Kentucky River Lock and Dam Projects

Daniel A. Gilbert, PE April 29, 2011 KSPE Annual Conv.

One Team. Infinite Solutions.

Presentation Overview

- General Information
- History
- Existing Conditions
- Recent Projects
- Why Cell Dams?
- Dam Construction
- Lessons Learned

Navigation

- Locks 1 3 Restricted Use
- Lock 4 Seasonal Operation
- Locks 5–9 and 11-14 Cutoff Walls

Ownership and Operation

ESTABLISHED IN 1986

- KRA Established in 1986
- Lock and Dams 1-4
 - USACE Owned
 - KRA Leased and Maintained
- Lock and Dams 5-14
 - KRA Owned and Maintained

Kentucky River Users

Tier I

- Over 780,000 Households
- 2¢ per 1,000 Gallons
- Fund KRA Base Operations

Tier II

- 11 Municipal Water Suppliers
- 9 Business Entities
- 6¢ per 1,000 Gallons
- Fund Capital Projects

Kentucky River Lock and Dam History

- Original Construction 1836 to 1917
- 19th Century
 Commerce

Lock Wall Construction

- Locks 1 8
 - Masonry Construction

Lock Wall Construction

Locks 9 – 14ConcreteConstruction

Dam Construction

- Dams 1 8
 - Rock-filled Timber Crib

Dam Construction

Dams 9 – 14ConcreteConstruction

Typical Dam Repairs

Concrete Capping

Typical Dam Repairs

Concrete Capping

Typical Dam Repairs

Sheet Pile Facing

Sheet Piling

Timber Cribbing

Cutoff Walls

Existing Conditions

- 2007 Assessment of Lock and Dams
- Identify Deficiencies
 - Above and Below Water Inspections
 - Historical Review
- Prioritize Repairs
 - Risk-based Analysis
- Conceptual Designs

Assessment Findings

- Deficiencies Observed at each Facility
- Facilities Have Outlived Design Service Life
- Highest Priority Elements
 - Far Abutments
 - Dams
 - Upper Lock Gates
 - Downstream Training Walls
- No Imminent Failures Indicated by Observations

Final Report
Assessment Study for Kentucky
River
Dam Nos. 1-8 and 11-14
Various Counties, Kentucky

Prepared for: Kentucky River Authority Frankfort, Kentucky

October 16, 2008

Typical Deficiencies

- Lack of Derrick Stone
- Downstream Toe Undermining
- Timber Crib Section Loss
- Missing Apron Sections
- Signs of Instability in Walls
- Concrete in Poor Condition
- Deteriorating Sheet Piling
- Deteriorating Lock Gates

Recent Lock and Dam Projects

- Lock and Dam No. 9
 - \$14.7M
 - **-** 2007 **-** 2010
- Lock and Dam No. 3
 - \$13.8M
 - 2009 2011

Key People

Owner (Finance and Admin. Cabinet)

Contractors

LD9

LD3

Using Agency

Engineer

LD9 - Existing Conditions

- Structures do not meet Current Stability Criteria
- Long Term Prognosis is Poor

LD9 – Project Design Goals

- Meet Current Design Criteria
- 50 Year Design Life
- Preserve Lock Walls
- Preserve Hydraulic Signature
- Accommodate Future Crest Raise
- Accommodate Pool 8 Mining
- Include Water Conveyance System (WCS)

Crest Raise, Pool Mining, and WCS

Crest Raise, Pool Mining, and WCS

Crest Raise, Pool Mining, and WCS

Siphon Pipes over Dam - 3 pipes @ approx. 23 cfs (max) each

LD9 Pre-Construction Conditions

Dike

Auxiliary Dam

Madison Co.

Photo from GRW Aerial Surveys (2001)

LD9 – Completed Construction

LD3 - Existing Conditions

- Absence of Derrick Stone
- Downstream Undermining of Spillway
- Missing or Damaged Sections of Apron
- Partial Collapse of Stone Abutment
- Concrete in Poor Condition
- Structures do not meet Current Stability Criteria
- Long Term Prognosis is Poor

LD3 – Project Design Goals

- Meet Current Design Criteria
- 50 Year Design Life
- Preserve Lock for Operation
- Preserve Hydraulic Signature
- Accommodate Future Crest Raise
- Rehabilitate Lock Nos. 3 & 4 (Design)

LD3 – Pre-Construction Conditions

LD3 – Construction Plan

LD3 – Current Construction Progress

Upcoming Projects

- Dam No. 8
 - 2011 2014
- Lock Nos. 1-4- 2012

Why Cell Dams?

