Artificial intelligence promises to make hiring an unbiased utopia.

There’s certainly plenty of room for improvement. Employee referrals, a process that tends to leave underrepresented groups out, still make up a bulk of companies’ hires. Recruiters and hiring managers also bring their own biases to the process, studies have found, often choosing people with the “right-sounding” names and educational backgrounds.

Across the landscape, many companies lack racial and gender diversity, with the ranks of underrepresented people thinning at the highest levels of the corporate ladder. Fewer than 5 percent of chief executives at Fortune 500 companies are women, and there are only three black CEOs. Racial diversity among Fortune 500 boards is almost as dismal; four of five new appointees to corporate boards in 2016 were white.

“Identifying high-potential candidates is very subjective,” said Alan Todd, the CEO of CorpU, a technology platform for leadership development. “People pick who they like based on unconscious biases.”

AI advocates argue the technology can eliminate some of these biases. Instead of relying on people’s feelings to make hiring decisions, companies such as Entelo and Stella IO use machine learning to detect the skills needed for certain jobs. The AI then matches candidates who have those skills with open positions. The companies claim not only to
find better candidates, but to pinpoint those who may have previously gone unrecognized in the traditional process.

Stella IO’s algorithm assesses candidates based only on skills, for example, said founder Rich Joffe. “The algorithm is only allowed to match based on the data we tell it to look at. It’s only allowed to look at skills, it’s only allowed to look at industries, it’s only allowed to look at tiers of companies.” That limits bias, he said.

Entelo has released Unbiased Sourcing Mode, a tool that further anonymizes hiring. The software allows recruiters to hide names, photos, schools, employment gaps, and markers of someone’s age, as well as to replace gender-specific pronouns — all in the service of reducing various forms of discrimination.

AI is also being used to help develop internal talent. CorpU has formed a partnership with the University of Michigan’s Ross School of Business to build a 20-week online course that uses machine learning to identify high-potential employees. Those ranked highest aren’t usually the individuals who were already on the promotion track, Todd said, and often exhibit qualities such as introversion that are overlooked during recruiting.

“Human decision-making is pretty awful,” said Solon Borocas, an assistant professor in Cornell’s Information Science department who studies fairness in machine learning. But we shouldn’t overestimate the neutrality of technology, either, he cautioned.

Borocas’s research has found that machine learning in hiring, much like its use in facial recognition, can result in unintentional discrimination. Algorithms can carry the implicit biases of those who programmed them. Or they can be skewed to favor certain qualities and skills that are overwhelmingly exhibited among a given data set.

“If the examples you’re using to train the system fail to include certain types of people, then the model you develop might be really bad at assessing those people,” Borocas explained.

Not all algorithms are created equal — and there’s disagreement in the AI community
about which algorithms have the potential to make hiring more fair.

One type of machine learning relies on programmers to decide which qualities should be prioritized in candidates. These “supervised” algorithms can be directed to scan for individuals who went to Ivy League universities or who exhibit certain qualities, such as extroversion.

“Unsupervised” algorithms determine on their own which data to prioritize. The machine makes its own inferences, based on existing employees’ qualities and skills, to determine those needed by future employees. If that sample includes only a homogeneous group of people, it won’t learn how to hire different types of individuals, even if they might do well in the job.

Companies can take steps to mitigate these forms of programmed bias. Pymetrics, an AI hiring startup, has programmers audit its algorithm to see if its giving preference to any gender or ethnic group. Software that heavily considers ZIP code, which strongly correlates with race, is likely to have a bias against black candidates, for example. An audit can catch these prejudices and allow programmers to correct them.

Stella IO also has humans monitoring the quality of the AI.

“While no algorithm is ever guaranteed to be foolproof, I believe it is vastly better than humans,” said founder Joffe.

Boracas agrees that hiring with the help of AI is better than the status quo. The most responsible companies, however, acknowledge they can’t completely eliminate bias and tackle it head-on. “We shouldn’t think of it as a silver bullet,” he cautioned.
Madison Square Garden Has Used Face-Scanning Technology on Customers

By Kevin Draper

March 13, 2018

Madison Square Garden has quietly used facial-recognition technology to bolster security and identify those entering the building, according to multiple people familiar with the arena’s security procedures.

The technology uses cameras to capture images of people, and then an algorithm compares the images to a database of photographs to help identify the person and, when used for security purposes, to determine if the person is considered a problem. The technology, which is sometimes used for marketing and promotions, has raised concerns over personal privacy and the security of any data that is stored by the system.

