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Executive summary and Recommendations

Monitoring of glycemic control includes daily
monitoring of glucose at home as well as periodic
monitoring of overall glycemia. The aims of monitoring
glycemic control are:

• To assess with accuracy and precision the level of
glycemic control achieved by each individual such
that they may benefit from attaining their glycemic
targets (1, 2) (A).

• To help in reducing the risk of hypoglycemia,
diabetic ketoacidosis (DKA), and chronic com-
plications of microvascular and macrovascular
diseases (A).

• To minimize the effect of hypoglycemia (A) and
hyperglycemia (B/C) on cognitive function and
mood (3).

• To understand determinants of glycemic control
in individuals, specific patient groups, and centers,

for comparison with stated standards to improve
therapies and delivery of pediatric diabetes care (4)
(B/C).

Recommendations

• Self-monitoring of blood glucose (SMBG) is an
essential tool in the optimal management of
childhood and adolescent diabetes and, when
financially possible, should be made available for
all children with diabetes (A).

• SMBG should be prescribed at a frequency to
optimize each child’s diabetes control, usually four
to six times a day, because frequency of SMBG
correlates with glycemic control (B/C).

• Blood glucose (BG) monitoring is expensive and
in many countries the cost relative to the cost
of living may limit this technology or make it
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unavailable. However, all centers caring for young
people with diabetes should urge nations, states,
and health care providers to ensure that children
and adolescents with diabetes have adequate BG
monitoring supplies (E).

• It should be recognized that without accurate
monitoring, the risks of acute crises and long-
term vascular and other damaging complications
are greatly increased, leading to high levels of health
care costs and personal disability (A).

• Continuous glucose monitoring (CGM) devices are
becoming available that may particularly benefit
those with hypoglycemic unawareness, as the devices
will alarm when glucose is below a specified range or
with rapid rate of fall of glucose (A).

• Ketone testing should be available and per-
formed (A):

◦ During illness, especially with abdominal pains,
vomiting, drowsiness, or rapid breathing;

◦ When persistent BG levels >14 mmol/L (250 mg/
dL) are present.

• BG monitoring records should not be used as a
judgment but as a vehicle for discussing the causes
of variability and strategies for improving glycemic
control (E).

• Frequent home review of records to identify patterns
in glycemic levels and subsequent adjustment in
diabetes management are required for successful
intensified diabetes management (E).

• In some instances, especially among teenagers,
maintaining written monitoring records is difficult.
If the family can upload the BG monitoring data to a
computer for review, this may substitute for a manual
record, although details of daily management may
be lost with this method (E).

• Facilities for the measurement of Hemoglobin A1c
(HbA1c) should be available to all centers caring for
young people with diabetes (B/C).

• Frequency of HbA1c measurement will depend on
local resources, a minimum of four measurements
per year is recommended (B/C).

• The target HbA1c for all age-groups is recommended
to be <7.5% (B).

• Targets for all age-groups include the requirement
for minimal levels of severe hypoglycemia and
absence of hypoglycemia unawareness (B).

• When hypoglycemia unawareness is present,
glycemic targets must be increased until hypo-
glycemia awareness is restored (B).

General principles determining glycemic
targets

Measurement of immediate glycemic control is best
determined by SMBG as this provides immediate

documentation of hyperglycemia and hypoglycemia,
allowing implementation of strategies to optimally
treat as well as to avoid, out-of-range glucose values.
CGM, available to a growing proportion of patients,
enables a more comprehensive real-time monitoring
that is likely to become standard in the near future.