- Similar to Cofferdams and Mooring Cells ("In-the-Wet")
- Filled with Concrete
- Simple, Flexible Construction
- Commonly Used on Run of the River Dams

Green River

Muskingum River

Why Cell Dams?

River Volatility

- Pool can quickly rise and fall 5 to 10 feet several times per year.
- Contractor Risk Driver
- Strong Consideration in Approach Evaluation
- Affects Effective Height of Cofferdams

Why Cell Dams?

- Cofferdams
 - Staged Construction
 - In-depth Analysis
 - Effective Height
 - Maintain Dewatered Condition

Volatility of the Kentucky River - Example

- At Lock and Dam 9, typically 0-2 feet of water going over the dam.
- May 2, 2010, 8AM = 5.6 ft over the dam
- May 2, 8PM = 24.6 ft over the dam
- May 3, 8AM = River crested at 31 ft over the dam

Why Cell Dams?

- Dewatering
 - Difficulties with Karst Geology
 - Feasible?
 - Undetermined prior to Construction
 - May Need Grouting Program
 - Increased Risks to Contractor
 - Increased Risks to Owner
 - Increased Costs
- In-the-Wet Approach Avoids Need to Dewater

Dewatering at LD9

Foundation Cell Inspection for LD9

Why Cell Dams?

Advantages

- Reduced construction footprint
- Reduced environmental impacts
- Cost and schedule savings
- Reduced risks to contractor
- Reduced risks to owner
- Accommodate irregular rocklines
- Reduced karst geology risks
- Suitable for volatile rivers

Disadvantages

- Underwater diver work
- More difficult quality assurance
- Dam geometry not optimized
- Underwater concrete placement

Dam Construction

- Concrete-filled Cellular Sheet
 Pile Structures w/ Connecting
 Arc Cells
- Pre-Dredge
- Set Template
- Drive Sheet Piling
- Cell Cleanout
- Concrete
- REPEAT

Sheet Pile Template

Sheet Piling Installation

Cell Cleanout - Dredging

A Bit of History

A Bit of History

Cell Cleanout - Airlifting

Cell Cleanout - Diver Work

Contractor Risks – High Water Events

Cell Infill Placement – "In-the-Wet"

Gravity Method

Pump Method

Tremie Concrete Placement

Tremie Concrete Placement

Bulging Flow Pattern

Layered Flow Pattern

Concrete Laitance

Underwater Concreting

Couple of Things to Consider.....

- Concrete Mix & Admixtures
- Placement Plan
 - Gravity Method
 - Pump Method
- Rate of Rise
- Retardation Time
- Tremie Layout/Sequencing
- QA/QC
- Demonstration Placement

Requires Detailed Concreting Plans!

Cap Concrete Placement

Abutments/Tie-ins

"The hard parts"

- External Soil Loads
- Account for Scour
- Geometric Constraints / Interaction with other Structures
- Risk of Flanking (During Construction and Long Term)
- Seepage & Piping (Around or Through)
- Pareto Principal (80-20 Rule) in Effect During Design

- Construction Delays
 - How Are They Evaluated/Regulated?
 - River Elevations
 - Set Workdays
 - Realistic Construction Schedules
 - Take into Account Historical Hydrographs
- Damages from Elevated River Conditions
- Rockline Adjustments
- Unit Prices for Potential Additional Work Items

- Detailed Submittal Process
 - PE Stamp for All Calculations
 - Assures Contractor has Specific Approach
 - Engineer/Owner Opportunity to Review

- Construction Sequence/Restrictions
 - Protect Pool
 - Spell Out Very Clearly

- Concreting
 - Demonstration Placements
 - Concrete Retardation Durations
 - "Work Out the Bugs"
 - Prepare Contract Documents for Gravity and Direct Pumping Concrete Placement Methods
 - QA/QC Measures
 - Confirmation Coring
 - Good Documentation
 - Investigate if Questions Exist

Questions?

References

- Leiand R. Johnson, "The Falls City Engineers", 1984
- "Assessment of Underwater Concrete Technologies for In-the-Wet Construction of Navigation Structures", USACE, 1999.
- KRA Website
 - http://finance.ky.gov/ourcabinet/attachedagencies/kra.htm
- "Assessment Study for KY River Dam Nos. 1-8 and 10-14", Stantec, 2007.
- Technical Report INP-SL-1, USACE, September 1999.

