Superhero or Superzero?
Vancomycin vs. Linezolid for MRSA Pneumonia

Brandon Dionne, PharmD, BCPS, AAHIVP
Assistant Clinical Professor
Northeastern University

Seth Housman, PharmD, MPA
Clinical Assistant Professor
Western New England University

Disclosures

• BD and SH have nothing to disclose
Learning Objectives

1. Review appropriate use of MRSA-active agents in pneumonia
2. Compare the evidence for vancomycin and linezolid in MRSA pneumonia
3. Discuss potential implications of selecting a preferential agent for MRSA pneumonia

MRSA Coverage in Pneumonia

• 2016 IDSA/ATS HAP/VAP Guidelines recommend vancomycin or linezolid
 • Previous IV antibiotics within 90 days
 • Septic shock or ventilatory support required due to pneumonia
 • MRSA prevalence >10-20% in unit/institution
 • ARDS preceding VAP
 • Acute renal replacement therapy preceding VAP
• Recommended duration of 7 days
MRSA in Nosocomial Pneumonia

• *S. aureus* responsible for 31.9-36.5% of HAP/VAP in SENTRY surveillance program
 • ~50% were methicillin-resistant
• MRSA colonization
 • MRSA nasal swabs have 99% negative predictive value for MRSA pneumonia
 • Positive predictive value only around 37%

We Need YOUR Help!

Use the Kahoot! App or go to www.kahoot.it to play along!

- Enter the Game PIN
- Choose a screen name
- Choose your superhero!
Here it comes to save the day: Mighty Vancomycin

<table>
<thead>
<tr>
<th></th>
<th>Rubinstein et al.</th>
<th>Wunderink et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vancomycin</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Clinical Cure</td>
<td>68.1%</td>
<td>66.4%</td>
</tr>
<tr>
<td>Microbiologic Cure</td>
<td>71.8%</td>
<td>67.9%</td>
</tr>
<tr>
<td>Adverse Events</td>
<td>33.7%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Linezolid non-inferior to vancomycin</td>
<td>Linezolid non-inferior to vancomycin</td>
</tr>
</tbody>
</table>

Vancomycin vs. Linezolid Meta-analysis

- 9 randomized trials with direct comparison in nosocomial pneumonia
- Most used a fixed dose of vancomycin 1 g IV q12h
- Many did not allow monitoring and dose adjustment of vancomycin

Meta-analysis – Clinical Cure

Hospital-Acquired Pneumonia: Linezolid vs. Vancomycin: Clinical Response

<table>
<thead>
<tr>
<th>Group by Study Design</th>
<th>Study name</th>
<th>Statistics for each study</th>
<th>Mortality / Total</th>
<th>Risk difference and 90% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Risk difference</td>
<td>Lower limit</td>
<td>Upper limit</td>
</tr>
<tr>
<td>RCT Double-blinded</td>
<td>Lublinen E 2005</td>
<td>-0.049</td>
<td>0.121</td>
<td>0.549</td>
</tr>
<tr>
<td>RCT Double-blinded</td>
<td>Vancuvin R 2003</td>
<td>-0.012</td>
<td>0.050</td>
<td>0.749</td>
</tr>
<tr>
<td>RCT Double-blinded</td>
<td>Jakob C 2000</td>
<td>-0.016</td>
<td>0.051</td>
<td>0.209</td>
</tr>
<tr>
<td>RCT Double-blinded</td>
<td>Lin D 2006</td>
<td>-0.014</td>
<td>0.158</td>
<td>0.848</td>
</tr>
<tr>
<td>RCT Double-blinded</td>
<td>Vancuvin R 2012</td>
<td>0.012</td>
<td>0.050</td>
<td>0.749</td>
</tr>
<tr>
<td>RCT Double-blinded</td>
<td>Vancuvin R 2012</td>
<td>0.017</td>
<td>0.154</td>
<td>0.305</td>
</tr>
<tr>
<td>RCT Open-label</td>
<td>Rever C 2002</td>
<td>0.005</td>
<td>0.141</td>
<td>0.159</td>
</tr>
<tr>
<td>RCT Open-label</td>
<td>Kappen S 2003</td>
<td>-0.011</td>
<td>0.151</td>
<td>0.241</td>
</tr>
<tr>
<td>RCT Open-label</td>
<td>Kohn S 2007</td>
<td>-0.006</td>
<td>0.106</td>
<td>0.360</td>
</tr>
<tr>
<td>RCT Open-label</td>
<td>Vancuvin R 2008</td>
<td>0.002</td>
<td>0.145</td>
<td>0.373</td>
</tr>
<tr>
<td>RCT Open-label</td>
<td>Vancuvin R 2008</td>
<td>-0.004</td>
<td>0.096</td>
<td>0.357</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td>0.009</td>
<td>0.031</td>
<td>0.430</td>
</tr>
</tbody>
</table>

*Intention-to-Treat Population: Z=4.152; p=4.469; Heterogeneity: Q=6.378; P=0.661; I²=0%.