“MSG continues to test and explore the use of new technologies to ensure we’re employing the most effective security procedures to provide a safe and wonderful experience for our guests,” the Garden said in a statement.

A spokeswoman for the Garden declined to answer questions about the use of face-scanning technology.

It is unclear when the face-scanning system was installed. The people familiar with the Garden’s use of the technology, who were granted anonymity because they were not authorized to speak publicly about it, said they did not know how many events at the Garden in recent months have used it or how the data has been handled.

“In a lot of places we will see facial recognition framed positively as just an extension of video surveillance,” said Clare Garvie, an associate at the Center on Privacy and Technology at Georgetown Law Center. “But the reality is it is a way to require, or in secret, have everyone in a crowd show their papers, essentially, to compare them to a big enough database.”
The Garden — home to the N.B.A.’s Knicks and the N.H.L.’s Rangers, and host to events like boxing matches, concerts and the Grammy Awards — was already known for having tight security. There is always a heavy police presence in part because the arena is in the heart of Midtown Manhattan and is built above Pennsylvania Station, the nation’s busiest rail terminal. Fans attending events go through security screening that can include metal detectors, bag searches and explosive-sniffing dogs.

The use of facial recognition technology puts the arena in the vanguard of professional sports facilities. At least two other arenas have experimented with the technology, but teams and leagues are generally unwilling to discuss security protocols, so it is difficult to know for sure how widespread it is.

“Nothing is more important to us than the safety and security of the fans, players, team and arena staff at our games,” said Mike Bass, a spokesman for the N.B.A. “The league and our teams are exploring the use of all state-of-the-art technology, including facial recognition, to ensure that we have industry-best security measures to protect all those in our arenas.”

The N.H.L. declined to comment.

Although security is the most obvious use of the technology, some independent experts say it is less effective as a security measure for private businesses because they do not have access to various watch lists held by law enforcement agencies. In fact, some vendors and team officials said the customer engagement and marketing capabilities of facial recognition are even more valuable than added security for sports facilities.

Law enforcement agencies have used facial recognition technology for many years, but some commercial entities have been wary. Walmart is among those that have experimented with it, to help identify shoplifters, drawing strong objections from privacy groups.
The software can be used to determine who is allowed into a building, like vendors or workers at a specified employee entrance. Companies may eventually be able to use the technology to increase customer engagement. In the case of an arena, a sports fan might sign up for a loyalty program with a team and attach his image and a credit card to the account. He could then park without paying an attendant, walk in without having a ticket scanned and pay for merchandise and concessions without ever taking out his wallet.

Even without fans signing up for anything, the cameras can give teams a much better sense of who is attending a game. Currently, teams might know who originally bought a ticket, but after the ticket enters the secondary market, teams do not necessarily know who is sitting in the seat.
“The days of having 40,000 to 60,000 people in the stadium and not knowing who they are, I think those days are going to disappear,” said Charles Carroll, a senior vice president at IDEMIA, which manages the Transportation Security Administration’s PreCheck program. IDEMIA has partnered with three sports venues on security, including Barclays Center in Brooklyn, to offer expedited lines to enter.

Allen Ganz, a director of critical infrastructure at NEC Corporation of America, an industry leader in facial recognition, said his company’s system could “estimate anonymously the age and gender of people coming into the stadium.” An electronic advertising board connected to the system could even be changed depending upon the age and gender of who is standing in front of it.

Ganz declined to disclose which sports arenas use NEC technology. Peter Trepp, the chief executive of FaceFirst, said “very, very few” stadiums and arenas were using facial recognition technology.

In addition to Madison Square Garden, at least two other arenas are known to be experimenting with the technology. According to a Sacramento Kings spokeswoman, facial recognition is used to allow players and staff to enter the practice facility connected to the Golden 1 Center, but its use has not expanded to event attendees.

The Dallas Mavericks have contracted with Suspect Technologies to experiment with facial recognition outside the team’s locker room and throughout the American Airlines Center.
Mavericks owner Mark Cuban, however, said in an email the team needs to “find the right application that creates so much value people want to use it.” He said that, for now, facial recognition doesn’t improve his arena’s ability to keep out unwanted patrons enough to justify its implementation.