Hemoglobin A1c (HbA1c) is the only measure
of glycemic control for which robust outcome data
are available. Elevated HbA1c predicts long-term
microvascular and macrovascular outcomes (1, 2). The
Diabetes Control and Complications Trial (DCCT),
and similar studies, provide clear evidence in adults
and adolescents that better metabolic control, as mea-
sured by a lower HbA1c level along with intensive
management, is associated with fewer and delayed
microvascular complications (1, 2, 5–7). In the DCCT,
96% of the treatment group effect on risk of complica-
tions was explained by variations in HbA1c, although
the overall effect of intensive treatment explained <7%
of the variation in the risk. Other mechanisms, on
their own or through an interaction with HbA1c, may
contribute to the effect of intensive treatment on com-
plications (8). HbA1c has limitations as a measure
of glycemic control, i.e., average BG. In the DCCT,
an HbA1c of 7.0% corresponded to a higher aver-
age BG (measured seven times a day) of 192 mg/dL
(10.7 mmol/L) in the conventionally treated patients
vs. 163 mg/dL (9.1 mmol/L) in the intensively treated
patients (6). Similar variability between measured BG
and HbA1c was reported in a study that calculated
average BG over a period of 3 months from near-
continuous glucose sensor data (≥4 d/wk) (9). There
was substantial individual variability, with mean sensor
glucose concentrations ranging from 128 to 187 mg/dL
for an HbA1c of 6.9–7.1%. These data suggest that esti-
mated average glucose concentrations calculated from
measured HbA1c values should be used with caution.

HbA1c is one of the several measures to assess
and help achieve optimal glycemic control, along
with documented hypoglycemia, type of treatment,
patient’s age, and quality of life. Frequent and accurate
BG monitoring and concomitant optimal adjustment
of insulin to carbohydrate intake and exercise are
required to attain and to maintain optimal metabolic
control. Finally, follow-up data from the DCCT
indicate that 5–7 yr of poor glycemic control, even
during adolescence and young adulthood, results in
an increased risk for microvascular and macrovascular
complications in the subsequent 6–10 yr (7, 10–13).
These data support trying to achieve for each individual
an HbA1c as close to the normal range as possible.

For a comprehensive review of effects of hypo-
glycemia, see the Hypoglycemia section [Assessment
and management of hypoglycemia in children and
adolescents with diabetes]. Historically, lower HbA1c
were associated with increased episodes of severe
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hypoglycemia (1, 2), but more recent observational
studies in the era of pumps and multiple daily injections
(MDI) in young people suggest this may no longer
be as significant a risk as in the past (14–17). Severe
hypoglycemia is a significant cause for morbidity
and occasional mortality in young people with type 1
diabetes (18–21). The EURODIAB Prospective Com-
plications Study assessed the relationship between
HbA1c and all-cause 7-yr mortality among 2764
European patients with type 1 diabetes, aged 15–60 yr.
The mortality risk was increased at both low and high
HbA1c, following a U-shaped association. All-cause
mortality risk was lowest between HbA1c values
of 7–8% (53.0 and 63.9 mmol/L) (22). Until the
mechanisms underlying increased mortality among
type 1 diabetes patients with ‘normal’ HbA1c are fully
understood, HbA1c targets <6.5% (48 mmol/mol)
may not be appropriate in this population.

Most, but not all, studies have shown that repeated
episodes of hypoglycemic seizures in young children
may cause permanent central nervous system (CNS)
changes, including microstructural integrity of white
matter, and/or cognitive dysfunction (23–30). In
contrast, the long-term follow-up of the DCCT
participants reported no evidence for permanent
neurocognitive changes related to hypoglycemia in
adolescent and young adult individuals (31), whereas
higher HbA1c was associated with modest declines
in psychomotor and mental efficiency (32). In a 3-yr
longitudinal study of children aged 9–17 yr, higher
HbA1c predicted worse visual, but not verbal, memory
whereas severe hypoglycemia did not affect visual or
verbal memory (33). The data suggests that the effect
of severe hypoglycemia and chronic hyperglycemia on
long-term neuropsychological functioning may be age-
dependent (31, 34, 35). Regardless of the long-term
sequelae of hypoglycemia, the fear of hypoglycemia
has been shown to cause intentional decreases in
insulin dosing, resulting in elevated glucose levels and
increased HbA1c (36).

