology voiced by those with diabetes have included concerns regarding the physical footprint and interference of the device, therapeutic effectiveness of the technology, and to a lesser extent, financial burdens this mode of insulin delivery may cause.97 In some countries, non-coverage, or incomplete coverage of pump therapy by the health care/insurance system likely influences the low adoption rates of this technology.79,94

Frequency and causes of discontinuation of pump therapy

Pump therapy discontinuation is uncommon. The DPV registry over the period of 1995-2009 found low attrition at 4\%.98 Adolescents aged 10-15 years had the highest rate of pump discontinuation, and those who discontinued were more likely to be female.98 Similar results were noted in a T1DX registry analysis.99 Reasons for discontinuing pump therapy included problems with wearability (57\%), disliking the pump or feeling anxious (44\%), and problems with glycemic control (30\%).99 Higher depressive symptoms, as captured by the Children’s Depression Inventory, have also been reported to precede cessation of pump use.100 Those who started on pump therapy and discontinued this mode of insulin delivery (n=9) were predominately female and mean depressive symptom scores were reduced with the transition to MDI therapy.100 To identify what might facilitate resumption of this technology, data collected via self-report for those >13 years old and via parental response for children aged 6-<13 showed improvements in
infusion catheters, integration of blood glucose levels directly into the pump, and advances in some technical aspects of the pump including reduced size of devices, water-resistant devices, and a reduction in emitted noise, would be motivating factors.99

Complications of pump therapy: infusion sets and hypertrophy

Insulin pump-related adverse events are common and include infusion set failures, pump malfunctions, alarms, and other problems, with 40-68% of pump users experiencing such events.101-105 Questions remain regarding whether steel cannula or flexible Teflon catheters are ideal and whether certain infusions sets are better based on the age of the person using the pump or individual body habitus. As steel cannulas are less likely to kink or dislodge, they may be the ideal infusion set for the youngest patients adopting pump therapy. The major concern is full or partial occlusion or dislodgement of the site thereby interrupting the insulin delivery and putting the user at risk for developing ketoacidosis. Strategies for failed infusion set detection continue to be explored and include fault detection algorithms, whereby the sensor glucose levels and amount of insulin delivered by the system are used to help detect or predict an infusion set failure,106, 107 and more recently the feasibility of using subcutaneous continuous ketone monitors.108

Some studies have documented between a 2 to 5-fold higher risk of DKA in those on pump therapy.109,110 Adequate education on the risk of DKA and how to manage persistent hyperglycemia is the cornerstone to avoiding these issues. Mild DKA can often be quickly ameliorated by administering additional insulin, with either a syringe or pen, as soon as hyperglycemia and hyperketonemia/ketonuria occur.111 See ISPAD 2022 Consensus Guidelines Chapter 13 on Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State for more details. Some have explored the concomitant use of a small dose of basal insulin, like glargine, to help minimize the likelihood of this complication.112

Lipohypertrophy, or local fat accumulation, at the site of insulin administration, is another issue that is frequently encountered with pump therapy.113 Lipoatrophy, fat loss at the site of prior insulin infusion sites, is less common and has been seen more frequently in those with concomitant multiple autoimmune diseases.114 Both findings are categorized as lipodystrophy.
cross-sectional study of children and adolescents with T1D demonstrated a greater risk of these issues in those with higher insulin autoantibodies. Lipodystrophy can impact how insulin is absorbed and thus lead to deterioration in glycemia. To avoid lipohypertrophy, it is recommended that infusion set placement be rotated. Once detected, avoidance of the impacted area for placement of infusion sets is advised allowing the tissue to rest and the issue to regress, often taking a few months' time. See ISPAD 2022 Clinical Practice Consensus Guideline Chapter 19 Other complications and associated conditions in children and adolescents with type 1 diabetes. Interestingly, use of lipohypertrophied tissues for placement of a CGM was found to not impact the sensor accuracy. Thus, while resting the abnormal tissue from continued insulin infusion, the hypertrophied space for diabetes related devices may still be utilized for sensor placement.

Finally, with repeated exposure to adhesives from medical devices, skin irritation is often noted. In one study where comprehensive dermatological examinations were done, localized eczematous reactions at the site of pump insertion were noted in 14% of youth, while a survey of 143 youth documented that nearly half of the cohort reported non-specific eczema. For more information on skin related issues, please refer to the See ISPAD 2022 Clinical Practice Consensus Guideline Chapter 19 Other complications and associated conditions in children and adolescents with type 1 diabetes.

Practical considerations with pump therapy:
Clinicians need to be trained on devices to feel comfortable and be competent with offering diabetes technology. Yet, a survey of pediatric endocrinology fellows in the United States and Canada found that only 14.7% had formalized training on pump and CGM. A subsequent study of pediatric endocrine fellows (n=64) in North America employed case-based vignettes with 20 multiple choice questions on either CGM or pump therapy delivered either via email or a mobile app. Both curricula were effective in increasing the pre- to post-test assessment of knowledge base and participants found this method of education engaging. This study suggests potential for providers to be trained on these technologies through user-driven
online learning modules. Without keeping abreast of technological advances, clinicians may inadvertently hinder device adoption and their optimal use.

To help inform families of various insulin delivery modalities, simplified guides regarding options can be helpful to supplement in clinic conversations. One such resource is The Simple Guides (https://www.uscdiabetes.com/simple-guides), which is free to use and available in both English and Spanish.

When preparing to transition from MDI to insulin pump therapy, one of the first steps is to have the person with diabetes, and their family, select the pump model they would like to use if insurance coverage does not dictate a decision. To accomplish this, charts and literature describing the differences amongst the models are helpful; online resources include the American Diabetes Associations consumer guide (https://consumerguide.diabetes.org), Diabetes Wise (https://diabeteswise.org), or the Panther Program (https://www.bdcpantherdiabetes.org). Pump selection should be based on features desired by the person with diabetes, and their family, with guidance provided by the clinical team members.

Generally, initial pump settings should be derived from the individual’s total daily insulin dose. Table 2 provides some suggestions to determine initial pump settings. At the time of pump start it is also critical to advise families on associated risks, particularly that of potential infusion set failure and associated metabolic decompensation. A useful framework for optimize the transition is presented by Diess et al. For very young children or those with minimal insulin requirements diluted insulin can be used to tune insulin delivery more finely. See ISPAD 2022 Clinical Practice Consensus Guideline Chapter 23 on “Managing Diabetes in Preschoolers” and Chapter 9 on ‘Insulin therapy in children and adolescents with diabetes’ for further details.

Examination of factors associated with success with pump therapy have been explored and include having more pre-programmed basal rates correlated with achievement of lower HbA1c levels. With evidence that the total number of boluses delivered daily correlates with HbA1c achieved and those with basal insulin delivery accounting for <50% of their total daily dose, it is critical to encourage persons with diabetes and their families to be engaged with care. Reviewing the importance of meal announcements should be emphasized at each follow up visit.
More advanced features of pump therapy include the ability to set temporary basal rates that adjust the usually programmed basal rate for unique day-to-day variations in insulin sensitivity. This includes decreasing delivery for physical activity or increasing doses for situations like inter-current illness. Temporary basal rates, including complete suspension of basal insulin delivery can help mitigate hypoglycemia associated with exercise. Similarly, different pre-programmed basal patterns can be utilized for predictable times of differing insulin sensitivity, for example during menstruation in women.