“In the private sector, facial recognition is really only as good as the database it is compared against,” said Michael Downing, the former deputy chief of the Los Angeles Police Department and chief security adviser for the Oak View Group.

There is no federal law governing the use of facial recognition technology, though both Illinois and Texas have laws that restrict its use without informed consent. Facebook has been sued under Illinois law, a case that could challenge its business model, and according to the Center for Public Integrity, is lobbying against similar laws being passed in other states.

“We are in a kind of legal Wild West when it comes to this stuff,” said Jay Stanley, a policy analyst at the American Civil Liberties Union. While most sports fans may not have a legal right to know their face is being tracked, Stanley said he believed there is an ethical right to know.

“I should know if I am being subject to facial recognition if I am going into any business, including a stadium,” he said. “Even if you are just running my face against a list of people who have been banned from the premises and doing nothing else with it. I want to know. I have a right to know.”

Email Kevin Draper at kevin.draper@nytimes.com or follow him on Twitter: @kevinmdraper.
Madison Square Garden Has Used Face-Scanning Technology on Customers

By Kevin Draper

March 13, 2018

Madison Square Garden has quietly used facial-recognition technology to bolster security and identify those entering the building, according to multiple people familiar with the arena’s security procedures.

The technology uses cameras to capture images of people, and then an algorithm compares the images to a database of photographs to help identify the person and, when used for security purposes, to determine if the person is considered a problem. The technology, which is sometimes used for marketing and promotions, has raised concerns over personal privacy and the security of any data that is stored by the system.

“MSG continues to test and explore the use of new technologies to ensure we’re employing the most effective security procedures to provide a safe and wonderful experience for our guests,” the Garden said in a statement.

A spokeswoman for the Garden declined to answer questions about the use of face-scanning technology.

It is unclear when the face-scanning system was installed. The people familiar with the Garden’s use of the technology, who were granted anonymity because they were not authorized to speak publicly about it, said they did not know how many events at the Garden in recent months have used it or how the data has been handled.

“In a lot of places we will see facial recognition framed positively as just an extension of video surveillance,” said Clare Garvie, an associate at the Center on Privacy and Technology at Georgetown Law Center. “But the reality is it is a way to require, or in secret, have everyone in a crowd show their papers, essentially, to compare them to a big enough database.”
The Garden — home to the N.B.A.’s Knicks and the N.H.L.’s Rangers, and host to events like boxing matches, concerts and the Grammy Awards — was already known for having tight security. There is always a heavy police presence in part because the arena is in the heart of Midtown Manhattan and is built above Pennsylvania Station, the nation’s busiest rail terminal. Fans attending events go through security screening that can include metal detectors, bag searches and explosive-sniffing dogs.

The use of facial recognition technology puts the arena in the vanguard of professional sports facilities. At least two other arenas have experimented with the technology, but teams and leagues are generally unwilling to discuss security protocols, so it is difficult to know for sure how widespread it is.

“Nothing is more important to us than the safety and security of the fans, players, team and arena staff at our games,” said Mike Bass, a spokesman for the N.B.A. “The league and our teams are exploring the use of all state-of-the-art technology, including facial recognition, to ensure that we have industry-best security measures to protect all those in our arenas.”

The N.H.L. declined to comment.

Although security is the most obvious use of the technology, some independent experts say it is less effective as a security measure for private businesses because they do not have access to various watch lists held by law enforcement agencies. In fact, some vendors and team officials said the customer engagement and marketing capabilities of facial recognition are even more valuable than added security for sports facilities.

Law enforcement agencies have used facial recognition technology for many years, but some commercial entities have been wary. Walmart is among those that have experimented with it, to help identify shoplifters, drawing strong objections from privacy groups.
The software can be used to determine who is allowed into a building, like vendors or workers at a specified employee entrance. Companies may eventually be able to use the technology to increase customer engagement. In the case of an arena, a sports fan might sign up for a loyalty program with a team and attach his image and a credit card to the account. He could then park without paying an attendant, walk in without having a ticket scanned and pay for merchandise and concessions without ever taking out his wallet.

Even without fans signing up for anything, the cameras can give teams a much better sense of who is attending a game. Currently, teams might know who originally bought a ticket, but after the ticket enters the secondary market, teams do not necessarily know who is sitting in the seat.
“The days of having 40,000 to 60,000 people in the stadium and not knowing who they are, I think those days are going to disappear,” said Charles Carroll, a senior vice president at IDEMIA, which manages the Transportation Security Administration’s PreCheck program. IDEMIA has partnered with three sports venues on security, including Barclays Center in Brooklyn, to offer expedited lines to enter.