Importantly, there is evidence that chronic
hyperglycemia (particularly in young boys) might be
related to poorer neurocognitive outcomes (37). Acute
hyperglycemia (BG > 15 mmol/L, 270 mg/dL) was
associated with reduced motor cognitive performance
in adults with type 1 diabetes (38), confirming findings
of reduced performance in children at BG > 20 mmol/L
(360 mg/dL) compared with 5–10 mmol/L (90–180
mg/dL) (39). Families report effects of hyperglycemia
(15–18 mmol/L, 270–324 mg/dL) on mood and
coordination (40). Long-term studies on hyperglycemia
and cognitive functioning are not available. Existing
evidence has been reviewed (41, 42).

Brain imaging studies show that both hypoglycemia
and hyperglycemia cause changes in the white and gray
matter of developing brains (43). There is evidence for

CNS changes in children with diabetes associated with
hyperglycemia as well as hypoglycemia, although the
cognitive functioning and brain imaging findings in
children with diabetes as a whole are not significantly
different from healthy control children (43, 44). The
CNS changes in association with hyperglycemia are
relatively new findings (3, 34, 41, 45, 46), but are
consistent with reported neurocognitive findings (37).
One theory is that chronic hyperglycemia during the
early years before age 5 yr, when the brain is still
developing, will affect it negatively with white matter
dysfunction due to a non-optimal myelinization. This
makes the brain more vulnerable to any subsequent
insult, including hypoglycemia, which occurs later
in the child’s life (47). There is also evidence that
fluctuation in glucose levels is more harmful than
sustained hyperglycemia or hypoglycemia (48).

At present, the safest recommendation for improving
glycemic control generally in all children is to achieve
the lowest HbA1c that can be sustained without
disabling or severe hypoglycemia while avoiding
prolonged periods of significant hyperglycemia (38–40)
and episodes of DKA. Frequent glucose monitoring
is necessary for these goals to be achieved while
maintaining acceptable quality of life.

Monitoring of glycemic control – SMBG

• helps to monitor immediate and daily levels of BG
control;

• helps to determine immediate and daily basal and
bolus insulin requirements;

• helps guide insulin adjustments to decrease
fluctuations in BG levels;

• detects hypoglycemia and assists in its management;
and

• assists in the safe management of hyperglycemia.

The frequency of SMBG is associated with improved
HbA1c in patients with type 1 diabetes (49–56). This is
thought to be because of both better insulin adjustment
for food consumed and an improved ability to quickly
correct out-of-target glucose values. In addition, early
detection of lower glucose values prior to symptomatic
hypoglycemia may allow correction with a decreased
risk of overcorrection and resultant hyperglycemia.
The use of SMBG during exercise may also allow
improved insulin management and a decreased risk for
hypoglycemia during and following exercise (57).

Patient acceptance of SMBG may be enhanced by
including the opportunity for testing alternative sites in
addition to the fingertips, e.g., the palm of the hand or
the forearm. In the fasting state, glucose readings from
the forearm are similar to the fingertip (58). These
alternative sites may be slower to reflect falling BG
levels, so it is advised that fingertips are used when
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symptoms of hypoglycemia are present and to recheck
the glucose using the fingertip if the alternative site test
is in a low range (59).

Equipment

There are many types of excellent monitors for
SMBG; however, significant inaccuracy may arise from
operator-related errors (60). Health care professionals
should choose and advise on a type that is robust,
precise, accurate, and familiar to them as well as
affordable to the patient. Low quality devices, offered
sometimes to reduce cost, may compromise patient
safety. High industry standards, including accuracy,
precision, and ability to download and analyze data
should be upheld by the regulatory agencies. New
industry standards state that 95% of readings should
be within ±15% of the reference value.

Timing of SMBG

BG is best measured:

• at bedtime, during the night and after the overnight
fast to detect and prevent nocturnal hypoglycemia
and hyperglycemia as well as optimize basal insulin;

• during the day, prior to meals and after food intake
(2 h after a meal). To help determine meal insulin
doses and to show levels of BG in response to the
action profiles of insulin (at anticipated peaks and
troughs of insulin action).