Meta-analysis – Microbiologic Cure

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Study Name</th>
<th>Risk Difference</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>p Value</th>
<th>Micro Eradication / Total</th>
<th>Risk Difference and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Double-blind</td>
<td>Rubinstein E 2001</td>
<td>-0.039</td>
<td>-0.223</td>
<td>0.150</td>
<td>0.565</td>
<td>36 / 53</td>
<td>28 / 39</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Wunderink R 2003</td>
<td>0.037</td>
<td>-0.065</td>
<td>0.242</td>
<td>0.273</td>
<td>47 / 76</td>
<td>42 / 79</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Lin D 2005</td>
<td>0.237</td>
<td>-0.018</td>
<td>0.492</td>
<td>0.068</td>
<td>17 / 22</td>
<td>15 / 28</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Wunderink R 2012</td>
<td>0.045</td>
<td>-0.095</td>
<td>0.183</td>
<td>0.537</td>
<td>35 / 97</td>
<td>26 / 82</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Siwek D 2002</td>
<td>0.062</td>
<td>-0.025</td>
<td>0.149</td>
<td>0.181</td>
<td>135 / 248</td>
<td>111 / 228</td>
</tr>
<tr>
<td>Randomized Open-label</td>
<td>Komo S 2007</td>
<td>0.000</td>
<td>-0.242</td>
<td>0.242</td>
<td>1.000</td>
<td>9 / 12</td>
<td>12 / 16</td>
</tr>
<tr>
<td>Randomized Open-label</td>
<td>Wunderink R 2005</td>
<td>0.092</td>
<td>-0.211</td>
<td>0.394</td>
<td>0.553</td>
<td>13 / 23</td>
<td>9 / 19</td>
</tr>
<tr>
<td>Randomized Open-label</td>
<td>0.020</td>
<td>-0.140</td>
<td>0.201</td>
<td>0.727</td>
<td>35 / 70</td>
<td>28 / 54</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>0.056</td>
<td>-0.022</td>
<td>0.133</td>
<td>0.159</td>
<td>170 / 315</td>
<td>139 / 282</td>
<td></td>
</tr>
</tbody>
</table>

*Microbiologic Evaluable Per-Protocol Population, Z=1.406; P=0.159; Heterogeneity: G2=3.504; P=0.757; I2=40%.

Meta-analysis – Mortality

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Study Name</th>
<th>Risk Difference</th>
<th>Lower Limit</th>
<th>Upper Limit</th>
<th>p Value</th>
<th>Mortality / Total</th>
<th>Risk Difference and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized Double-blind</td>
<td>Rubinstein E 2001</td>
<td>-0.077</td>
<td>-0.157</td>
<td>0.004</td>
<td>0.363</td>
<td>36 / 200</td>
<td>49 / 192</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Wunderink R 2003</td>
<td>0.030</td>
<td>-0.086</td>
<td>0.183</td>
<td>0.363</td>
<td>64 / 331</td>
<td>61 / 202</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Jansen B 2006</td>
<td>0.018</td>
<td>-0.036</td>
<td>0.091</td>
<td>0.310</td>
<td>17 / 309</td>
<td>23 / 329</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Lin D 2005</td>
<td>0.042</td>
<td>-0.013</td>
<td>0.118</td>
<td>0.553</td>
<td>13 / 71</td>
<td>21 / 71</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Wunderink R 2012</td>
<td>0.011</td>
<td>-0.056</td>
<td>0.023</td>
<td>0.318</td>
<td>54 / 397</td>
<td>100 / 387</td>
</tr>
<tr>
<td>Randomized Double-blind</td>
<td>Siwek D 2002</td>
<td>0.051</td>
<td>-0.042</td>
<td>0.142</td>
<td>0.362</td>
<td>246 / 1606</td>
<td>236 / 1404</td>
</tr>
<tr>
<td>Randomized Open-label</td>
<td>Komo S 2007</td>
<td>0.031</td>
<td>-0.016</td>
<td>0.077</td>
<td>0.363</td>
<td>12 / 215</td>
<td>3 / 101</td>
</tr>
<tr>
<td>Randomized Open-label</td>
<td>Wunderink R 2005</td>
<td>0.020</td>
<td>-0.010</td>
<td>0.040</td>
<td>0.545</td>
<td>4 / 75</td>
<td>6 / 74</td>
</tr>
<tr>
<td>Randomized Open-label</td>
<td>0.019</td>
<td>-0.004</td>
<td>0.002</td>
<td>0.035</td>
<td>78 / 820</td>
<td>49 / 446</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>-0.006</td>
<td>-0.023</td>
<td>0.011</td>
<td>0.082</td>
<td>246 / 2528</td>
<td>236 / 1600</td>
<td></td>
</tr>
</tbody>
</table>