Allen Ganz, a director of critical infrastructure at NEC Corporation of America, an industry leader in facial recognition, said his company’s system could “estimate anonymously the age and gender of people coming into the stadium.” An electronic advertising board connected to the system could even be changed depending upon the age and gender of who is standing in front of it.

Ganz declined to disclose which sports arenas use NEC technology. Peter Trepp, the chief executive of FaceFirst, said “very, very few” stadiums and arenas were using facial recognition technology.

In addition to Madison Square Garden, at least two other arenas are known to be experimenting with the technology. According to a Sacramento Kings spokeswoman, facial recognition is used to allow players and staff to enter the practice facility connected to the Golden 1 Center, but its use has not expanded to event attendees.

The Dallas Mavericks have contracted with Suspect Technologies to experiment with facial recognition outside the team’s locker room and throughout the American Airlines Center.
Mavericks owner Mark Cuban, however, said in an email the team needs to “find the right application that creates so much value people want to use it.” He said that, for now, facial recognition doesn’t improve his arena’s ability to keep out unwanted patrons enough to justify its implementation.

“In the private sector, facial recognition is really only as good as the database it is compared against,” said Michael Downing, the former deputy chief of the Los Angeles Police Department and chief security adviser for the Oak View Group.

There is no federal law governing the use of facial recognition technology, though both Illinois and Texas have laws that restrict its use without informed consent. Facebook has been sued under Illinois law, a case that could challenge its business model, and according to the Center for Public Integrity, is lobbying against similar laws being passed in other states.

“We are in a kind of legal Wild West when it comes to this stuff,” said Jay Stanley, a policy analyst at the American Civil Liberties Union. While most sports fans may not have a legal right to know their face is being tracked, Stanley said he believed there is an ethical right to know.

“I should know if I am being subject to facial recognition if I am going into any business, including a stadium,” he said. “Even if you are just running my face against a list of people who have been banned from the premises and doing nothing else with it. I want to know. I have a right to know.”

Email Kevin Draper at kevin.draper@nytimes.com or follow him on Twitter: @kevinmdraper.

A version of this article appears in print on March 13, 2018, on Page B8 of the New York edition with the headline: Smile, Knicks Fans: Garden Is Using Facial Recognition
Panel Title: Has Skynet finally arrived? Artificial Intelligence & the Law of the Future – Artificial Intelligence is fundamentally changing technology, politics, society, ethics… and the law. Join us for a round table discussion of thought leaders who will ground us in the reality of where things are today and how AI will impact all practice areas in the years to come: Will AI transform precedents and bring waves of regulation, or will lawyers find ways to apply existing principles to new situations? How will the law apply to huge data troves, smart cities, and the automation of not just ""rote"" but also ""skilled"" tasks? How do we strike the right balance in the United States between technology's impact on the status quo while still embracing the opportunities, particularly when others in places such as Europe or China appear to be striking different balances? How should law and policy account for a broader set of inputs such as the arts, humanities, ethics, religion, and the like?

Topics:

1. Basics of AI/ML: What is AI vs. ML? What can you do with AI and ML?
 a. Machine learning is a subset of artificial intelligence
 b. Artificial Intelligence is the development of computer systems able to perform tasks that normally require human intelligence
 c. Machine Learning is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world

2. Use cases – healthcare
 a. Healthcare – data privacy (HIPAA, GDPR, BIPA) and medical device regulations (FDA)
 b. Legal – can AI be a lawyer?
 c. Chatbot (customer care chatbot) – false statements by a chatbot, remedies, specific performance for a bot, is it punitive? Who are the defendants (developers)? There aren’t easy answers clearly. And everyone has dealt with a chatbot (Duplex from Google). Do people know they are dealing with a chatbot? Ashley Madison data privacy chatbot (where people thought they were talking to a person but it was a chatbot). What about the ethics of the company for those that provide chatbot technology? Who in the chain is responsible for how the tech is used? Foreseeable uses vs unforeseeable uses.
 i. Actors: technology creator, customer, b2c provider, consumer, and platform
 ii. With different actors, what type of issues comes up in negotiation?
 iii. In tort law, how is the responsibility divided between the different actors?