• In association with vigorous exercise (prior to,
during, and several hours after) such that changes
may be made in management of glycemia (56, 61,
62);

• prior to driving a car or operating similar machinery;
• to confirm hypoglycemia and to monitor recovery;

and
• during intercurrent illness to prevent hyperglycemic

crises.

The number and regularity of SMBG should be
individualized depending on:

• availability of equipment;
• type of insulin regimen;
• ability of the child to identify hypoglycemia;
• the cost of SMBG testing in resource-poor settings.

Note: Successful application of intensified diabetes
management with multiple injection therapy or insulin
infusion therapy requires frequent SMBG (four to
six times a day) and regular, frequent review of the
results to identify patterns requiring adjustment to
the diabetes treatment plan. This includes review by
patients and their families in addition to consultation
with the diabetes care team.

Targets

The targets are intended as guidelines (Table 1).
There is little scientific evidence for age-related
glucose targets. Each child should have their targets
individually determined with the goal of achieving a
value as close to normal as possible while avoiding
severe hypoglycemia, as well as frequent mild to
moderate hypoglycemia. In patients beyond partial
remission phase, the rule of thumb is to strive for
at least 50% of BGs in range, e.g., 70–180 mg/dL
(3.9–10 mmol/L), and <10% below the range.

Continuous glucose monitoring (CGM)

Minimally invasive devices are available that measure
subcutaneous interstitial fluid glucose every 1–5 min,
i.e., ‘continuously’. CGM may particularly benefit
those with hypoglycemic unawareness, as the devices
will alarm when glucose is below a specified range or
with rapid rate of fall of glucose (63–68). All devices
allow targets to be set so that an alarm will alert the
wearer to a glucose value projected to fall below or
above the target in 10–30 min, based on the rate of
change of the interstitial glucose (69). CGM can also
identify times of consistent hyperglycemia and times
of increased risk for hypoglycemia presenting a much
more sophisticated approach to home SMBG. Days
with outlier glucose values can also be more readily
identified. With short-term use of sensors, mean BG
values decrease and time spent in the hypoglycemic
range also decreases (70, 71).

Availability of CGM results in real-time to the
patient or adult guardian and immediate corrections
to keep BG in range have been shown to improve
glycemic control more effectively than ‘blinded’ collec-
tion of data analyzed by a health provider at a later time
(72). It is currently recommended that CGM values are
confirmed by standard SMBG for real-time adjust-
ments of insulin dosing, at least early in CGM use.
However, periodic downloads allow the patient and
health provider to review a larger amount of data and
make more comprehensive adjustments. The review of
the CGM results is a very helpful teaching tool for
the effects of food, insulin timing, and exercise on glu-
cose levels. The intermittent, delayed readout has been
helpful in diagnosis and management of hyperglycemia
in special groups of patients, e.g., those with pre-type
1 diabetes (73), monogenic diabetes (74), or cystic
fibrosis-related diabetes (CFRD) (75, 76). Information
gained from CGM studies has provided information
that allows improved recommendations for insulin
management for all individuals with diabetes (77–80),
including those not using continuous sensing devices.

Current limitations of CGM include economic and
behavioral barriers and still imperfect accuracy of some
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sensors that may discourage patients from routine use.
Currently, these devices, while approved for pediatric
use, are expensive and may not be available in many
countries. Insurance coverage is also limited outside
USA. Over time, these devices will likely become more
widely available and, with greater evidence of efficacy,
may be covered by both national and private insur-
ance. While CGM is beneficial in both patients using
MDI and insulin pump users, the latter combination
is more effective (81). Studies of longer-term CGM use
(6 months) have found that, despite benefiting from
similar reduction in HbA1c, children and adolescents
may not be willing to wear a device as often, or for
as prolonged a period of time as is required to result
in consistently improved glucose metabolism (82). Not
surprisingly, the frequency of sensor use predicts the
HbA1c-lowering effect of the sensor (83, 84). These
results indicate additional work is needed to develop
technology that is less intrusive in a teen’s life and to
identify ways to help adolescents adapt to health care
tasks required to maintain optimal, near-normal glu-
cose levels. Early experience, with sensors of less than
perfect accuracy, may discourage some users from
long-term change (85); this is likely to change with the
observed rapid improvement in sensor technology and
patient retraining. With more widespread use of CGM,
decreased BG targets could be safely achieved, improv-
ing outlook for children with diabetes (64, 66, 86).

