

How to approach

a patient with bleeding?

ISTH Advanced training course, Portugal March 2014

Differential diagnosis

Clinical situations

Clinical situations

Bleeding history

- type and frequency of bleeding
- provoked or unprovoked
- type of treatment
- family history (family tree)
- drug history

Bleeding history

- usually clear in patients with severe bleeding disorders
- in patients with mild/moderate bleeding symptoms a standardized questionnaire is helpful
- standardized scores to quantitate bleeding symptoms

Bleeding history: scoring key

Symptom	0	1	2	3
Epistaxis	no/trivial < 5/y	> 5/y > 10 min	Packing/ cauterization	transfusion, replacement, DDAVP
Cutaneous	no/trivial < 1 cm	> 1 cm w/h trauma	-	-
Minor wounds	no/trivial < 5/y	> 5/y or > 5 min	Surgical hemostasis	Hemostatic treatment
Oral cavity	no	Reported at least 1	Surgical hemostasis	Hemostatic treatment
Gastro- intestinal tract	no	Identified cause	Surgical hemostasis	Hemostatic treatment

Bleeding history: scoring key

Symptom	-1	0	1	2	3
Tooth extraction	No bleeding in 2	None done or no bleeding in 1	reported	Resuturing, repacking or antifibrinolytics	Transfusion, replacement, DDAVP
Surgery	No bleeding in 2	None done or no bleeding in 1	reported	Surgical hemostasis or antifibrinolytics	Transfusion, replacement, DDAVP
Muscle hematoma	-	never	Post- trauma, no therapy	Spontaneous, no therapy	Spontaneous requiring treatment
Hemarthrosis	-	never	Post- trauma, no therapy		Spontaneous
CNS	-	never	-	-	Subdural, intracerebral

Validated questionnaire^{1,2}

- includes 13 bleeding symptoms
- provides a summative score
- mean bleeding scores: in healthy individuals: 0.5 abnormal: ≥ 2

¹Biss TT, et al. J Thromb Haemost 2010; 8: 950

²Biss TT, et al. J Thromb Haemost 2010; 8: 1416

Physical examination

- inspection for any bleeding signs
- joint abnormalities
- lymphadenopathy
- organomegalies
- in children: signs of nonaccidental trauma!

Initial work up (III)

Decision pathway (I)

Take home message (I)

- Thorough personal and family histories are the best screening tests for identifying potential hemostatic problems.
- Properly obtained histories eliminate the need for laboratory screening procedures.

Decision pathway (II)

Screening parameters

CBC, complete blood count; PBF, peripheral blood film; PFA, platelet function analyser; PT, prothrombin time; APTT, activated partial thromboplastin time

Screening parameters

CBC/PBF/PFA

CBC/PBF:

- platelet count, size and morphology
- leukocyte morphology
- other cytopenias

PFA:

- axis subendothelium-vWF-platelet
- platelet-platelet interaction

Platelet function analyser (PFA)

CBC/PBF/PFA: pitfalls

CBC:

pseudothrombocytopenia

PFA:

hematocrit < 35

Pseudothrombocytopenia

- EDTA-induced agglutination of platelets
- w/o clinical relevance

ASH et al. Blood 2011;117:4168-4168

 confirmed by platelet counting using citrate anticoagulated blood

Decision finding (III)

Decision finding (IV)

DD: Platelet disorder

Confirmatory procedures

Isolated thrombocytopenia

Isolated thrombocytopenia

Additional information

- isolated versus combined
- new onset or chronic
- signs of organomegalie
- drug history
- previous infections

Additional information

- isolated versus combined
- new onset or chronic
- no signs of organomegalie
- no drug intake
- previous infections
- immune thrombocytopenia suspected

Decision finding (VI)

Confirmatory procedures

AB0 blood group vWF antigen Ristocetin Cofactor collagen binding assay FVIII testing

Confirmatory procedures

AB0 blood group
vWF antigen
Ristocetin Cofactor
collagen binding assay
FVIII testing

genetic testing vWF-multimeric analysis propeptide analysis

Screening parameters

PT versus APTT

DD: single factor deficiencies

Screening parameters

Hemophilia A pattern

APTT versus FVIII (one stage) duniversitäts klinikumbonn

Screening parameters

Confirmatory procedures

DD: single factor deficiencies

Patients: initial screens

Patient	Platelet count (/µl)	PT (s)	APTT (s)	FXIII (%)
#1	234,000	61	> 150	89
#2	172,000	11	> 150	91

