Platelet function testing

Prof Christopher M Ward
Northern Blood Research Centre
Royal North Shore Hospital, Sydney

ISTH Bangkok November 2017
Are these platelets in working order??

Platelet roles in haemostasis and inflammation

When should we suspect a platelet problem?

Routine platelet assays – aggregometry

Second-line platelet assays

Point-of-care platelet assays

Genotyping - ?the future of diagnostics
Platelet Activation

- Granule release
- Microparticles shed
- Receptor activation
- Phospholipid exposure

Shape change - pseudopodia

resting

activated
Adhesion

Platelet GPIb-V-IX binds matrix vWF at high shear

Reversible adhesion to exposed extracellular matrix
Activation

Adhesion triggers GPIIb-IIIa activation
Irreversible binding to matrix ligands, shape change and platelet activation
Activated GPIIb-IIIa mediates aggregation via fibrinogen, vWF

Release of granule contents, microparticles recruits additional platelets and triggers coagulation
Stabilisation

Secreted ADP and thromboxane recruit new platelets to thrombus, and stabilise growing thrombus
Haemostatic plug

A plug of degranulated platelets, fibrin mesh plus leukocytes recruited via P-selectin and fibrinogen receptors, and entrapped RBC
When should we suspect platelet function defects?

Unexplained mucocutaneous bleeding, menorrhagia or postop bleeding

Including patients with a diagnosis of ITP or von Willebrand disease! Inherited platelet defects are not as rare as we are taught...

Bleeding/bruising despite normal coagulation tests

Always start with a blood film examination...

Always suspect drugs (including non-prescription items)

Consider contributing pathologies - renal or hepatic impairment, paraproteins, clonal haematological disorders… these tests are more reliable than platelet function assays
Acquired platelet function disorders

- **Drugs affecting platelet function**

- **Systemic disorders**
 - Uraemia
 - Antiplatelet antibodies
 - Cardiopulmonary bypass
 - Liver disease

- **Haematological disorders**
 - Myeloproliferative disorders
 - Myelodysplasia, leukaemia
 - Dysproteinaemias
 - Acquired von Willebrand disease

- **Storage defect** (transfused platelets)
<table>
<thead>
<tr>
<th>Inherited platelet function defects</th>
</tr>
</thead>
</table>
| **Adhesion** | GPIb-vWF | von Willebrand disease
Bernard-Soulier syndrome |
| **Aggregation** | GPIIb-IIIa | Glanzmann thrombasthenia |
| **Activation** | | |
| AA metabolism | | Cyclo-oxygenase def (ASA)
Storage pool deficiency
Quebec platelet disorder
Release defect |
| Granule release | | Wiskott-Aldrich
Scott syndrome |
Diagnostic work up

First step tests
- Blood smear
- Light transmission aggregometry using Limited number of agonists
- Studies assessing platelet granule release
- Flow cytometry – platelet surface glycoproteins

Second step tests
- Light transmission aggregometry using an Expanded agonist panel
- Flow-cytometry
- Clot retraction studies
- Measurement of Serum TxB₂
- Transmission electron microscopy

Third step tests
- Biochemical studies
- Receptor binding assays
- Genetic studies

Practice point

History and examination are important first steps

Is bleeding recent (suggesting an acquired cause) or lifelong?

Ask about specific haemostatic challenges (tooth extraction, surgery, pregnancies)

Establish both prescription and non-prescription medications

Is there a family history – what pattern?

Syndromic abnormalities can help in the diagnosis

- deafness, cataracts, renal failure in MYH9-RD
- facial and vascular anomalies in Velocardiofacial Syndrome

Formal bleeding assessment tool (ISTH-BAT) can help in comparing patients and family members
Optical Aggregometry

Resting pl - turbid

Clumped pl - clear

Optical Transmittance

Time
Platelet Activation: Multiple Pathways to Aggregation

- Thrombin
- Collagen
- TXA₂
- DDAVP
- PAF
- 5HT
- ADP
- GPIIb-IIIa
- Fibrinogen
When should we order aggregometry?