Technological advances in continuous subcutaneous
insulin infusion (CSII) and CGM has led to the
development of pumps that adjust insulin delivery
based on ambient BG and computerized algorithms
(artificial pancreas). Such devices reduce the risk
of severe and moderate hypoglycemia, particularly
overnight (14, 87–89) and hold promise to reduce
the burden of care and improve glucose control (90).

Monitoring of urinary or blood ketones

• Urine or blood ketones measurement should
be monitored during episodes of uncontrolled
hyperglycemia, insulin deficiency, intercurrent illness
(sick days), and impending ketoacidosis,

◦ especially with abdominal pains, vomiting,
drowsiness, or rapid breathing.

◦ when persistent BG levels >14 mmol/L (250 mg/
dL) are present.

• Blood beta-hydroxybutyrate (β-OHB) determina-
tion has been shown to be more effective than urine
ketone determinations in reducing emergency room
visits, hospitalization rates, and time to recovery
from DKA (91–93).

• Blood β-OHB testing is especially recommended if a
urine sample is difficult to obtain, in a young child,

in insulin pump users (who do not have a long-acting
insulin depot) and in patients with a history of prior
episodes of DKA (94).

The correlation between interquartile range of
capillary blood β-OHB and urinary ketone reading
(95):

• 0.1–0.9 mmol/L blood β-OHB corresponds to + or
‘small’ urinary ketones;

• 0.2–1.8 mmol/L blood β-OHB corresponds to ++
or ‘moderate’ urinary ketones;

• 1.4–5.2 mmol/L blood β-OHB corresponds to +++
or ‘large’ urinary ketones.

Equipment for urinary ketone determination

• Tablets or urine testing strips for ketone testing are
available, which detect increased levels of urinary
acetoacetate (Note: β-OHB not acetoacetate is the
major blood ketone).

Interpretation of urine ketone testing

Moderate or large urinary ketone levels in the presence
of hyperglycemia indicate insulin deficiency and risk for
metabolic decompensation leading to ketoacidosis. The
presence of vomiting or labored breathing with hyper-
glycemia and large urinary ketones must be assumed
to be because of systemic acidosis and requires further
evaluation. Urine ketone testing is less specific for rul-
ing out or diagnosing DKA than blood β-OHB testing.

Equipment for blood ketone determination

• Meters are available for blood β-OHB testing and can
also be used for capillary BG testing (two different
strips).

• Determination of blood β-OHB levels can guide
management, e.g., if oral fluid therapy can be safely
continued or if more intensive treatment is required
to avert severe ketoacidosis (92, 94). There is a close
correlation between venous pH and blood ketone
level (92).

Interpretation of blood β-OHB testing

• <0.6 mmol/L is normal, and no action is needed.
• 0.6–1.5 mmol/L is somewhat elevated, but usually

responds quickly to oral fluids containing carbo-
hydrate if BG is <10 mmol/L (180 mg/dL). Give
additional subcutaneous injection of a rapid-acting
insulin if BG is elevated >10 mmol/L (180 mg/dL).

• 1.5–3.0 mmol/L marks high risk of ketoacidosis,
but usually can be managed with oral fluids and
subcutaneous injection of a rapid-acting insulin.
Diabetes provider or Emergency Department (ED)
should be consulted.
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• >3.0 mmol/L is usually accompanied by acidosis.
Urgent contact with diabetes provider or ED is
needed.