3. AI and Ethics
 a. What are high level principles and processes and considerations for AI/ML?
 b. Compliance and inherent discrimination with bad historical data
 c. ML can help remove bias (gender, race, etc)

4. AI and Intellectual Property
 a. AI creates new materials, who “owns” the materials and is there IP ownership?
 b. What is the IP protection available for data, algorithm, trained models, and outputs
 c. Chatbot makes a new tagline – who owns that?
 d. Trade secret protection of data, algos, and models
 e. Can AI create trade secrets? If they give out a way to improve a business process
 f. Monkey selfie case
g. Contractual terms if you don’t have IP protection

5. AI and Privacy – try to work in privacy issues through the use cases
 a. How might GDPR apply to use of data for ML purposes (e.g., purpose limitations, information about decision-making, protections in use of AI, Art 29 Working Party)
 b. Some of the privacy regulations were talked about in the use cases (HIPAA, GDPR, BIPA)
Remedies for Robots

Mark A. Lemley
Stanford Law School

Bryan Casey
Stanford Law School

John M. Olin Program in Law and Economics
Stanford Law School
Stanford, CA 94305

Working Paper Series
Paper No. 523

This paper can be downloaded without charge from the Social Science Research Network Electronic Paper Collection http://ssrn.com/abstract=3223621
Remedies for Robots

Mark A. Lemley & Bryan Casey

Engineers training an artificially-intelligent self-flying drone were perplexed. They were trying to get the drone to stay within a predefined circle and to head towards its center. Things were going well for a while. The drone received positive reinforcement for its successful flights, and it was improving its ability to navigate towards the middle quickly and accurately. Then, suddenly, things changed. When the drone neared the edge of the circle, it would inexplicably turn away from the center, leaving the circle.

What went wrong? After a long time spent puzzling over the problem, the designers realized that whenever the drone left the circle during tests, they had turned it off. Someone would then pick it up and carry it back into the circle to start again. From this pattern, the drone's algorithm had learned—correctly—that when it was sufficiently far from the center, the optimal way to get back to the middle was to simply leave it altogether. As far as the drone was concerned, it had discovered a wormhole. Somehow, flying outside of the circle could be relied upon to magically teleport it closer to the center. And far from violating the rules instilled in it by

1 © 2018 Mark A. Lemley and Bryan Casey.
2 William H. Neukom Professor, Stanford Law School; partner, Durie Tangri LLP.
3 Lecturer in Law, Stanford Law School; Legal Fellow, Center for Automotive Research at Stanford (CARS).
4 This example comes from a presentation at the June 2014 Stanford Ecommerce Best Practices Conference. As far as we know it has not been previously described in print.
its engineers, the drone had actually followed them to a T. In doing so, however, it had discovered an unforeseen shortcut—one that subverted its designers’ true intent.

What happens when artificially intelligent robots misbehave, as the drone did here? The question is not just hypothetical. As robotics and artificial intelligence (AI) systems increasingly integrate into our society, they will do bad things. Sometimes they will cause harm because of a design or implementation defect: we should have programmed the self-driving car to recognize a graffiti-covered stop sign but failed to do so. Sometimes they will cause harm because it is an unavoidable byproduct of the intended operation of the machine. Cars, for example, kill thousands of people every year, sometimes unavoidably. Self-driving cars will too. Sometimes the accident will be caused by an internal logic all of its own—one that we can understand but that still doesn’t sit well with us. Sometimes they will do the things we ask them to (minimize recidivism, for instance) but in ways we don’t like (such as racial profiling). And sometimes, as with our drone, robots will do unexpected things for reasons that doubtless have their own logic but which we either can’t understand or predict.

These new technologies present a number of interesting substantive law questions, from predictability, to transparency, to liability for high stakes decision making in complex computational systems. A growing body of scholarship is beginning to address these types of questions. Our focus here is different. We seek to explore what remedies the law can and should provide once a robot has caused harm.

The law of remedies is trans-substantive. Where substantive law defines who wins legal disputes, remedies law asks, “What do I get when I win?” Remedies are sometimes designed to make plaintiffs whole by restoring them to the condition they would have been in “but for” the wrong. But they can also contain elements of moral judgment, punishment, and deterrence. For instance, the law will often act to deprive a defendant of its gains even if the result is a windfall to the plaintiff, because we think it is unfair to let defendants keep those gains. In other instances, the law may order defendants to do (or stop doing) something unlawful or harmful.