*Intention-to-Treat Population, Z=0.019; P=0.982; Heterogeneity: G2=1.651; P=0.232; I2=12.5%.

Vancomycin vs. Linezolid for MRSA Pneumonia

Hospital-Acquired Pneumonia: Linezolid vs. Vancomycin: Microbiological Eradication

Hospital-Acquired Pneumonia: Linezolid vs. Vancomycin: Mortality
Problems with Linezolid

- Outbreaks of linezolid-resistant *S. aureus* have been reported
- Higher drug costs
- Drug interactions
- Adverse effects
- Bacteriostatic

Linezolid Adverse Effects

- Neurotoxicity
 - Peripheral neuropathy is potentially irreversible
- Serotonin syndrome
- Gastrointestinal symptoms
 - Higher incidence in linezolid group in the meta-analysis
- Thrombocytopenia
Vancomycin vs. Linezolid for MRSA Pneumonia

Meta-analysis – Thrombocytopenia

Why Should Vancomycin Be Preferred?

- Years of experience and still very little resistance
- Standard of care at most institutions
- Preserve activity of alternative agents
- Significantly lower drug cost
- Fewer drug interactions
- Potentially lower incidence of neurotoxicity and thrombocytopenia
Linezolid to the rescue!

Linezolid for Pneumonia

- Rubinstein, 2001
 - Linezolid versus vancomycin for nosocomial pneumonia
 - Clinical cure rates similar; 66.4 vs 68.1%, P= 0.79, 95% CI -14.9 to 11.3
- Wunderink, 2003
 - Continuation study for nosocomial pneumonia
 - Clinical cure rates similar for ITT; 52.7 vs 52.2%, P=NS, 95% CI -8.3 to 9.2
- Wunderick, 2003
 - Linezolid versus vancomycin for MRSA pneumonia (subset analysis)
 - Clinical cure rates favored linezolid; 59 vs 35.5%, P=0.01, 95% CI 1.3 to 8.3
ZEPHyR Trial

- Randomized, double blind, multi-center controlled trial
- Linezolid 600 mg IV q12H vs. Vancomycin 15 mg/kg q12H

- Improving on the past
 - Vancomycin monitoring
 - Reducing duration of empiric therapy

- Clinical and Microbiologic Outcomes

ZEPHyr Trial – Clinical Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Linezolid</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP at EOT</td>
<td>83.3%</td>
<td>69.9%</td>
</tr>
<tr>
<td>mITT at EOT</td>
<td>80.1%</td>
<td>67.8%</td>
</tr>
<tr>
<td>PP at EOS</td>
<td>57.6%</td>
<td>46.6%</td>
</tr>
<tr>
<td>mITT at EOS</td>
<td>54.8%</td>
<td>44.9%</td>
</tr>
</tbody>
</table>

95% CI 4.9 to 22.0 95% CI 4.0 to 20.7 95% CI 0.5 to 21.6 95% CI 0.1 to 19.8

P = 0.042
ZEPHyr Trial – Microbiologic Outcomes

<table>
<thead>
<tr>
<th>Patients with Respiratory Cultures</th>
<th>Linezolid</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOS</td>
<td>61.4</td>
<td>50</td>
</tr>
<tr>
<td>EOT</td>
<td>82.6</td>
<td>54.1</td>
</tr>
</tbody>
</table>

IMPACT-HAP

- Multi-center, retrospective, observational study of MRSA VAP
- Adult patients admitted to ICU with VAP were included
- Outcomes
 - Clinical success
 - Mortality
 - Adverse Events
IMPACT-HAP Outcomes

- Clinical Success
 - RR 1.24, P= 0.018, 95% CI 1.06 to 1.32
- Mortality
 - 9.9 vs 9.2%, P=1.00
- Adverse Events
 - Thrombocytopenia (P= NS)
 - Anemia (P= NS)
 - Nephrotoxicity (P= NS)

And a little more recent...