Boluses of insulin can also be delivered in different manners to accommodate differences in food composition: 1) immediately, as a standard or normal bolus, 2) slowly over a certain duration of time, an extended or square bolus or 3) a combination of the two, i.e. a combo or dual wave bolus. Boluses for high fat foods might be best handled as extended or combo boluses as the rise in glucose following the meal will be delayed by fat. For the extended bolus, the user sets the duration of the extension; whereas, for combo boluses the user not only chooses the duration to extend but also the amount to be delivered upfront (for example 40% of the bolus immediately and the remaining 60% over 4 hours-time). Pumps can also reduce bolus insulin delivery based on the proportion of insulin that is still deemed “active” from the last bolus, which may decrease the likelihood of post-bolus severe hypoglycemia.

As insulin pump data can be uploaded, or more recently, are available through cloud-enabled sharing, clinic visits can be more productive with the wealth of data afforded. In addition to determining if insulin pump settings need to be optimized, these reports serve as the basis for clinicians to initiate a conversation on engagement with care. With information on the number of boluses per day or the average number of carbohydrates entered per day, more structured instruction on meal bolusing is possible. Further, records regarding the frequency of infusion set changes helps providers broach the conversation on recommendations regarding infusion set changes and the importance of rotating sites. For more information on care deliver, see ISPAD 2022 Consensus Guidelines Chapter 7 entitled “The Delivery of Ambulatory Diabetes Care to Children and Adolescents with Diabetes”.
As pump therapy is the basis for other advanced insulin delivery technologies, the benefits and issues mentioned above may also apply to the technologies discussed in the next sections.

4. Sensor Augmented Pump Therapy

Sensor Augmented pump (SAP) therapy is defined as the combination, or augmentation, of a conventional insulin pump with CGM (Figure 1). For more details on CGM, please see the ISPAD 2022 Consensus Guidelines Chapter 16 Diabetes Technologies: Glucose Monitoring. With CGM values viewed either on a separate reader/phone or through direct integration of sensor glucose values on the insulin pump, SAP therapy provides the data that a person with diabetes can choose to act upon instead of relying on fingerstick glucose measures often taken at specific time points. For example, if sensor glucose reaches a high alert threshold, a correction bolus can be delivered. Thus, while SAP does not allow for automation of insulin dosing, it provides the framework on which integrated systems are built.

A single platform: The beginnings of SAP therapy

The first RCT comparing SAP to insulin pump therapy was conducted in 12-72 year olds and showed similar reductions in HbA1c after 6-months, but this was associated with significantly increased hypoglycemia exposure in those randomized to the insulin pump with SMBG group.132 For those in the SAP group, utilization of the sensor for more than 60% of the time was associated with reduction in HbA1c.132

The Sensor-Augmented Pump Therapy for A1c Reduction (STAR) 3 study compared SAP with MDI and SMBG checks for a 1-year study period in device naïve participants with T1D, including 74 adolescents (age 13-18) and 82 children (aged 7-12).133-135 The SAP group had a greater reduction in HbA1c, which was sustained throughout the study period.135 Additionally, those using SAP were more likely to attain the 2010 American Diabetes Association’s age-specific HbA1c targets. Those using SAP spent less time in hyperglycemia and had less glucose variability, as measured by the coefficient of variation (CV).135 Rates of severe hypoglycemia and DKA did not differ between the treatment groups and were relatively low in the entire study cohort. At the end of the year-long STAR3 RCT in the, those on SAP were maintained HbA1c levels during a
6-month extension phase while those who were initially randomized to the control arm crossed over to SAP and also achieved significantly lower HbA1c.136 Importantly, STAR3 also showed target achievement was directly linked to sensor wear duration and was more prominent in the children’s cohort (aged 7-12 years) who had sensor use that was 1.5 times higher than adolescents (aged 13-18 years).135 The crucial impact of regular sensor use has been echoed in other trials. The ONSET trial randomized youth within 4 weeks of diagnosis to either SAP or conventional pump therapy with SMBG to assess glycemia, insulin doses, and residual beta cell function after 1 year.137 No difference was seen between groups; yet, those with regular sensor use (defined as at least one sensor per week during the first year) had lower HbA1c values (mean 7.1%, 95% CI 6.8-7.4) when compared with those with no or low sensor use (mean 7.6%, 95% CI 7.3-7.9%).137 Recent data demonstrate every 10% increase in the frequency of sensor use was associated with a 1.1% increase in TIR and a 1.0% decrease in TAR > 180mg/dl (10 mmol/l).138

Although SAP is more expensive than conventional insulin pump therapy, the additional clinical benefits and quality-adjusted life years they afford provide justification for considering this treatment a good value for the money spent, provided persistence of sensor use.139, 140

SAP generates a wealth of information upon which insulin doses can be optimized. Yet, glycemic improvement relies on the user or a caregiver responding to the sensor glucose data to adjust insulin or other aspects of care. Classically, this has been done with the assistance of a health care provider; however, more recently automated algorithms to adjust pump settings have been employed. ADVICE4U was a RCT assessing the use of automated artificial intelligence-based decision support system that showed non-inferiority of the decision support tool when compared to provider-driven insulin dose titrations in a cohort of 108 participants aged 10-21 years.141

\section*{5. Low Glucose Suspend Systems}

\textit{Reducing the severity and duration of hypoglycemia}
With CGM data integrated into an algorithm on an insulin pump, altering insulin delivery based on sensor glucose readings is possible. The low glucose suspend (LGS) system can suspend insulin delivery when the sensor glucose reaches a programmed low threshold (Figure 1). The insulin pump suspension lasts for 2 hours in the absence of user intervention although the pump can be manually restarted at any time. The LGS feature is optional, and the pump functions normally if the feature is switched off, if sensor glucose data are not available, or if the sensor glucose value is above the predetermined threshold value. Feasibility data on the efficacy and safety of LGS from early closed loop studies demonstrated that insulin suspension mitigated hypoglycemia risk. LGS systems reduce risk of lows, which may facilitate user engagement with bolusing.

LGS system benefits were first demonstrated in the real-world setting through the Automation to Simulate Pancreatic Insulin Response (ASPIRE) in-home study that enrolled participants with T1D aged 16-70 years. Sensor readings of <3.9mmol/L (<70mg/dL), <3.3mmol/L (60mg/dL), and <2.8mmol/L (50mg/dL) were significantly reduced without any deterioration in glycemic control as measured by HbA1c with use of the LGS system. Additionally, glucose levels remained stable even 2 hours post nocturnal insulin suspension. Another RCT that included younger persons with T1D (mean age for pump users was 19.7 years vs 17.4 years for the LGS group) who had impaired hypoglycemia awareness also showed that LGS reduced the rate of severe and moderate hypoglycemia. While the control group using insulin pumps and SMBG had 6 SH events, the LGS arm had none. Nocturnal hypoglycemia was reduced and without increases in HbA1c or episodes of DKA. Real world observational studies leveraging data uploaded to CareLink, where age was self-reported and more than half of the participants were <15 years old, have echoed the RCT findings, with benefits of LGS over SAP noted.

The possible risk of hyperglycemia or DKA occurring due to insulin suspension in response to inaccurate sensor readings had been voiced as a concern prior to approval of LGS devices. This concern was addressed in a study that suspended insulin for 2 hours overnight in a preprogrammed fashion for persons at home, provided that pre-bed blood glucose was <16.7mmol/L (300mg/dL) and beta hydroxybutyrate was <0.5mmol/L. A total of 118 suspend nights and 131 non-suspend nights were included. There was wide variation in the fasting
blood glucose, but the mean fasting glucose levels on suspend nights was only 2.8mmol/L (50mg/dL) higher than non-suspend nights. Blood beta hydroxybutyrate levels were slightly higher in the morning after suspension of insulin but this was not statistically significant. This suggests that LGS is safe even in the face of potentially inaccurate sensor glucose readings.