BG levels must be checked before administering
insulin in patients with ketonuria or ketosis. Urine
or blood ketones may be elevated in diabetic patients
as a physiological metabolic response to fasting, low
carbohydrate diets (e.g., Atkins diet), during prolonged
exercise, or pregnancy as well as in gastroenteritis
and in alcohol intoxication. BG levels are normal or
low in these situations, and supplemental insulin is
not indicated. To correct the metabolic ‘starvation’,
electrolyte-containing fluids with low glucose content
(e.g., Gatorade, Pedialyte, and Poweraid) may be used
when BG levels are 150–250 mg/dL (8.5–14 mmol/L).
The sugar content of the fluid should be increased
further when BG is <150 mg/dL (8.5 mmol/L).
However, if β-OHB is >1.0 mmol/L, extra insulin is
needed, once the BG level has risen after giving extra
carbohydrate. See ISPAD guidelines for Sick Day
Management for more detailed advice.

Record keeping of glycemic control

• It is common practice for a monitoring diary,
logbook, spreadsheet, smart BG meter, or app to
be used to record patterns of glycemic control and
adjustments to treatment. This BG information
along with insulin doses should be reviewed by
patients and families regularly.

• The record book or data from the electronic device is
useful at the time of consultation and should contain
time and date of:

◦ BG levels;
◦ insulin dosage;
◦ note of special events affecting glycemic control

(e.g., illness, parties, exercise, menses).
◦ carbohydrate intake (for smart meters);
◦ hypoglycemic episodes, description of severity, and

potential alterations in the usual routine to help
explain the cause for the event; and

◦ episodes of ketonuria/ketonemia.

• Monitoring records should not be used as a judgment
but as a vehicle for discussing the causes of variability
and strategies for improving glycemic control.

• Frequent home review of records by the patient and
their caregivers to identify patterns in glycemic levels
and subsequent adjustment in diabetes management
are required for successful intensified diabetes
management.

• In some instances, especially among teenagers,
maintaining written monitoring records is difficult.

If the family has access to a computer and can
upload the BG monitoring data for review, this may
substitute for a manual record, although details of
management may be lost with this method.

Glycated hemoglobin

• Glucose becomes irreversibly attached to the
molecule of hemoglobin during the life cycle of the
circulating red cell (which is approximately 120 d)
forming glycated hemoglobin (HbA1 or HbA1c).

• HbA1c reflects levels of glycemia over the preceding
4–12 wk, weighted toward the most recent 4 wk.
However, the most recent week is not included
because the most recent glycation is reversible (96).
HbA1c monitoring has been shown to be the most
useful measure in evaluating metabolic control and
is the only measure for which good data are available
in terms of its relationship with later microvascular
and macrovascular complications (1, 2).

The development of the HbA1c assay revolutionized
diabetes management and provided an objective,
long-term measure of glycemia. There is a distinct
relationship between HbA1c and BG (97). However,
there are disparities between the relationship of
HbA1c and average BG with HbA1c assays
(98). Standardization of HbA1c assays and a
better understanding of the relationship of HbA1c
measurements to average BG are a necessary
next step in improving diabetes care (99, 100).
The International Federation of Clinical Chemistry
(IFCC) developed a new reference method that
precisely measures the concentration of glycated
HbA1c only (101, 102). The reference measurement
procedure has been defined as βN1-deoxyfructosyl-
hemoglobin, and the recommended SI measurement
units are mmol/mol (102, 103). IFFC/ADA (American
Diabetes Association)/EASD (European Association
for the Study of Diabetes)/IDF (International Diabetes
Federation) has issued a consensus statement regarding
this standardization process (104). A calculator
for conversion between the DCCT/NGSP (National
Glycohemoglobin Standardization Program) % units
and the IFCC/SI mmol/mol units can be found at
http://www.ngsp.org/convert1.asp

Equipment and facilities

• A normal reference range for non-diabetic children
should be available.