Not a suitable assay for acutely ill inpatients

More suited for outpatient, elective testing – advise patients to avoid NSAIDs, dietary inhibitors and exercise before testing

Requires an experienced laboratory scientist, remains time-consuming

High degree of variability between individuals, including poor responses to adrenaline and low-dose agonists

NO platelet assays are consistent in their results – critical differences in shear and methodology makes assays difficult to compare

Only rare conditions (BSS, GT) can be confidently diagnosed by optical aggregometry, but it remains the mainstay of testing
14-year old girl presenting with lifelong bleeding
Petechiae at birth
Spontaneous bruising, nosebleeds,
Bleeding with tooth eruption
Severe bleeding with first menstrual period - requiring platelet and red cell transfusion

Thrombocytopenia - large platelets on blood film

No family history

Congenital platelet function defect:
Bernard-Soulier syndrome (deficiency of GPIb-IX)
Case 2

3-year old girl with petechiae and bruising at birth
Frequent bruising with minor trauma
Gum bleeding with tooth eruption

Platelet count normal - prolonged bleeding time
Normal coagulation assays (PT, APTT, fibrinogen)

Mother with menorrhagia (von Willebrand disease)
Father normal

Congenital platelet function defect:
Glanzmann thrombasthenia (deficiency of GPIIb-IIIa)
Case 3

58-year old woman with significant postoperative bleeding

Mild thrombocytopenia - normal platelet size
vWD screen normal

PFA-100 closure times prolonged
Coll/Epi >300 sec
Coll/ADP 240 sec
Aggregation with all agonists - **including low-dose ristocetin**

Indicates **enhanced GPIb-vWF binding:**

either **Type 2B vWD**

or **platelet-type vWD**

(activating mutations of GPIb alpha)
Platelet Aggregation Testing

<table>
<thead>
<tr>
<th></th>
<th>ADP 5 umol</th>
<th>Coll 2 ug/L</th>
<th>AA 1 mM</th>
<th>Ristocetin 1.5 mg/mL</th>
<th>Risto (low) 0.5 mg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>vWD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2B vWD</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Agglutn</td>
</tr>
<tr>
<td>Thrombasthenia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Storage pool</td>
<td>1° wave</td>
<td>Abn</td>
<td>N</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Release defect</td>
<td>1° wave</td>
<td>Abn</td>
<td>Abn</td>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>Aspirin</td>
<td>1° wave</td>
<td>Abn</td>
<td>Abn</td>
<td>N</td>
<td>-</td>
</tr>
</tbody>
</table>
Automated (POC) platelet function analysers

PFA-100/200
vWF-dependent, high shear sensitivity for mild defects
replaced skin bleeding time

Verify NOW
POC testing

Multiplate
whole-blood impedance
rapid, multiple agonists

Paniccia et al Vasc Health Risk Mgt 2015
PFA-100™ analyser: a model of primary haemostasis

After Kratzer and Born, developed by von der Goltz
Membrane contains collagen plus adrenaline (Coll/Epi) or collagen plus ADP (Coll/ADP)

Closure time dependent on GPIIb-IIIa, GPIb, vWF not fibrinogen
A fundamental (and unsolved) problem

Platelet function assays are non-physiological:

 e.g. low shear in optical aggregometry
 fibrinogen independent in PFA
 usually measured in absence of RBC, WBC
 neglect contribution of vessel wall (except SBT)

Correlations between different assays are very poor
Aggregometry methods not well standardised
Access to second-line assays is limited
Are these platelets in working order??

Platelet roles in haemostasis and inflammation

When should we suspect a platelet problem?

Routine platelet assays – aggregometry

Second-line platelet assays

Point-of-care platelet assays

Genotyping - the future of diagnostics
60-year old man - easy bruising, epistaxes and excessive bleeding after tooth extraction

Mild thrombocytopenia - platelets appear pale and “grey” on Romanovsky-stained films

Mild impairment of aggregation to collagen and ADP
Other agonist responses normal
Bone marrow shows increase in reticulin
Assays for platelet granule function

<table>
<thead>
<tr>
<th>Method</th>
<th>Assays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow cytometry</td>
<td>CD62P (P-selectin) exposure</td>
</tr>
<tr>
<td></td>
<td>(alpha granules)</td>
</tr>
<tr>
<td></td>
<td>CD63 (lysosomes)</td>
</tr>
<tr>
<td>Whole mount imaging</td>
<td>Mepacrine uptake/release</td>
</tr>
<tr>
<td></td>
<td>(dense granules)</td>
</tr>
<tr>
<td>Electron microscopy</td>
<td>Dense granules</td>
</tr>
<tr>
<td></td>
<td>Both</td>
</tr>
</tbody>
</table>
Flow cytometry of platelet receptors