Therefore, LGS should be considered as a treatment option in persons with diabetes at risk for hypoglycemia or those in whom fear of hypoglycemia precludes them from achieving glycemic targets.

While more advanced insulin pump therapies are now available and include predictive low glucose suspend (PLGS) and automated insulin delivery (AID) systems described below, one should be aware that advanced pumps are not available in all countries and may not be covered by certain health/insurance plans. In such circumstances, where LGS insulin pumps are available this insulin delivery modality is strongly recommended over other types of pumps. Studies have shown that LGS is cost effective and should be particularly considered where there is a high risk of hypoglycemia, impaired hypoglycemia awareness or fear of hypoglycemia leading to suboptimal glycemic control.

6. Predictive Low Glucose Suspend Systems

Mitigating Hypoglycemia: the benefits of Predictive Low Glucose Suspend

Predictive low glucose suspend (PLGS) systems interrupt basal insulin delivery in order to prevent hypoglycemia (Figure 1). Different systems are available; however, not all provide published evidence for successful use and therefore only systems with published peer reviewed data are recommended for use. Early prototype PLGS systems requiring a bedside laptop showed the benefits of predictive insulin interruptions and highlighted the safety of a PLGS system, as frequency of morning ketosis, defined as BHB >0.6mmol/L, was not different between the PLGS and SAP. This supports that there is no need for daily assessment of ketones for persons using PLGS systems. Instead, ketones should be measured when glucose is persistently elevated or in the setting of illness, which is the same advice given to anyone on pump therapy.

The MiniMedTM 640G, 670G, 770G, and 780G systems (Medtronic, Northridge, CA) all offer the PLGS, which in their system interrupts insulin delivery if the sensor glucose is predicted
to reach 20mg/dL (1.1 mmol/L) above the pre-set low glucose limit within 30-minutes. The system automatically resumes basal insulin delivery after recovery from hypoglycemia, with suspension duration ranging from a minimum of 30 minutes to a maximum interruption of 120 minutes. Under experimentally-induced hypoglycemia through increased basal rates in an in-clinic setting, the system avoided hypoglycemia most of the time. Two RCTs have been conducted with this system: one study (n=100) showed a reduction in hypoglycemic events with PLGS use, but this group had a concomitant rise in the time spent in the hyperglycemic range, while the other trial (n=154) showed a reduction in time spent <3.5mmol/L (<63mg/dL), with no deterioration in glycemia, as measured by HbA1c, in the PLGS group.

Using data uploaded to CareLink, a real-world assessment of children <15 years, demonstrated that those on PLGS spent less time per day with sensor glucose in level 1 [<3.9mmol/L (<70mg/dL)] and level 2 hypoglycemia [<3.0mmol/L (<54mg/dL)] when compared to those on either SAP or LGS. A subset of participants who switched from SAP to PLGS decreased monthly rate of sensor hypoglycemic events <3 mmol/L (<54mg/dL) and <3.9 mmol/l (<70mg/dL) by 49% and 32%, respectively.

The Tandem t:slimX2 insulin pump with Basal IQ™ Technology (Tandem, San Diego, CA), is another PLGS which integrates the Dexcom sensor. While the suspension threshold is fixed to 4.4mmol/L (80mg/dL), the minimal duration of interruption is 5 min and insulin delivery will resume after any rise of sensor glucose values. A RCT of this system found that PLGS use led to a 31% reduction in sensor time <3.9mmol/L (<70mg/dL). Real world registry data from adults using the Tandem systems show a significant reduction in time below range after PLGS start and a 45% risk reduction for sensor time <3.9mmol/L (<70mg/dL) with no change in mean glucose. After starting on the system, adults with T1D/caregivers of minors reported more device satisfaction and less diabetes impact on life with these findings sustained over 6-months of follow up.

A meta-analysis including data on 493 children in 5 RCTs concluded that there is high quality evidence that PLGS is superior to SAP in decreasing time spent in hypoglycemia and nocturnal hypoglycemia. This was accomplished without increasing percentage of time spent in hyperglycemia or episodes of DKA. Another meta-analysis concluded use of PLGS during the
overnight period was associated with an 8.8% lower risk of hypoglycemia when compared with non-PLGS overnight.¹⁶⁵

Practical considerations for SAP, LGS, and PLGS

Critical to the integration of SAP, LGS, and PLGS is successful adoption of sensor therapy. For evidence on sensor therapy, please refer to the [ISPAD 2022 Consensus Guidelines](https://www.ispad.org/guidelines/2022/consensus-guidelines) Chapter 16 Diabetes Technologies: Glucose Monitoring. Topics that should be considered when initiating these therapies may include expected frequency of sensor use, and how treatment may vary when breaks from sensor therapy may occur.¹⁶⁶ This may be especially important in those utilizing systems that suspend insulin delivery as behavioral changes may be needed to mitigate the risk of hypoglycemia when the system is not actively being use.

With both LGS and PLGS system, alarms can be set for when pump suspensions occur. Yet, the usefulness of these alarms should be considered. For example, with PLGS systems that are designed to mitigate hypoglycemia, an alert at the time of insulin suspension would not indicate the need for user intervention and thus it could be viewed as disruptive or burdensome to the person with diabetes. Instead, setting actionable alerts and alarms is critical, like setting a low alert threshold so rapid acting carbohydrates can be used to treat hypoglycemia. Furthermore, with LGS systems persons with diabetes should be encouraged to allow the system to work overnight, but if an alert occurs during the day they should consume carbohydrates and resume basal insulin delivery. With a PLGS system, should a hypoglycemic event occur despite insulin suspension, carbohydrate intake may need to be decreased to 5-10 grams as compared to usual treatment strategies to prevent rebound hyperglycemia. Access to data from diabetes devices is essential to providers, as well as these reports allow for more refined analyses, which can be used to determine insulin suspension frequency and whether changes in insulin doses and/or treatment for hypoglycemia are required.

7. **Automated Insulin Delivery**
Automated insulin delivery (AID) systems, also referred to as closed loop (CL) or artificial pancreas systems, adjust insulin delivery in response to sensor glucose data. AID is safe and effective at reducing HbA1c and increasing TIR in children and thus is strongly recommended. With AID use quality of life improvements have also been noted in children with diabetes and their caregivers.

AID Approaches

AID systems consist of three components: an insulin pump, a continuous glucose sensor, and an algorithm that determines insulin delivery. Several algorithms have been widely tested: proportional integrative derivative (PID),\(^{167,168}\) model predictive control (MPC),\(^ {169}\) and fuzzy logic.\(^ {170}\) PID alters insulin delivery according to the difference from target glucose (proportional), the area under the curve between measured and target glucose (integral), and the rate of change of measured glucose (derivative).\(^ {171,172}\) MPC predicts glucose concentrations over a predetermined time horizon to inform insulin delivery.\(^ {173}\) The fuzzy logic controller modulates insulin delivery based on a set of rules that imitates the line of reasoning of diabetes practitioners, which in turn are based on common medical knowledge and the experience of traditional treatment.\(^ {172}\) Currently there is no “optimal” algorithm; comparisons among different control algorithms\(^ {174-176}\) have been hindered by heterogeneous experimental designs.\(^ {174}\)

Besides control mechanisms, AID systems have other differentiating features. Early, fully closed loop studies demonstrated significant postprandial glycemic excursions and led to the use of a “hybrid” approach, meaning the user needs to manually bolus for carbohydrate intake.\(^ {168}\) With hybrid closed-loop (HCL) only basal insulin delivery is adjusted based on sensor glucose values. Building on this, advanced hybrid closed-loop (AHCL) systems incorporate automated correction boluses as part of the algorithmically modulated insulin delivery. Therefore, the differentiation between manual, or user initiated, and automated insulin delivery may be more meaningful than the classic categorization of insulin delivery as being either basal or bolus.