- Tong, 2016
 - Retrospective, cohort study comparing linezolid versus vancomycin for known or suspected MRSA pneumonia
 - Change in preferred agent from vancomycin to linezolid
 - Primary outcome was antimicrobial utilization
Tong, 2016

- Mortality outcome
 - 10% vs 19.5%, P = 0.046
- Hospital LOS (median days)
 - 10 vs 12, P = 0.318
- Thrombocytopenia
 - 5.3 vs 3.9%, P = 0.754
- Nephrotoxicity
 - 3.3% vs 8.9%, P = 0.098

- Mortality (Vancomycin vs Linezolid)
 - OR 1.52 95% CI 1.02 to 2.28, P = 0.04

Linezolid Convenience

- Bioavailability ~100%
- 600 mg PO/IV q12H
- Improved penetration

- Murine Pneumonia model
 - Assessed humanized ELF concentrations
 - Vancomycin AUC:MIC = 104
 - Linezolid AUC:MIC = 228
 - Tedizolid AUC:MIC = 222
Budget buster?

- Incidence is low
- Cost is decreasing
- Tong, 2016
 - Total hospital charges no different

Hospital Charges for MRSA Pneumonia

<table>
<thead>
<tr>
<th></th>
<th>Linezolid</th>
<th>Vancomycin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hospital Charges ($)</td>
<td>25900</td>
<td>32100</td>
</tr>
</tbody>
</table>

Vancomycin Returns
ZEPHyr Trial – Patients

- 1184 patients randomized (ITT population)
 - 484 (41%) had confirmed MRSA pneumonia (mITT population)
 - 339 (28%) included in per-protocol analysis
- Vancomycin patients had higher rates of:
 - Mechanical ventilation – 73.9% vs 66.9% (p=0.15)
 - Bacteremia – 10.8% vs 5.2% (p=0.039)
 - Kidney disease – 36.9% vs 27.9% (p=0.07)

ZEPHyr Trial – Outcomes

- Vancomycin levels were not optimized
 - Median on day 3 was 12.3 mg/L (IQR 7.6-17 mg/L)
 - Median on day 6 was 14.7 mg/L (IQR 9.5-19.9 mg/L)
- Pfizer had the ability to override clinical outcome decisions
- No differences in 60-day mortality
 - 15.7% for linezolid and 17.0% for vancomycin in ITT analysis
 - 28.1% for linezolid and 26.3% for vancomycin in mITT analysis
IMPACT-HAP

- Average vancomycin concentration at day 3 was 13 mg/L
- All isolates in the vancomycin arm had a vancomycin MIC >1
 - 72% with an MIC of 1.5
 - 28% with an MIC of 2

<table>
<thead>
<tr>
<th></th>
<th>Linezolid</th>
<th>Vancomycin</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-day mortality</td>
<td>9.9%</td>
<td>9.2%</td>
<td>1.00</td>
</tr>
<tr>
<td>Days on mechanical ventilation</td>
<td>11</td>
<td>13</td>
<td>0.276</td>
</tr>
<tr>
<td>ICU length of stay</td>
<td>11</td>
<td>13</td>
<td>0.823</td>
</tr>
<tr>
<td>Hospital length of stay</td>
<td>18</td>
<td>16</td>
<td>0.773</td>
</tr>
</tbody>
</table>

Tong

- Difference in all-cause mortality, BUT:
 - This was a secondary endpoint
 - No data on vancomycin MICs or levels
 - No attempt to differentiate infection-related from other causes of mortality
 - Linezolid use increased at a greater rate than vancomycin use decreased
Vancomycin Monitoring

- AUC monitoring is going to be the new standard
- Continuous infusion vancomycin
 - Fewer levels required for monitoring
 - Less nephrotoxicity than intermittent infusion with similar outcomes

Linezolid Monitoring?