Each of these goals of remedies law, however, runs into difficulties when the bad actor in question is neither a person nor a corporation but a robot. We might order a robot—or, more realistically, the designer or owner of the robot—to pay for the damages it causes. (Though, as we will see, even that presents some surprisingly thorny problems.) But it turns out to be much harder for a judge to “order” a robot, rather than a human, to engage in or refrain from certain conduct. Robots can’t directly obey court orders not written in computer code. And bridging the translation gap between natural language and code is often harder than we might expect. This is particularly true of modern AI techniques that empower machines to learn and modify their decision making over time, as the drone in the opening example did. If we don’t know how the robot “thinks,” we won’t know how to tell it to behave in a way likely to cause it to do what we actually want it to do.

6 More on this below.
One way to avoid these problems may be to move responsibility up the chain of command from a robot to its human or corporate masters—either the designers of the system or the owners who deploy it. But that too is easier said than done. Robot decision making is increasingly likely to be based on algorithms of staggering complexity and obscurity. The developers—and certainly the users—of those algorithms won’t necessarily be able to deterministically control the outputs of their robots. To complicate matters further, some systems—including many self-driving cars—distribute responsibility for their robots between both designers and downstream operators. For systems of this kind, it has already proven extremely difficult to allocate responsibility when accidents inevitably occur.7

Moreover, if the ultimate goal of a legal remedy is to encourage good behavior or discourage bad behavior, punishing owners or designers for the behavior of their robots may not always make sense—if only for the simple reason that their owners didn’t act wrongfully in any meaningful way. The same problem affects injunctive relief. Courts are used to ordering people and companies to do (or stop doing) certain things, with a penalty of contempt of court for noncompliance. But ordering a robot to abstain from certain behavior won’t be trivial in many cases. And ordering it to take affirmative acts may prove even more problematic.

In this paper, we begin to think about how we might design a system of remedies for robots. It may, for example, make sense to focus less of our doctrinal attention on moral guilt and more of it on no-fault liability systems (or at least ones that define fault differently) to compensate plaintiffs. But addressing payments for injury solves only part of the problem. Often

7 See infra notes __ - ___ and accompanying text.
we want to compel defendants to do (or not do) something in order to prevent injury. Injunctions, punitive damages, and even remedies like disgorgement are all aimed, directly or indirectly, at modifying or deterring behavior. But deterring robot misbehavior too is going to look very different than deterring humans. Our existing doctrines often take advantage of “irrational” human behavior like cognitive biases and risk aversion. Courts, for instance, can rely on the fact that most of us don’t want to go to jail, so we tend to avoid conduct that might lead to that result. But robots will be deterred only to the extent that their algorithms are modified to include sanctions as part of the risk-reward calculus. These limitations may even require us to institute a “robot death penalty” as a sort of specific deterrence against certain bad behaviors. Today, speculation of this sort may sound far-fetched. But the field already includes examples of misbehaving robots being taken offline permanently—a trend which only appears likely to increase in the years ahead.

Finally, remedies law also has an expressive component that will be complicated by robots. We sometimes grant punitive damages—or disgorge ill-gotten gains—to show our displeasure with you. If our goal is just to feel better about ourselves, perhaps we might also punish robots simply for the sake of punishing them. Christina Mulligan half-jokingly suggests that we should have the right to punch a robot. But if our goal is to send a slightly more nuanced signal than that through the threat of punishment, robots will require us to rethink many of our current doctrines.

8 See infra notes ___ - ___ and accompanying text.

In Part I, we discuss the development of robots and learning AIs, as well as the sorts of robot wrongdoing that will increasingly draw the attention of the legal system. In Part II, we outline the basic principles of remedies law and consider how those remedies will work—or not work—when applied to robots and AIs. Finally, in Part III, we consider how we might remake remedies law with robots in mind.

I. Bad Robots

A. Rise of the Machines

“Robots again.” When Judge Kozinski opened his dissent in *Wendt v. Host International* with this line, he could count on it fetching an ironic grin because it was, well, ironic.10 *Wendt* prominently featured an animatronic version of two television personas,11 much like another case the jurist had overseen some three years prior.12 And in the late 1990s, suits of this sci-fi-esque variety represented such a novelty that the judge’s reference was unmissable. Robots again? Sure. But only because two cases in three years involving robots felt, at the time, like a freak recurrence.