System targets are set in one of two ways; a treat-to-target approach with a singular target glucose [e.g. 5.8mmol/L (105mg/dL)] or treat-to-range approach [e.g. 6.2-8.9mmol/L (112-160mg/dL)].\(^ {172}\)
Benefits of AID

AID performance has been explored in controlled highly supervised in-clinic or transitional environments like hotels and camps. These trials clearly demonstrated increased time in target range and a concomitant reduction in time below range and led to home setting assessments.

Some outpatient trials of these devices have been conducted using an RCT design, while others have been single arm trials. The RCTs have demonstrated the efficacy of both HCL and AHCL to achieve ~10-15% increase of time in target glucose range of 3.9 – 10 mmol/L (70-180mg/dL) when compared to conventional pump therapy, SAP, PLGS, or HCL to ACHL. Similar findings in change in TIR from baseline data collection periods have been noted in the single-arm trials. These findings hold true regardless of the age of participants; importantly AID benefits have been demonstrated in very young children aged 2-5 years, children aged 6-13 years, adolescents, and young adults. (Table 3) In addition to the increased TIR, longer outpatient studies have also demonstrated that AID use has led to a concomitant reduction in HbA1c by 0.3-0.7%. A post-hoc analysis conducted on data from the Diabetes Control and Complications Trial (DCCT), demonstrated that a 10% lower time in target range was strongly associated with risk of retinopathy progression and development of microalbuminuria (hazard rates of 64% and 40%, respectively). Importantly, this data was derived from 7-point fingerstick testing conducted during daytime hours in the DCCT, and so it may underestimate the true TIR. Yet, it would imply that the observation of ~10% increase in TIR in recent clinical trials of AID systems will alter rates of microvascular complications in youth using these systems.

Initiating AID and Persisting with System Use

Historically, determining “ideal candidates” for initiating diabetes technology use has often been based on how engaged a person with diabetes, or for children their caregivers, are with diabetes management. Engagement could be demonstrated by performing a minimum number of glucose checks per day, attending a certain threshold of medical visits per year, or achieving a target HbA1c level as a rough proxy estimate for treatment adherence. Yet, these
criteria are not evidence-based, may introduce substantial bias into determining who would be “suitable” candidates, and deny technology access to children who could benefit greatly. This bias could contribute to disparities noted in device access. Data from the Control IQ pivotal trial demonstrated that, while all participants in the 14-71 year old cohort had improved TIR, those with baseline HbA1c >8.5% had the greatest reduction in time above range, while those with HbA1c <6.5% primarily benefited from reductions in time below range. Recently, real-world Control IQ system data from those age ≥6 years have demonstrated that those with higher initial glucose management index (GMI), which estimates average HbA1c concentration based on mean sensor glucose values, show substantial improvement over time. Real-world use analyses of 670G use in 14,899 users, with no age demographics provided, demonstrated that for those with a GMI <7%, TIR improvement was more substantial from 34.7% to 58.1%. With confirmation that all with diabetes can benefit from advanced diabetes technologies, providers should not limit access to this therapy. Additionally, they should seek to advocate for their safe incorporation in the management plan and provide education and support to help children and families use the devices consistently and as intended.

Once technology use is begun, persistence with use is critical for treatment success. Users have reported that system-mandated exits, where one is reverted to conventional pump settings with no automation available, can lead to user frustration and ultimately device discontinuations. A real-world prospective trial with the first HCL system with 80 participants, of whom 30% were <18 years old, noted more than half of the participants, despite endorsing adequate training on the system, experienced sleep interruption due to alarms and 40% did not like the frequency of system-initiated reversion to open loop insulin. Next generation systems have benefited from continued evolution, negating many mandated exits and incorporate factory calibrated sensors; therefore, the need to revert to open loop is primarily dictated by times when sensor are not available. Thus, real-world assessment of device use has shown better wear persistence with both the Tandem t:flex X2 with Control-IQ™ (Tandem, San Diego, CA) and the MiniMed™ 780G system (Medtronic, Northridge, CA). Yet, it is imperative that persons with diabetes, and their families, have realistic expectations of what
devices can and cannot do and receive training on system use. This is reviewed further below in (behavioral) section.

Questioning the Need for Alternative Approaches: Diluted Insulin and Do-It-Yourself Systems

Diluted insulin

Prior to recent trials, consideration had been given to the use of diluted rapid acting insulin analogues in AID for very young children to reduce of mechanical delivery errors and enable more consistent absorption due to the larger volume of the subcutaneous insulin depot. Although early studies performed in controlled settings123-125 showed reduced glycemic variability and lower risk of time below range with diluted insulin123 a subsequent 3-week outpatient randomized control study conducted in children aged 1-7 years, did not demonstrate any benefit of diluted insulin when compared to standard U100 rapid acting analogue.207 Thus, use of diluted insulin is not recommended. Importantly, this study highlighted that, compared to other age cohorts, very young children have higher variability in insulin requirements.208 This supports the recommendation for rapid adoption of AID in this population as other insulin delivery modes cannot respond to the constant changes in insulin needs.208

Open-Source Systems

Recognizing the inherent delays in conducting clinical trials and obtaining regulatory approval of new technologies, the past decade has seen the creation of open-source automated insulin delivery systems. Through an online community, the Do-It-Yourself (DIY) approach has been adopted by several thousand persons with diabetes and their families. In-silico studies have demonstrated the relative safety of the system through simulations with both meal bolus over- and underestimation as well as what might occur with delayed blousing.209 Additionally, a real-world prospective observational study in 558 users, with more than half being <25 years old, showed improvement in TIR and reductions in the incidence of severe hypoglycemic events with system use, suggesting these systems can be used safely and effectively.210 As these systems do not have regulatory approval, health care professionals should be cautious about recommending these devices over commercially available systems. However, one consensus statement suggests that providers support those who choose to manage their diabetes with open-source systems.211
Additional Strategies to Improve Automated Insulin Delivery

Persons using AID often experience postprandial hyperglycemia. Several insulin-focused mitigation strategies have been tried. Ultra-fast acting insulin analogs have not demonstrated clinical benefits in short duration trials.212-214 Intraperitoneal insulin delivery has also been proposed215, 216 with short duration studies showing increased time in the range of 4.4-7.8mmol/L (80-140mg/dL) noted.217 Additionally, inhaled insulin has been tested in conjunction with AID during meals and led to reduced glycemic excursions and improved postprandial glucose control; further exploration of this strategy may be warranted.218 In addition to optimizing glycemia this approach could reduce the peripheral hyperinsulinemia of subcutaneous insulin delivery, which may also lower risk of macrovascular complications.219-221 Yet, for both intraperitoneal and inhaled insulin delivery, longer and larger scale studies are needed.