GPIIb-IIIa (CD41/CD61) Glanzmann’s
GPIb-IX (CD42a/CD42b) Bernard-Soulier
GPVI (CD36) Collagen receptor
GPIa-IIa (CD33/CD49b) Collagen receptor

Activation markers

PAC-1 (fibrinogen mimetic) GPIIb-IIIa
Annexin V Anionic phospholipid
Platelet function tests predicting clinical outcomes

<table>
<thead>
<tr>
<th>Blood flow cessation</th>
<th>ASA</th>
<th>Thienopyr.</th>
<th>GPIIb-IIIa antag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFA-100®</td>
<td>Yes</td>
<td>No</td>
<td>NR</td>
</tr>
</tbody>
</table>

Platelet-platelet aggregation

<table>
<thead>
<tr>
<th></th>
<th>ASA</th>
<th>Thienopyr.</th>
<th>GPIIb-IIIa antag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical aggregometry (LTA)</td>
<td>Yes</td>
<td>Yes</td>
<td>NR</td>
</tr>
<tr>
<td>Impedance aggregometry</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VerifyNow™</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Plateletworks®</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Shear-induced aggregation (SIPA)

<table>
<thead>
<tr>
<th></th>
<th>ASA</th>
<th>Thienopyr.</th>
<th>GPIIb-IIIa antag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact (cone and plate)</td>
<td>Yes</td>
<td>Yes</td>
<td>NR</td>
</tr>
</tbody>
</table>

Clot elasticity

<table>
<thead>
<tr>
<th></th>
<th>ASA</th>
<th>Thienopyr.</th>
<th>GPIIb-IIIa antag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thromboelastogram</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Activation-dependent

<table>
<thead>
<tr>
<th></th>
<th>ASA</th>
<th>Thienopyr.</th>
<th>GPIIb-IIIa antag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow cytometry</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VASP (flow)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Urinary 11-dehydro-TxB2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

after Gurbel et al JACC 2007
When should we test for clopidogrel resistance?

Not routinely in patients after stenting

Although poor response to clopidogrel is associated with more vascular events, increasing the dose of clopidogrel does not solve the problem

Genotyping (CYP variants) only explains part of the variation in response

Use of newer P2Y12 inhibitors (prasugrel, ticagrelor) overcomes variable metabolism

Consider testing of high-risk patients (interventional neuroradiology stents, coronary stent thrombosis) to guide therapy – if platelet inhibition is poor, switch to a newer agent
Candidate gene identification and gene panel design

- **Version 3 → 32 genes**

 - **Receptors**
 - GPVI
 - GP1BA
 - GP1BB
 - GP9
 - F2R (PAR1)
 - GP6
 - ITGA2
 - ITGB1
 - ITGA2B
 - ITGB3
 - CD36
 - GPIV
 - GPIbα
 - GPIbβ
 - GPIa
 - GPI
 - GP1BA
 - MPL
 - TBXA2R
 - PTGS1
 - P2RY12
 - NBEAL2
 - VIPAS39
 - VPS33B
 - NBEAL2
 - SLFN14
 - **Cytoskeleton**
 - ACTN1
 - MYH9
 - TUBB1
 - ANKRD26
 - BCL2L1
 - PRKACG
 - RASGRP2
 - FYB
 - RGS18
 - RGS2
 - **Transcription factors**
 - GFI1B
 - FLI1, ETS1
 - GATA1 and GATA2
 - RUNX1 and ZFPM1
 - NFE2, TPM4, TUBA4A, ETV6
 - **Granule defects/trafficking**
 - F2R (PAR1)
 - CHST14
 - **Undefined**
 - Intracellular
Practice point

How do we treat platelet function defects?

Important to define platelet function as a contributor to clinically significant bleeding

Address role of drugs first – can antiplatelet agents be reduced or ceased?

Modify procedures and surgery when patient has a recognised bleeding tendency

General approaches work for platelet function defects, mild vWD and mild haemophilia:

- DDAVP infusions preop plus tranexamic acid

Platelet transfusions in high-risk procedures or for severe bleeding, may need to be continued

Consider risk of alloimmunisation in BSS, GT patients
Platelet function testing

Patient and family history are important
Consider interfering factors (drugs, diet)

Light transmission aggregometry is the major method used, but requires expertise and planning

Potential role for whole-blood impedance aggregometry in testing response to antiplatelet drugs (and HIT)

Consider inherited platelet defects – genotyping may be the most efficient method as phenotyping is often non-diagnostic