• There should be regular quality control comparisons
with national and DCCT or IFCC standards. It is
recommended that scientific papers provide HbA1c
in both DCCT/NGSP and IFCC/SI numbers.
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• It is preferable that a capillary method for collection
of the child’s blood is available and that the HbA1c
result is available at the time of the medical visit such
that immediate adjustments in management can be
based on the HbA1c level. A rapid method using
a prepared kit has been shown to provide results
comparable to chromatographic methods (105).

• Facilities for the measurement of HbA1c should be
available to all centers caring for young people with
diabetes. Frequency of measurement will depend on
local facilities and availability.

• Every child should have a minimum of four
measurements per year.

HbA1c targets

A target of <7.5% (58 mmol/mol) is recom-
mended for all patients younger than 18 yr
(Table 1). Of note, the American Diabetes Associ-
ation has recently adopted the same target (106),
acknowledging that there is little scientific evidence
for age-related A1c targets within pediatric popula-
tion. This target is intended as an aspirational goal,
with the recognition that vast majority of children and
adolescents currently do not meet it. For instance, in
USA, only 27% of children younger than 13 and 23%
of those between 13 and 19 yr of age meet this goal
(107). On the other hand, in Sweden, 60% of those
younger than 13 and 36% of youth between 13 and
18-yr had A1c < 7.5% in 2013 (108). Each child should
have their targets individually determined with the goal
of achieving a value as close to normal as possible while
avoiding severe hypoglycemia as well as frequent mild
to moderate hypoglycemia.

The goal is to avoid the long-term microvascular
and macrovascular complications of diabetes while
also avoiding sequelae of acute hypoglycemia and
the CNS changes associated with both hypoglycemia
and hyperglycemia. Evidence from the DCCT is
available for adolescents, and recommendations for
younger children can only be determined using these
data and expert opinion. The intensively treated
adolescent cohort of the DCCT achieved a mean
HbA1c of 8.1% (65 mmol/mol), whereas subjects in
the corresponding adult cohort achieved a mean
HbA1c of 7.1% (54 mmol/mol). Subjects in the follow-
up observational study, Epidemiology of Diabetes
Interventions and Complications (EDIC), maintained
an average HbA1c of 7.8–8.2% (62–66 mmol/mol)
regardless of DCCT randomization, during the 30 yr
of follow-up reported to date (13, 109). In addition,
a proportion of children should expect to achieve an
HbA1c within the normal reference range at some
time in the first year after diagnosis (during the partial
remission phase), generally between 1 and 6 months
after diagnosis.

In many studies, there is evidence of an increased
risk for hypoglycemia as the HbA1c decreases (1, 2,
110, 111), but this is not always the case (4, 53, 112),
particularly in recent years with the increasing use of
insulin analogs and CSII (14–17). Glycemic control
and the risk of hypoglycemia may be decreased by
the choice of insulin regimens and the frequency of
BG monitoring. Targets for HbA1c are given with the
expectation that careful attention will be taken to avoid
severe hypoglycemia. Because severe hypoglycemia
is more common when hypoglycemia unawareness
is present, HbA1c targets must be increased when
hypoglycemia unawareness occurs.

• In non-diabetic individuals, counterregulatory sys-
tems are normally activated at a BG level of
3.6–3.9 mmol/L (65–70 mg/dL), whereas symptoms
of hypoglycemia occur at a BG of approximately
<3.2–3.6 mmol/L (58–65 mg/dL) and cognitive dys-
function increases as BG decreases (113, 114).

• Asymptomatic hypoglycemia in persons with
diabetes is defined as the occurrence of a plasma
glucose value <3.9 mmol/L (70 mg/dL) without signs
or symptoms of adrenergic release. BG below
this level reduces sympathoadrenal responses to
subsequent hypoglycemia (115, 116).

• Hypoglycemia unawareness is defined as neurogly-
copenia occurring before autonomic activation and
can be associated with reduced awareness of the
onset of hypoglycemia (117).