Adjunctive non-insulin therapies have also been tested with AID to mitigate post-meal glucose excursions. These proof-of-concept or short feasibility trials, lay the groundwork for potential use of agents like pramlintide, glucagon like peptide-1 (GLP-1) analogues, and sodium glucose cotransporter inhibitors.222-224 Finally, the use of a bihormonal AID system that integrates both insulin and glucagon infusions has been an area of intense interest with promising findings from initial trials.225-229 With the advent of stable liquid glucagon, testing of systems for commercial approval is now underway.230

Adapting for physical activity remains problematic as well. Studies have explored bi-hormonal systems, reduction of pre-meal boluses prior to exercise, administration of a snack just prior to exercise, and integration of alternate signals like heart rate monitors to detect exercise.231-235

Practical Considerations for AID

To ensure success with adoption of AID technology, it will be important for clinicians to have a framework to integrate its use. The “CARES” strategy has been suggested to help clinicians conceptualize the differences between AID systems.236, 237 CARES can assist clinicians by posing 5 fundamental questions related to the person with diabetes and the proposed device (Table 4).
Tools to assist persons with diabetes in comparing devices with their clinicians will be of great benefit. Some resources include the American Diabetes Association consumer guide (https://consumerguide.diabetes.org), Diabetes Wise (https://diabeteswise.org/#/), and the Panther Program (https://www.bdcpantherdiabetes.org).

Systematic training of persons transitioning to hybrid closed-loop and advanced closed-loop therapy is essential. As insulin pump therapy is the backbone to AID, many of these topics are important regardless of the degree of automation each device offers. Persons with diabetes should be guided on methods to manage exercise. See ISPAD 2022 Consensus Guidelines Chapter 14 on Exercise in children and adolescents with diabetes. Carbohydrate intake required for treatment of mild hypoglycemia often only requires 5-10 grams with AID systems and may need to be reduced in the context of prolonged basal insulin suspension with other devices.

8. Behavioral, Psychosocial, and Educational Considerations of Insulin Delivery Devices

Uptake and sustained use of insulin delivery devices are associated with behavioral and psychosocial factors, including self-management demands, emotional considerations, family experiences, and social variables. Such factors may promote (e.g., supportive family involvement) or be barriers (e.g., diabetes distress) to optimal engagement in self-management behaviors. ISPAD 2022 consensus guidelines Chapter 15 ‘Psychological Care of children and adolescents with type 1 diabetes’ and the American Diabetes Association highlight the importance of attending to the psychosocial needs of youth with diabetes and their families, which has implications for optimal use of diabetes technologies including insulin delivery devices.

Evidence supports that youth with T1D who use insulin pumps tend to experience benefits in health-related quality of life compared to multiple daily injections. Parents may also experience improved quality of life. Specific perceived benefits of pumps include increased autonomy in diabetes management, decreased diabetes burdens, and greater flexibility in eating. However, psychosocial factors, such as depressive symptoms, may increase the risk for discontinuation of insulin pump use.

Fear of hypoglycemia is a common concern for persons with diabetes and their caregivers. LGS systems may reduce this fear, although data are limited. The CGM Timing of
Initiation of continuous glucose monitoring in Established pediatric diabetes (TIME) trial was a multicenter randomized controlled trial whose primary aim was to assess the impact of CGM initiation in comparison to starting pump therapy. An exploratory sub-study assessed fear of hypoglycemia using the Hypoglycemia Fear Survey. Parents and children >10 years old had significantly reduced fear of hypoglycemia after 1 year of follow-up; yet this was not related to CGM adherence nor was it captured whether participants were using the LGS feature.

Early research found youth who were potential AID system users felt trusting the system was critical for uptake; children and adolescents emphasized concerns related to use at school and with peers, while parents’ concerns prioritized accuracy and ensuring that systems stabilize glucose levels and reduce risk for long-term complications. Studies of HCL systems in clinical and real-world settings suggest benefits for quality of life and well-being, including lower diabetes burden/distress (especially around meals), reduced fear of hypoglycemia and worries about glycemic excursions, less time spent thinking about diabetes, and improved treatment satisfaction.

There are also indications of perceived improvements in sleep for both youth and parents. However, discontinuation of AID devices has been estimated up to 30% in youth. Psychosocial and behavioral barriers to use have been identified, including devices not being as “hands-off” as anticipated, perceived high workload required to maintain AID function, concerns about accuracy and distrust of the devices, dissatisfaction with the size/appearance of wearing multiple devices, physical discomfort, limitations to their use during physical activity or while bathing, limitations in remote monitoring access for parents, frustrations with technical glitches, and difficulties with required calibration of some devices. AID devices that use factory calibrated CGM, which eliminate/minimize the need for BG checks with a glucometer, may reduce the burden associated with AID devices and improve sustainability of use, especially in youth.

Evidence from qualitative research and self-report surveys suggests that caregivers are motivated for their children to use AID systems primarily to improve glycemic outcomes, reduce diabetes care burdens, and improve sleep. As such, caregivers and youth may have high expectations of AID systems to drastically reduce or eliminate the need for diabetes self-
management behaviors. To date, this is an unrealistic expectation, as all available AID systems require users to announce carbohydrate intake/deliver meal boluses and respond to system alerts. Evidence suggests that those youth with higher HbA1C and greater negative affect around diabetes self-management may have more positive expectations for AID device use.260 Additionally, less knowledge about AID devices may result in overly optimistic expectations and greater risk of dissatisfaction with the device.252 Thus, it is critical that diabetes care teams assess expectations, educate youth and caregivers about realistic expectations for these systems, and provide referrals for any psychosocial need that may be a barrier to optimal device use.

Education and device training are important to ensure effective use of insulin pump devices and to promote sustained device use and ongoing success.239, 240, 261, 262 For AID devices, a structured training program with frequent follow-up for new users is recommended to optimize device use. The training program should emphasize education on the basics of CGM use, required diabetes self-management tasks to optimize the device (i.e., pre-meal bolusing), and common troubleshooting for the particular device. It is imperative that users understand the safety principles of managing persistent hyperglycemia and infusion site failure (i.e., when to check ketones, change infusion site, and/or give insulin by injection), as these principles are vital for safe use of any insulin pump therapy to prevent DKA, even with advanced insulin delivery technologies. Users who discontinue HCL/AID devices are most likely to discontinue within the first 1-3 months of use.201, 202 Therefore, follow-up within the first month of use is helpful to assess system use and glucose trends, to allow the provider or diabetes educator an opportunity to identify any challenges the user may be experiencing early, and to provide an opportunity for targeted re-education to help the user overcome challenges and improve outcomes. Further, youth may benefit from adjustments to any modifiable pump settings (i.e., insulin to carbohydrate ratios) to improve glycemic outcomes when transitioning from MDI or a conventional insulin pump to AID, and a follow-up call in the first month provides the opportunity for the clinician to make these changes.

In sum, the current evidence base points to psychosocial and quality of life benefits from using insulin pumps, including conventional insulin pumps, SAP, LGS, PLGS, and AID systems. As insulin pump technologies continue to advance and offer opportunities for improved glycemic
outcomes, interventions to reduce barriers to technology use are actively being investigated34. However, more clinically translatable research targeted to the needs and experiences of pediatric populations is needed on the best ways to break down barriers to uptake of insulin delivery devices and technologies and to prevent discontinuation.

Practical Considerations for Behavioral, Psychosocial and Educational Considerations of Insulin Delivery Devices

When integrating diabetes technology into the care of youth with diabetes, families of all backgrounds should be informed about the spectrum of insulin delivery devices from conventional pumps to AID systems. Clinicians should portray the use of insulin delivery devices and technologies as an option that can be a good fit for many youth and families, provide education and encourage youth and families to review vetted websites and device informational materials. Further, it is critical for the diabetes team to recommend the most advanced device technology that the person with diabetes is interested in and to not make assumptions about interest or capability. Clinicians should refrain from having youth and families “earn” the right to use devices (i.e., achieve a certain HbA1c before considering starting a device). If payers/insurance companies require logging or other documentation prior to device approval, convey that directly to the family and advise this is not a requirement of the diabetes care practice.