- Significant inter- and intra-patient variability in linezolid exposure
 - Optimal AUC was not achieved in 63% of patients
 - Optimal T>MIC was not achieved in 50% of patients
- Strong correlation between renal clearance and linezolid clearance ($r=0.933$, $p<0.001$)
 - Renal dysfunction associated with elevated serum concentrations
 - Elevated serum concentrations associated with thrombocytopenia

Linezolid: The Sequel

Vancomycin Dosing

• **What vancomycin dose should I give my patient?**

 • Vancomycin: 15 mg/kg q12H or Vancomycin 1000mg IV q12H
 • Not so fast!

• **I’m aiming for what vancomycin concentration? (And when do I get it?)**

 • Trough Concentration 15 – 20 mg/L
 • Not so fast!

Equations – Empiric Vancomycin Dosing

- Estimate CrCl
- Estimate Vanc clearance
 - \(VCI = 0.8 \times (CrCl \times 0.06) \)
- Estimate Vd
 - Critically III/ESRD/fluid overloaded- 0.7-0.75L/kg
 - Obese- 0.5-0.6L/kg
 - Normal- 0.65-0.7L/kg
- Estimate Ke (\(Ke = Cl/Vd \)) (Eq#1)
 - Or: \(Ke = (0.00083 \times CrCl) + 0.0044 \) (Eq#2)
- \(Eq#1 \) may be preferred when \(CrCl > 120 \)
- Determine half life
 - \(T_{1/2} = 0.693/Ke \)
- Determine dosing interval
 - \(Tau = 1.5 \times T_{1/2} \)
- Calculate Total Daily Dose (TDD)
 - \(TDD = VCl \times \) Desired AUC
- Goal \(AUC_{0-24,24-48} = 500-700 \)
- Goal \(AUC_{48} = 400-700 \)
- Calculate maintenance dose (MD)
 - \(MD = TDD/(24/Tau) \)
- Estimate Cmax
 - \(Cmax = \frac{MD/Tinf}{Ke \times Vd} \times \frac{(1-e^{-Ke(T_{inf})})}{(1-e^{-Ke(T_{tau})})} \)
- Estimate Cmin
 - \(Cmin = Cmax \times e^{-Ke(T_{tau}-T_{inf})} \)

“Two point” Kinetics

\[
Vd=\left(\frac{Dose[\text{mg}]}{T_{inf}}\right) \times \frac{1-e^{-KeT_{inf}}}{Ke \times (Cmax-(Cmin \times e^{-KeT_{inf}}))}
\]

\[
Cmax = C1/e^{-KeT} \quad \text{(Where T= time (hours) since the end of infusion to C1)}
\]

\[
Cmin = C2(e^{-KeT}) \quad \text{(Where T= time (hours) from C2 to the next dose)}
\]
Vancomycin Trough Concentrations

“Our data indicate that adjustment of vancomycin doses on the basis of trough concentrations without a Bayesian tool results in poor achievement of maximally safe and effective drug exposures in plasma and that many adults can have an adequate vancomycin AUC with a trough concentration of <15 mg/liter.”