DD: single factor deficiencies

Patients: single factor analysis duniversitäts linikumbonn

Patient	FII (%)	FX (%)	FV (%)	FIX (%)	FVIII (%)	FXI (%)
#1	87	2	89	-	-	-
#2	-	-	-	83	<1	91

Suspected diagnosis:

Patient #1: FX deficiency

Patient #2: FVIII deficiency (severe hemophilia)

Patient #1: 68-y old male

- severe hematoma after minimal trauma
- he reported no personal or familial history of bleeding

Patient #2: 56-y old male

 severe postoperative bleeding after hernia operation

haematothorax after central venous support

massive transfusion
 24 RBC, 32 FFP
 4 platelet conc.

referred to Bonn via helicopter

Acquired hemophilia

- large hematomas
- extensive ecchymoses
- severe mucosal bleeding
- gastrointestinal bleeding
- gross hematuria
- w/o a bleeding history

Laboratory approach

Inhibitor screen

- patient plasma is mixed with increasing concentrations of normal human plasma
- clotting factor activity measured after incubation for 1 and 2 hours at 37° C

Inhibitor screen: negative

Inhibitor screen: positive

Patients: inhibitor screen

Patient	FX (%)	FV (%)	FVIII (%)	Mixing test
#1	2	89	-	neg
#2	-	-	< 1	pos

Laboratory approach

Bethesda assay

- serial dilutions of patient plasma are incubated for two hours at 37° C with normal human plasma
- factor activity is then measured using a clotting assay
- 1 Bethesda unit (BU) is defined to reduce the activity of a clotting factor in normal human plasma to 50%

Bethesda units (BU)

Patients: Bethesda units (BU) universitäts (BU) klinikumbonn

Patient	FX (%)	FV (%)	FVIII (%)	Mixing test	BU
#1	2	89	-	neg	-
#2	-	-	< 1	pos	37

Patient #2: 56-y old male

- severe postoperative bleeding after hernia operation
- haematothorax after central venous support

acquired hemophilia A caused by high titer FVIII-autoantibodies

Acquired inhibitors: frequencies duniversitäts klinikumbonn

Molecular target	Estimated frequency
Factor VIII	1 – 1.5 x 10 ⁶ in non-hemophiliacs
Factor II	few case reports only
Factor V	~ 105 cases described
Factors VII, IX, X,	few case reports only
Factor XIII	~ 20 cases described

Patients: inhibitor screen

Patient	FX (%)	FV (%)	FVIII (%)	Mixing test
#1	2	89	-	neg
#2	-	-	< 1	pos

Acquired inhibitors

- The majority of acquired inhibitors are antibodies that either inhibit the activity or

increase the clearance of a clotting factor.

Laboratory approach

Acquired inhibitor: ELISA

 α -IgG/M

purified clotting factor

microtiter plate

Patients: laboratory data

Patient	FX (%)	FV (%)	Mixing test	BU	APA	ELISA
#1	2	89	neg	-	neg	neg
#2	-	-	pos	37	neg	-

Patient #1: 68-y old male

- severe hematoma after minimal trauma
- skin biopsy reveals amyloidosis
- amyloid-associated FX-deficiency

Screening parameters

Extended screening

α₂-antiplasmin
platelet function testing/vWF-testing
vascular bleeding disorder
repeat testing during active bleeding

Clinical decision finding

extended screening w/o abnormal results

suspected diagnosis: bleeding disorder of unknown reason

Take home message (II)

- If relatively simple screening procedures are used, the vast majority of hemorrhagic problems can be identified.
- Confirmatory tests are subsequently used to establish an appropriate differential diagnosis.

Clinical situations

Acute Bleeding: Grading

- Life-threatening (WHO grade 4)
 Trauma or critical organ bleeding
- Severe (WHO grade 3)
 gross blood loss, requires transfusion
- Mild blood loss but clinically significant (WHO grade 2)

TIC-cascade (I)

TIC-cascade (II)

TIC-cascade (III)

TIC: APC-formation

C = control, T = trauma, H = hemorrhage, TH = trauma + hemorrhage

TIC-cascade (IV)

t-PA-secretion

t-PA: tissue-type plasminogen activator

TIC-cascade (V)

TIC: treatment options

TIC: treatment options

Tranexamic acid (TXA)