Assessing barriers to device uptake and use should be part of routine clinical practice. Providers should seek to work with the youth and their family on ways to break down barriers and increase facilitators of device use. This may require referral to a psychological care provider, who can teach problem solving skills and other behavioral strategies to support device uptake and sustained use.263

Setting Realistic Expectations

With integration of any diabetes technology, it is critical for persons with diabetes and their families to understand what devices can and cannot do. Ensuring realistic expectation for glycemic outcomes and the effort required for successful use of technologies is essential. This may be especially important in those who have suboptimal glycemia, those who have had
challenges with engagement with the current treatment plan, and/or those with higher burnout/mood concerns in the past.

When transitioning to an AID system, persons with diabetes and their caregivers should be advised that glycemia will improve but will still have some variability. As evidenced in the clinical trials, nocturnal glycemic improvements are anticipated to be the greatest. Youth with diabetes and their families must understand that glucose fluctuations will still occur, especially after meals and that persons with diabetes will need to receive meal boluses to attain glycemic targets. Finally, with the transition to new devices, users should be prepared to allow, at least, a one-month adjustment period. In addition to the person with diabetes and their caregiver(s) acclimating to using the new insulin delivery system, changes in the total daily insulin dose may influence the algorithm’s aggressivity. This means that the parameters for insulin delivery are linked to the total daily dose for some systems, and the alterations in insulin requirements will seamlessly impact automation for systems with adaptivity. Further, adjustments to modifiable pump settings, especially insulin to carbohydrate ratios, are generally needed to optimize glycemic outcomes.

Critical components of training

Standardized training is critical. Three overarching themes should be reviewed: 1- basics of device use, 2- continuous glucose monitoring education, 3-hyperglycemia and other troubleshooting strategies. With each insulin delivery device, persons with diabetes and their families should be trained on the basics of device use as well as unique features of the device (i.e., sleep or exercise features for AID systems or temporary basal rates for pumps and SAP). With any system that can alter insulin delivery based on sensor glucose values, CGM education will be a cornerstone to care. For success, with SAP, LGS, PLGs, and AID systems consistent CGM use is required. Discussing any identified challenges to CGM wear (i.e., alarm fatigue, skin irritation, inconsistent wear) and problem-solving solutions will be crucial to minimize the risk of device discontinuation. As with all subcutaneously infused insulin, there is a risk of infusion set failure, which may lead to persistent hyperglycemia and DKA. To minimize this risk, users should be advised to check for ketones if they are persistently hyperglycemic, change their infusion set, and, potentially give an insulin injection. See [ISPAD 2022 Consensus Guidelines Chapter 13](#).
Diabetic Ketoacidosis and Hyperglycemic Hyperosmolar State. Clinicians should review the most common issues youth and families are likely to face and provide a framework for troubleshooting. Additionally, users should be able to call device manufacturers for additional technical assistance. This requires manufacturers to employ trained personnel to answer such calls and work with users who may have varying degrees of numeracy and literacy skills.

Clinicians should encourage families to use the AID as intended to obtain optimal outcomes. For example, users should be advised to avoid “tricking” the system and encouraged to “work with it, not against it”. For example, youth with diabetes and their families should only announce food intake by entering carbohydrate amounts if the person with diabetes will really eat them and follow the bolus calculator recommendations. Increases in insulin delivery by AID algorithms are incorporated into insulin on board calculations and subtracted from bolus dose calculations. Overriding the bolus calculator to give more insulin than is recommended may result in hypoglycemia as there may be a lot of insulin on board from automated insulin delivery the user may not be acutely aware of. Families should be counseled to trust the system; ensuring they are equipped with skills to manage unanticipated hyper- or hypoglycemia will help them feel comfortable as they develop this trust. Finally, families should be encouraged to talk to their diabetes team if they have concerns about how the algorithm is working or observe high or low blood glucose patterns that may signal needed adjustments to modifiable parameters in the pump (i.e., insulin to carb ratios, correction factor) or behavioral modifications (e.g., bolus prior to eating) to improve glycemic outcomes.

If psychosocial needs are reported or identified, refer to psychological care provider. For further information, see the ISPAD 2022 Clinical Practice Guideline on Chapter 15 on Psychological Care of Children and Adolescents with Type 1 Diabetes.

9. Conclusion-

Just as our everyday lives have vastly changed with integration of new technologies including computers, smartphones, and the increased connectivity of devices, the management of diabetes – and insulin delivery in particular – is amid a technological revolution. That the
years ahead will see significant growth in this realm of diabetes care with the hopes that these mechanical solutions may afford persons with diabetes, and their families, improved ability to attain glycemic targets while reducing the burden of this chronic medical condition. With integration of more physiologic insulin delivery afforded by AID systems, it is possible that the range of glucose levels that currently define target range, specifically 3.9-10mmol/L (70-180mg/dL) may be further tightened [e.g., 3.9-7.8mmol/L (70-140mg/dL)]. Data from people without diabetes highlight the exquisite regulation afforded by endogenous insulin production, with mean glucose being 5.4-5.5mmol/L (98-99mg/dL) and 96% of time spent in this tighter target range. The true test of new technologies will be to see how they can reduce glycemic variability while achieving a greater TIR and improve quality of life. Clinicians must seek methods to remain abreast of new technology developments to optimize uptake and subsequent use. Integration of technology into clinical care will also require understanding of the cost-benefit of therapies to justify payer coverage. Indeed, as many of these technologies are quite expensive, further understanding of the health economics and relevant policies/regulations will provide valuable information for persons with diabetes, clinicians, as well as payors.

This chapter has reviewed evidence on insulin delivery devices in children, adolescents, and young adults with the aim of providing practical advice and approaches on their use. Updates are anticipated in this rapidly evolving area of research and practice.
References:

12. Haynes A, Hermann JM, Clapin H, et al. Decreasing Trends in Mean HbA1c Are Not Associated With Increasing Rates of Severe Hypoglycemia in Children: A Longitudinal Analysis of Two Contemporary Population-Based Pediatric Type 1 Diabetes Registries From Australia and

64. Jakisch BI, Wagner VM, Heidtmann B, et al. Comparison of continuous subcutaneous insulin infusion (CSII) and multiple daily injections (MDI) in paediatric Type 1 diabetes: a

94. Dos Santos TJ, Dave C, MacLeish S, Wood JR. Diabetes technologies for children and adolescents with type 1 diabetes are highly dependent on coverage and reimbursement: results from a worldwide survey. *BMJ Open Diabetes Res Care*. Nov 2021;9(2). doi:10.1136/bmjdrcc-2021-002537

129. Rasmussen VF, Vestergaard ET, Schwandt A, et al. Proportion of Basal to Total Insulin Dose Is Associated with Metabolic Control, Body Mass Index, and Treatment Modality in

Research Support, N.I.H., Extramural

Multicenter Study
Randomized Controlled Trial

180. Collyns OJ, Meier RA, Betts ZL, et al. Improved Glycemic Outcomes With Medtronic MiniMed Advanced Hybrid Closed-Loop Delivery: Results From a Randomized Crossover Trial

Tagougui S, Taleb N, Legault L, et al. A single-blind, randomised, crossover study to reduce hypoglycaemia risk during postprandial exercise with closed-loop insulin delivery in

Table 1: Indications for use of insulin pumps in Pediatrics-adapted from reference86

Insulin pumps are recommended for all youth with diabetes. Specific factors that support the recommendation for insulin pump therapy include:

- Recurrent severe hypoglycemia
- Wide fluctuations in glucose levels regardless of HbA1c
- Suboptimal diabetes control (i.e. HbA1c exceeds target of 7.0% or TIR is <70%)
- Microvascular complications and/or risk factors for macrovascular complications
- Targeted metabolic control but insulin regimen that compromises lifestyle
- Young children and especially infants and neonates
- Children and adolescents with pronounced dawn phenomenon
- Children with needle phobia
- Pregnant adolescents, ideally preconception
- Ketosis prone individuals
- Competitive athletes

Contraindications to pump therapy:

- Preference of the person with diabetes not to use technology*
- Significant skin irritation/allergy making pump/sensor wear difficult*

+Providers should still provide information on technologies at each follow up visit to assess if there is a desire to change mode of insulin delivery

*Consider referral to dermatology to aid with overcome issues with skin irritation.
Table 2. Basic guidelines for starting insulin pump therapy

Total daily dose (TDD) prior to pump initiation
- Generally used to determine initial pump settings
- Consider reducing total daily dose at initiation in those at glycemic target or in youth with diabetes who have frequent or severe hypoglycemia.