Adverse Events

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Odds Ratio)</th>
<th>SE</th>
<th>Total</th>
<th>Total</th>
<th>Weight</th>
<th>Odds Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson 2015 abstract (49)</td>
<td>0.9163</td>
<td>0.2644</td>
<td>202</td>
<td>253</td>
<td>9.6%</td>
<td>2.50 [1.49, 4.20]</td>
</tr>
<tr>
<td>Balasubramanian 2013 abstract (41)</td>
<td>3.2119</td>
<td>1.4447</td>
<td>90</td>
<td>45</td>
<td>0.9%</td>
<td>24.82 [1.46, 421.22]</td>
</tr>
<tr>
<td>Belo 2015 abstract (42)</td>
<td>1.3286</td>
<td>0.4163</td>
<td>63</td>
<td>70</td>
<td>6.5%</td>
<td>3.77 [1.67, 8.52]</td>
</tr>
<tr>
<td>Burgess 2014* (26)</td>
<td>0.9083</td>
<td>0.4872</td>
<td>92</td>
<td>99</td>
<td>5.4%</td>
<td>2.45 [0.95, 6.44]</td>
</tr>
<tr>
<td>Carrero 2015 abstract (44)</td>
<td>1.5754</td>
<td>0.5337</td>
<td>71</td>
<td>71</td>
<td>3.8%</td>
<td>4.02 [1.69, 13.78]</td>
</tr>
<tr>
<td>Chong 2015 abstract (45)</td>
<td>1.9824</td>
<td>1.2278</td>
<td>17</td>
<td>5</td>
<td>1.2%</td>
<td>7.73 [0.66, 81.36]</td>
</tr>
<tr>
<td>Fodero 2016* (27)</td>
<td>1.1663</td>
<td>0.4379</td>
<td>286</td>
<td>165</td>
<td>1.0%</td>
<td>3.21 [1.36, 7.57]</td>
</tr>
<tr>
<td>Garst 2014 abstract (48)</td>
<td>0.6293</td>
<td>0.2862</td>
<td>276</td>
<td>153</td>
<td>3.1%</td>
<td>1.88 [1.07, 3.29]</td>
</tr>
<tr>
<td>Hellwig 2011 abstract (49)</td>
<td>1.4691</td>
<td>0.3118</td>
<td>210</td>
<td>327</td>
<td>2.2%</td>
<td>4.43 [2.41, 8.17]</td>
</tr>
<tr>
<td>Katchan 2015 abstract (51)</td>
<td>0</td>
<td>0.6506</td>
<td>91</td>
<td>91</td>
<td>1.0%</td>
<td>1.00 [0.28, 3.58]</td>
</tr>
<tr>
<td>Kim 2015* (30)</td>
<td>1.772</td>
<td>0.6992</td>
<td>101</td>
<td>101</td>
<td>2.2%</td>
<td>5.88 [1.49, 23.16]</td>
</tr>
<tr>
<td>Meaney 2014* (32)</td>
<td>1.679</td>
<td>0.6629</td>
<td>58</td>
<td>36</td>
<td>4.4%</td>
<td>5.36 [1.41, 20.44]</td>
</tr>
<tr>
<td>Min 2011 abstract (52)</td>
<td>2.2817</td>
<td>0.4977</td>
<td>73</td>
<td>67</td>
<td>4.9%</td>
<td>3.89 [0.80, 25.73]</td>
</tr>
<tr>
<td>Norbury 2014 abstract (54)</td>
<td>2.3026</td>
<td>0.7683</td>
<td>86</td>
<td>25</td>
<td>4.2%</td>
<td>10.00 [2.22, 45.08]</td>
</tr>
<tr>
<td>Rutter 2017* (37)</td>
<td>0.708</td>
<td>0.081</td>
<td>5497</td>
<td>3055</td>
<td>3.0%</td>
<td>2.03 [1.73, 2.38]</td>
</tr>
<tr>
<td>Scully 2014 abstract (55)</td>
<td>1.6535</td>
<td>0.641</td>
<td>94</td>
<td>44</td>
<td>2.6%</td>
<td>5.23 [1.49, 18.35]</td>
</tr>
<tr>
<td>Sutton 2018 (39)</td>
<td>1.5624</td>
<td>0.4607</td>
<td>108</td>
<td>116</td>
<td>5.6%</td>
<td>4.92 [1.92, 12.61]</td>
</tr>
<tr>
<td>VanQuroph 2015 abstract (56)</td>
<td>1.0448</td>
<td>0.3926</td>
<td>160</td>
<td>100</td>
<td>4.9%</td>
<td>2.94 [1.32, 6.41]</td>
</tr>
</tbody>
</table>

Total (95% CI): 7517 4822 100.0% 3.40 [2.57, 4.59]
Vancomycin MIC

- Testing method is important
 - Automated susceptibility testing vs E-test vs broth microdilution

- Haque, 2010
 - Increase of 1 mg/L = Increased Mortality
 - Unadjusted OR 3.73 (95% CI 1.45 to 9.62)

- Choi, 2011
 - Early clinical response of low (≤ 1 mg/L) vs high (≥ 1.5 mg/L) vancomycin MIC
 - 63.9 vs 35.3% P=0.031

Linezolid just makes sense

- With appropriate antimicrobial stewardship, linezolid use should not create a budget crisis
 - Limit use to patients with risk factors
 - Implementation of MRSA nasal swabs
 - Appropriate durations of therapy
 - Quick and effective IV to PO switches to expedite transitions of care

- Vancomycin isn’t worth the time
 - Dosing has become too complicated
 - Adverse events can be significant
 - MICs (within the susceptible range) matter
Who is the Ultimate Pneumonia Superhero?

Use the Kahoot! App or go to www.kahoot.it to play along!

- Enter the Game PIN
- Choose a screen name
- Choose your superhero!

Questions?