Fast forward just two decades to the present, and Judge Kozinski’s quip appears quaint by comparison. Nowadays, robots are ubiquitous. Industries as far flung as finance, transportation, defense, and healthcare regularly invest billions in the technology. Patent filings

10 Wendt v. Host Int’l, Inc., 197 F.3d 1284 (9th Cir. 1999) (Kozinski, J., dissenting).

11 Wendt v. Host Int’l, Inc., 125 F.3d 806, 809 (9th Cir. 1997).

12 The case referred to here is White v. Samsung Elec. Am, Inc., 971 F.2d 1395 (9th Cir. 1992), cert. denied, 508 U.S. 951 (1993) which involved an animatronic version of Vanna White, a television game show persona.
for robotics and AI applications have skyrocketed. Even octogenarian Senators can be heard fumbling over phrases once confined exclusively to computer science departments, such as “botnet,” “machine learning algorithm,” and “deep neural network.” Robots again, indeed.

Comparing these two moments—separated by just twenty years—puts on full display the field’s breathtaking progress. Today, technological feats that read like pages torn from sci-fi novels have become regular fixtures of the news. Robots have driven millions of miles on U.S. roadways, humbled human professionals at the pinnacle of their fields, and even performed high-stakes surgical procedures on cardiac patients. And as innovators continue to compete against each other in increasingly diverse domains, “robots” themselves are taking on new and expansive forms. Gone are the days of robots confined to assembly lines or warehouse floors. With each passing week, robots infiltrate deeper into our public spaces, places of work, and even bedrooms.

16 See infra notes ___ - ___ and accompanying text.

20 See infra notes ___.
The disruptive forces unleashed by this ascendant technology are challenging long-held assumptions about the limits of machine capabilities—forcing the rest of society to adapt not only economically and politically, but also legally. In the last few years alone, autonomous robots have killed and maimed our fellow citizens, helped determine who goes to prison and who stays there, spouted racist and homophobic remarks on our social media platforms, and even shaped the course of our national elections. Far from anomalous, all signs suggest that these types of events are destined to become the new normal as robots continue to their march into the social mainstream in the decades ahead.

In the view of many leading experts, the challenges posed by this impending “robot revolution” could precipitate a jurisprudential revolution of similar magnitude. And though numerous scholars have begun to explore the ramifications robots pose for our substantive legal

25 See Charles Duhigg, The Case Against Google, N.Y. TIMES (Feb. 20, 2018), https://www.nytimes.com/2018/02/20/magazine/the-case-against-google.html (noting that prominent lawmakers and critics have accused Google of “creating an automated advertising system so vast and subtle that hardly anyone noticed when Russian saboteurs co-opted it in the last election”).

26 See Andrew Berg et al., Should We Fear the Robot Revolution? (The Correct Answer is Yes), INT’L MONETARY FUND (May 21, 2018) (arguing that global society is on the cusp of a second industrial revolution thanks to advances in robotics and artificial intelligence).

27 See infra note ___ and accompanying notes.
rules, comparatively little attention has been paid to the rules governing remedies.28 Our goal is to change that. But in order to understand the impact that robots may have on this area of law, it is helpful to first review the technology’s defining characteristics, as well as the ways legal issues will most likely arise.

A. Defining “Robot”

Though “robot” has appeared in common parlance for nearly a century,29 the term is still notoriously resistant to definition. For many outside of computer science circles, it continues to evoke 1950s-era stock images of ironclad humanoids adorned with flashing lights, accompanied by the obligatory monotone voice. More recently, though, “robot” and its derivative “robotics” have come to take on more exacting definitions within broader expert communities.

Among legal scholars, efforts have been made to define robots by their so-called “essential qualities.”30 Such qualities refer to the fundamental, legally-pertinent “characteristics that distinguish [robots] from prior or constituent technology such as computers or phones.”31

28 See infra note ___ and accompanying notes.

31 See id. at 514.
One leading scholar, Ryan Calo, argues that robots exhibit at least three “essential qualities”: namely, “embodiment,”32 “emergence,”33 and “valence.”34 In Calo’s telling:

Robotics combines, arguably for the first time, the promiscuity of information with the [embodied] capacity to do physical harm. Robots display increasingly emergent behavior, permitting the technology to accomplish both useful and unfortunate tasks in unexpected ways. And robots, more so than any technology in history, feel to us like social actors—a tendency so strong that soldiers sometimes jeopardize themselves to preserve the "lives" of military robots in the field.35