Proportion basal vs. bolus insulin delivery
- In older children and adolescents expect a 50/50 split
- In children <7 years, basal insulin delivery may make up ~30-35% of the TDD\(^{130}\)

Determination of Basal Rates
- Take the amount to be delivered as basal (i.e. 50% of the TDD) and divide by 24 for the number of hours in a day. (if basal insulin per day will be 20 units then hourly rate would be set at 0.8 units/hr)
- Pre-school aged children may have higher basal insulin requirements between 9p.m. and 12a.m. and then lower basal rates during early morning hours before breakfast\(^{266}\)
- Adolescents may need increases in basal rates in the early morning to counter the dawn phenomenon\(^{266, 26}\)

Determination of Correction Factors/ Insulin Sensitivity Factors
- If using correction factors prior to transition to the pump, start with the usual factors.
- Otherwise, a correction factor can be determined by dividing 1800 by the TDD if glucose readings are in mg/dL (or dividing 100 by the TDD if glucose readings are in mmol/L). Depending on insulin sensitivity, the 1800 rule can be adjusted upward (2000/TDD) for those who are insulin sensitive or downward (1500/TDD) for those who are more insulin resistant.

Determination of Insulin to Carbohydrate Ratios
- If using carbohydrate ratios prior to transition to the pump, start with the usual factors.
- Otherwise, carbohydrate ratio can be determined by dividing 500 by the TDD
- Young children may need more aggressive meal coverage and a 350 rule may be employed\(^{268, 269}\)

Close monitoring following initiation
- Use sensor glucose data with attention to pre-meal and 2-hour post meal values to help inform insulin dose titrations. For those using fingerstick glucose readings, assure tests both pre and 2-hour post meal to aide with dose titrations.
- Use overnight sensor glucose values to assess overnight basal rates. For those using SMBG, consider overnight checks at midnight and 3a.m. to assess overnight basal rates

Optimal engagement with pump therapy includes
- Bolusing for carbohydrate intake, ideally prior to eating
- Understanding of how to treat hypoglycemia\(^{a}\) 10-15 grams of rapid acting carbohydrates should be given orally. This may need to be lowered to 5-10 grams for those on LGS, PLGS, or AID sytems
- Changing the infusion set at least every 3 days
- Continuous CGM use will allow for optimal performance for systems that integrate sensor glucose data to alter insulin delivery (i.e. LGS, PLGS, and AID)

\(^{a}\) See ISPAD 2022 Consensus Guidelines Chapter 11 on Management of Hypoglycemia in Children and Adolescents with Diabetes.
Table 3. Automated Insulin Delivery (AID) Studies that have enrolled very young children, children, and adolescents

<table>
<thead>
<tr>
<th>AID system</th>
<th>Study duration and design</th>
<th>Comparison group/baseline data collection on</th>
<th>Population</th>
<th>Baseline</th>
<th>Glycemic outcomes assessed</th>
<th>Difference [between groups or from baseline]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medtronic 670 G</td>
<td>3-month, single arm-study</td>
<td>Baseline pump or SAP</td>
<td>N=46</td>
<td>HbA1c 8.0±0.9 % TIR 55.7±13.4</td>
<td>HbA1c 7.5±0.6 % TIR 63.8±9.4 %</td>
<td>ΔHbA1c -0.5% ΔTIR +8.1%</td>
</tr>
<tr>
<td>CamAPS</td>
<td>16-week per treatment, two period, Randomized Crossover trial</td>
<td>HCL, SAP</td>
<td>N=74 [N=39 HCL and N=35 SAP first group]</td>
<td>HbA1c 7.3±0.7 % TIR 61.2±10.1 %</td>
<td>HbA1c 6.5±0.6 % TIR 71.6±5.9 %</td>
<td>ΔHbA1c -0.4% ΔTIR +8.7% [paired differences]</td>
</tr>
<tr>
<td>Medtronic 670G</td>
<td>8-week per treatment, Randomized, controlled, crossover trial</td>
<td>HCL, SAP</td>
<td>N=18</td>
<td>HbA1c 7.0±0.7 % TIR 65.9±12.6 %</td>
<td>HbA1c 6.7±0.3 % TIR 72.7±6.1 %</td>
<td>ΔHbA1c -0.3% from baseline ΔTIR +6.8% from baseline</td>
</tr>
<tr>
<td>Omnipod 5</td>
<td>3-month single arm-study</td>
<td>Baseline MDI, pump, SAP, HCL</td>
<td>N=80</td>
<td>HbA1c 7.4±1.0 % TIR 57.2±15.3 %</td>
<td>HbA1c 6.9±0.7 % TIR 68.1±9.0 %</td>
<td>ΔHbA1c -0.55 ΔTIR +10.9%</td>
</tr>
<tr>
<td>Medtronic 670 G</td>
<td>3-month single arm-study</td>
<td>Baseline pump or SAP</td>
<td>N=105</td>
<td>HbA1c 7.9±0.8 % TIR 56.2±11.4 %</td>
<td>HbA1c 7.5±0.6 % TIR 65.0±7.7 %</td>
<td>ΔHbA1c -0.4 % ΔTIR +8.8%</td>
</tr>
<tr>
<td>Medtronic 670G</td>
<td>8-week per treatment, Randomized, controlled, crossover trial</td>
<td>HCL, SAP</td>
<td>N=20</td>
<td>HbA1c 7.7±0.9 % TIR 55.1±11.6 %</td>
<td>HbA1c 7.1±0.5 % TIR 69.1±7.8 %</td>
<td>ΔHbA1c -0.6% from baseline ΔTIR +14%</td>
</tr>
<tr>
<td>Omnipod 5</td>
<td>3-month single arm-study</td>
<td>MDI, pump, SAP, HCL</td>
<td>N=112</td>
<td>HbA1c 7.67±0.95% TIR 52.5±15.6%</td>
<td>HbA1c 6.99±0.63% TIR 68.0±8.1%</td>
<td>ΔHbA1c -0.71% ΔTIR +15.6%</td>
</tr>
<tr>
<td>Diabeloop Generation 1 (DBLG1)</td>
<td>6-week cross-over study [outpatient phase]</td>
<td>HCL, SAP</td>
<td>N=17</td>
<td>HbA1c 7.2±0.5 % TIR n/a</td>
<td>HbA1c n/a</td>
<td>ΔHbA1c n/a ΔTIR +7.5%</td>
</tr>
<tr>
<td>Study</td>
<td>Duration</td>
<td>Intervention</td>
<td>N</td>
<td>Age</td>
<td>HbA1c</td>
<td>TIR</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>-------------------------------</td>
<td>-------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Tandem Control IQ(^{183})</td>
<td>16-week RCT, parallel group</td>
<td>AHCL</td>
<td>78</td>
<td>11.3±2.0 yrs</td>
<td>7.6 ± 1.0%</td>
<td>53±17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAP</td>
<td>23</td>
<td>10.8±2.4 yrs</td>
<td>7.9±0.9%</td>
<td>51±16%</td>
</tr>
<tr>
<td>Medtronic 670G(^{191, 192})</td>
<td>3-month single-arm study</td>
<td>Pump or SAP</td>
<td>124</td>
<td>21.7 yrs</td>
<td>7.4±0.9%</td>
<td>66.7±12.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=30</td>
<td></td>
<td>Age 16.5±0.9 yrs</td>
<td>7.7±0.84%</td>
<td>60.4±10.9%</td>
</tr>
<tr>
<td>Medtronic 670G vs AHCL(^{184})</td>
<td>12-week per treatment, two period, randomized cross-over trial</td>
<td>AHCL</td>
<td>113</td>
<td>19±4 yrs</td>
<td>7.9±0.7%</td>
<td>57±12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=30</td>
<td></td>
<td>Age 16.5±0.9 yrs</td>
<td>7.7±0.84%</td>
<td>60.4±10.9%</td>
</tr>
<tr>
<td>Medtronic 780G(^{190})*</td>
<td>4-week per treatment, two period, randomized cross-over trial</td>
<td>AHCL</td>
<td>60</td>
<td>23.5 yrs</td>
<td>7.6±0.8%</td>
<td>59.0±10.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLGS</td>
<td></td>
<td>Age 16.5±0.9 yrs</td>
<td>8.0±0.6%</td>
<td>52±10%</td>
</tr>
<tr>
<td>Medtronic 780G A-HCL(^{196})</td>
<td>3-month single-arm study</td>
<td>Baseline with pump, SAP, or HCL</td>
<td>157</td>
<td>38.3±17.6 yrs</td>
<td>7.5±0.8%</td>
<td>68.8±10.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=39</td>
<td></td>
<td>Age 16.2±2.1 yrs</td>
<td>7.6±0.8%</td>
<td>62.4±9.9%</td>
</tr>
<tr>
<td>Cambridge MPC (Medtronic 640G)</td>
<td>3-month, two-arm randomized controlled trial</td>
<td>HCL</td>
<td>46</td>
<td>Age 22 (range 13-36) yrs</td>
<td>8.0±0.6%</td>
<td>52±10%</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Control</td>
<td>N (control)</td>
<td>HbA1c (control)</td>
<td>TIR (control)</td>
<td>HbA1c (treatment)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Pump and Enlite 3 sensor</td>
<td>181</td>
<td>SAP</td>
<td>40</td>
<td>7.8±0.6%</td>
<td>52±9%</td>
<td>7.7±0.5%</td>
</tr>
<tr>
<td>Tandem Control IQ</td>
<td>182</td>
<td>AHCL</td>
<td>112</td>
<td>7.4±0.96%</td>
<td>61±17%</td>
<td>7.06±0.79%</td>
</tr>
<tr>
<td>Omnipod 5</td>
<td>189</td>
<td>MDI, pump, SAP or HCL</td>
<td>128</td>
<td>7.16±0.86%</td>
<td>64.7±16.6%</td>
<td>6.78±0.68%</td>
</tr>
<tr>
<td>Diabeloop Generation 1 (DBLG1)</td>
<td>185</td>
<td>HCL</td>
<td>63</td>
<td>7.6±0.9%</td>
<td>n/a</td>
<td>6.8±0.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SAP</td>
<td>60</td>
<td>7.6±0.9%</td>
<td>59.4±10.2%</td>
<td>6.8±0.9%</td>
</tr>
</tbody>
</table>