• It occurs when a single, or multiple, hypoglycemic
episode(s) lead to a significant decrease in
neurohormonal counterregulatory responses causing
unawareness of hypoglycemia (118).

• Hypoglycemia unawareness is more common in
those who maintain generally lower BG levels (119,
120).

• CGM devices are becoming more available and
may particularly benefit those with hypoglycemic
unawareness, as the devices will alarm when glucose
is below a specified range or with rapid rate of fall of
glucose (63, 64, 87).

• There is evidence that loss of awareness of hypo-
glycemia can be reversed by avoiding hypoglycemia
for 2–3 wk (120, 121), although this is difficult for
very young patients.

• Individuals and families should be instructed in the
signs and symptoms of hypoglycemia unawareness,
and a history for hypoglycemia unawareness should
be taken at every diabetes care visit.

The youngest children (<6 yr) are at increased
risk for adverse neurologic outcomes from severe
hypoglycemia, and because they are unable to self-
identify hypoglycemia, caution in achieving lower
targets for younger children is appropriate (122,
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123). In reality, many pediatric centers find that the
average HbA1c is in fact lowest in this youngest
age-group, reflecting the more complete caregiver
involvement at younger ages. The Diabetes Patienten
Verlaufsdokumentation (DPV) registry reported a
mean HbA1c of 7.4% in contrast to the Type 1 Diabetes
Exchange mean of 8.2% with no difference in reported
severe hypoglycemia suggesting that a target of <7.5%
can be achieved safely in this age-group (124).

As teens approach adulthood, targets similar to those
of the adult population should be approached (<7%),
recognizing that the hormonal alterations and psy-
chological adjustments of adolescence make achieving
these targets difficult. Of all age-groups, adolescents
are currently the farthest from achieving HbA1c <7.5%
(107), reflecting the diabetes mismanagement that fre-
quently accompanies the increased independence in
diabetes care during the adolescent years, as well as
the effect of psychological and hormonal challenges of
adolescence. However, results from the DCCT and the
follow-up EDIC studies document that poor control
for 5–7 yr, which is similar to the duration of puberty,
may have prolonged adverse effects (7, 10–13). While
better insulins, insulin pumps, and glucose monitors are
available today, compared with the DCCT era, adoles-
cents in general may still be unable to achieve a lower
HbA1c levels than the DCCT adolescent average with-
out novel approaches to care in this age-group. Too
ambitious goals may lead to an unwarranted sense
of failure and alienation on part of many teenage
patients.

As diabetes technology improves, especially CGM,
recommended target indicators for glycemic control
will likely decrease to reflect a new balance of benefits
and risks.

Health care priorities

Care providers should be aware that achieving an
HbA1c consistently below the target range without
extensive personal and national health care resources
and outside of a clinical trial structure may be very
difficult. As a benchmark, the most recent mean
HbA1c is 7.8% (62 mmol/mol) in a well-educated EDIC
cohort that has excellent access to the newest diabetes
technology and a mean age of 45 ± 7 yr (13, 109).

Fructosamine and other glycated products

Fructosamine measures the glycation of serum proteins
such as albumin and reflects glycemia over the
preceding 3–4 wk. It is therefore used for the
assessment of shorter periods of control than HbA1c.
Fructosamine or glycated albumin may be useful in
monitoring glucose control over time in individuals
with abnormal red cell survival time. Fructosamine

and other glycated products have been recently
evaluated in terms predicting development of vascular
complications. In DCCT/EDIC, glycated albumin and
HbA1c had similar associations with retinopathy
and nephropathy, which were strengthened when
both measures were considered together. Only
HbA1c was significantly associated with development
of cardiovascular disease (CVD) (125). In the
Atherosclerosis Risk in Communities (ARIC) study
that included adults with type 1 and 2 diabetes,
fructosamine and glycated albumin were associated
with microvascular complications, with prognostic
value comparable to HbA1c (126).
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