CRASH-2 trial

Study population: 20,211 trauma patients

Treatment group: 1 g TXA bolus/1 g over 8 h

Control group: Placebo

All-cause mortality: 14.5% vs. 16% (p = 0.0035)

Bleeding related

mortality: 4.9% vs. 5.7%

¹CRASH-2 trial. Lancet 2010; 376: 23-32, TXA: tranexamic acid

TIC: treatment triggers

- 1. Clinical probability of TIC
- 1. Laboratory values

High TIC risk: indicators*

- hemorrhagic shock on admission
- pelvic fracture/multiple bone fractures
- rupture of liver/spleen/positive FAST
- brain damage
- BE < -6
- use of antithrombotic drugs

^{*} TASH-Score, German Society of Trauma Surgeons

TIC: hemostatic support (I)

¹CRASH-2 trial. Lancet 2010; 376: 23-32, TXA: tranexamic acid

TIC: hemostatic support (II)

Parameter-adjusted treatment

Fibrinogen:

- < 1.5 g/dl with ongoing blood loss/ICB</p>
- < 0.5 g/dl
- → 3 g fibrinogen concentrate

Prothrombin time:

- > 25s with ongoing blood loss/ICB
- < 50s
- → 50 IE/kg b.w. PCC

ICB, intracranial bleeding;

Parameter-adjusted treatment

- → platelet transfusion, if platelet count:
- < 100.000/µl with ongoing bleeding/ICB</p>
- < 50.000/µl with coagulopathy
- < 30.000/µl

ICB, intracranial bleeding

Parameter-adjusted treatment

Signs of hyperfibrinolysis

- → bolus injection of 1 g TXA followed by 20 mg/kg b.w./h
- → 3 g fibrinogen concentrate

TEG: fibrinolysis

Take home message (III)

- TIC is frequent in severe trauma patients.
- TIC is caused by consumption and loss of coagulation factors and platelets and by secondary hyperfibrinolysis and APC formation.
- TIC can be successfully treated by TXA treatment and transfusion of blood products including fibrinogen, fresh frozen plasma and platelets.

Acute Bleeding: Grading

- Life-threatening (WHO grade 4)
 Trauma or critical organ bleeding
- Severe (WHO grade 3)
 gross blood loss, requires transfusion
- Mild blood loss but clinically significant (WHO grade 2)

Critical organ bleeding

APTT, activated partial thromboplastin time; INR, international normalized ratio; TT, thrombin time; BT, batroxabin time; aFXa, anti-FXa-activity; TTI, thrombin inhibition time

Anticoagulant screen

Parameter	Resu	Reference range			
	LMWH/ Fonda- parinux	Argatroban Bivalirudin Dabigatran	VKA	Rivaroxaban Apixaban	
APTT	normal	prolonged	prolonged	prolonged	< 35s
INR	normal	increased	increased	increased	< 1,2
TT	normal	prolonged	normal	normal	< 21 s
ВТ	normal	normal	normal	normal	< 21 s
		not	not		
aFXa	detectable	detectable	detectable	detectable	< 0,1
	no		no	no	
TTI	inhibition	inhibition	inhibition	inhibition	

Anticoagulant screen

Parameter	Resu	Reference range			
	LMWH/ Fonda- parinux	Argatroban Bivalirudin Dabigatran	VKA	Rivaroxaban Apixaban	
APTT	normal	prolonged	prolonged	prolonged	< 35s
INR	normal	increased	increased	increased	< 1,2
TT	normal	prolonged	normal	normal	< 21 s
ВТ	normal	normal	normal	normal	< 21 s
		not	not		
aFXa	detectable	detectable	detectable	detectable	< 0,1
TTI	no inhibition	inhibition	no inhibition	no inhibition	

Anticoagulant screen

Parameter	Resu	Reference range			
	LMWH/ Fonda- parinux	Argatroban Bivalirudin Dabigatran	VKA	Rivaroxaban Apixaban	
APTT	normal	prolonged	prolonged	prolonged	< 35s
INR	normal	increased	increased	increased	< 1,2
TT	normal	prolonged	normal	normal	< 21 s
ВТ	normal	normal	normal	normal	< 21 s
		not	not		
aFXa	detectable	detectable	detectable	detectable	< 0,1
TTI	no inhibition	inhibition	no inhibition	no inhibition	

Take home message (IV)

 If six relatively simple screening procedures are used, patients showing clinically relevant plasma levels of anticoagulants can be identified.