HCL, hybrid closed-loop; A-HCL, advanced hybrid closed-loop; AID, automated insulin delivery; MDI, multiple daily injections; SAP, sensor augmented pump; PLGS, predictive low glucose suspend; TIR, time in range 3.9-10mmol/L (70-180mg/dL); HbA1c, hemoglobin A1c

ΔHbA1c and ΔTIR indicates the difference from baseline or between groups of HbA1c and Time-in-range 3.9-10mmol/L (70-180mg/dL) respectively.

* For studies including those age 6-13 y/o but limited data by age group they are included in the table under adolescent/adult data.

Table 4. Modified CARES approach to understand and optimize AID use.\(^{237}\)
<table>
<thead>
<tr>
<th>Questions</th>
<th>Potential Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate</td>
<td>How does the system CALCULATE insulin delivery? Identify the key features of insulin delivery algorithm (e.g. treat to target vs. treat to range)</td>
</tr>
</tbody>
</table>
| Which components of insulin delivery are automated? | • Basal rate modulation
• Automated Correction boluses
• Meal identification |
| **Adjust** | How can the user ADJUST insulin delivery? |
| Which parameters can be ADJUSTED to individualize insulin delivery during automation (e.g. setting optimization for each system and age group)? | • Insulin to Carbohydrate Ratios
• Correction factors/Sensitivity Factors
• System targets/setpoints
• Duration of insulin action
• Basal rates |
| Which parameters are fixed? | Review settings that do not impact or cannot be altered during automation |
| **Revert** | When does (should) the system REVERT to open loop insulin delivery? |
| When should the user choose to REVERT to open-loop/no automations? | Identify times when the user should choose to revert to open-loop (ketosis, steroid use) |
| When will the system default to open-loop/no automation? | • Identify reasons for system mandated exits to open-loop
• Seek to minimize frequency of these events |
| **Educate** | What are important factors in regard to EDUCATION about the system and setting appropriate EXPECTATIONS? |
| What are the key EDUCATION points for the advanced diabetes device? | Essential training (tips and tricks, best practices, necessary skills) |
| What are the user expectations? | • Discuss frequency of sensor wear and time anticipated in automation
• Create individualized goals for HbA1c targets and TIR
• Identify system limitations (e.g. postprandial glycemia) |
<p>| Where can users and clinicians find additional EDUCATION? | Identify verified source of education, which may include those developed by |</p>
<table>
<thead>
<tr>
<th>Sensor/Share</th>
<th>What SENSORS pair with the system? What are the SHARE capabilities?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What are the relevant SENSOR characteristics for each paired sensor?</td>
</tr>
<tr>
<td></td>
<td>Identify the need for calibration and therapeutic blood glucose requirements, duration of sensor wear, transmitter characteristics</td>
</tr>
<tr>
<td></td>
<td>What are the system capabilities for remote monitoring and cloud-based data sharing?</td>
</tr>
<tr>
<td></td>
<td>• Review options for data sharing</td>
</tr>
<tr>
<td></td>
<td>• Strategize the use of sharing options according to individual needs</td>
</tr>
<tr>
<td></td>
<td>• Identify privacy options (if any)</td>
</tr>
</tbody>
</table>

- Manufacturers
- Professional societies
- Academic groups
- Diabetes Advocacy Groups/Online communities
Figure 1

Sensor Augmented Pump Therapy
Pre-programmed basal rates
delivered regardless of sensor glucose level

Low Glucose Suspend
Basal insulin is interrupted once glucose crosses low threshold
Predictive Low Glucose Suspend
Basal insulin is interrupted once glucose is predicted to cross low threshold

Hybrid Closed-Loop
Sensor glucose data fed to an algorithm, adjusts insulin delivery via the pump, requires mealtime bolus input by person with diabetes