In light of these qualities, Calo argues that “robots are best thought of as artificial objects or systems that sense, process, and act upon the world to at least some degree.”36 Thus, “a robot in the strongest, fullest sense of the term exists in the world as a corporeal object with the capacity to exert itself physically.”37

As innovation in robotics continues to advance apace, however, the sharp dividing lines of even these recently established “essential qualities” are rapidly blurring. Nowadays, disembodied systems that exist purely as bits and bytes regularly go by the monikers of “bot,” “chatbot,” “crawler bot,” “spam bot,” “social bot,” and so forth. When systems of these types

32 Calo describes “embodiment” as the “capacity to act physically upon the world [and], in turn, to the potential to physically harm people or property.” Calo, Robotics and the Lessons of Cyberlaw supra note __ at 534.

33 Calo describes “emergence” as the ability to “do more than merely repeat instructions but adapt to circumstance.” Calo, Robotics and the Lessons of Cyberlaw supra note __ at 538.

34 Calo describes “social valence” as the heightened emotion response triggered in humans due to our tendency to anthropomorphize them. See Calo, Robotics and the Lessons of Cyberlaw supra note __ at 538.

35 Id. at 515.

36 Id. at 535.

37 Id.
operate in parallel, the collective is often referred to by the ominous title of “botnet.” And when gaming or strategy robots run metaphorical circles around human champions in the likes of Go\(^{38}\) or DOTA,\(^{39}\) they do so in entirely ethereal forms with the capacity to exert themselves only digitally.

Thus, unlike some technologies that have stabilized as their commercial and social presence has increased, robots appear to have done the opposite. As Jack Balkin recently observed, a similar phenomenon occurred in the cell phone industry.\(^{40}\) According to the scholar, “Thirty years ago people might have argued that an essential characteristic of a cell phone was its ability to make a phone call outside of one’s home. . . . But this feature of cell phones is by no means the primary way that people use them today.”\(^{41}\) So, too, it seems is true of the “essential qualities” of yesteryears’ robots. Already, those that Calo enumerated less than five years read like relics of a bygone era—a testament to the field’s engine of innovation firing on all cylinders.\(^{42}\)

Today, the terms “robotics” and “artificial intelligence” are often used interchangeably, referring to both embodied and disembodied systems that affect the physical and digital worlds alike. And while there are important technical distinctions to be made between the two

\(^{38}\) Cade Metz, In a Huge Breakthrough, Google’s AI Beats a Top Player at the Game of Go, WIRED (Jan. 27, 2016), https://www.wired.com/2016/01/in-a-huge-breakthrough-googles-ai-beats-a-top-player-at-the-game-of-go/. “Go” is an ancient Eastern strategy game that is comparable to chess, though far more computationally complex. Id.

\(^{39}\) Tom Simonite, Can Bots Outwit Humans In One Of The Biggest Esports Games?, WIRED (Jun. 25, 2018), https://www.wired.com/story/can-bots-outwit-humans-in-one-of-the-biggest-esports-games/. DOTA is one of the internet’s most popular real time strategy games and is more difficult for AI systems than Go or chess.

\(^{41}\) See id.

\(^{42}\) See supra note ___ - ___ and accompanying text. See also, e.g., Balkin (stating he does “not think it is helpful to speak in terms of ‘essential qualities’ of a new technology that we can then apply to law”).
concepts, we adopt the convention of construing “robot” to encompass both robots in Calo’s “essentialist” sense and artificially intelligent systems embodied only in software. Our goal is to include any hardware or software system exhibiting intelligent behavior.

1. What Makes Robots Smart?

But what, then, does it mean for a robot to be “intelligent?” Experts operating at the cutting edge of the field describe “artificial intelligence”—in somewhat circular fashion—as the “science of making machines smart.” And though the definition may be wanting for precision, it is this singular feature—the ability to execute complex behaviors such as planning, language processing, or object recognition—that differentiates a robot from a barren hunk of metal, plastic, or bits.

Robots exhibit their “smart[s]” by executing “algorithms.” Although the term has a certain cerebral ring to it, it actually describes a simple concept. Algorithms are merely sequences of instructions for performing a given task. When translated into software, these instructions can be simplified further still. In fact, all commands given to a computational system are reducible

43 See Kamal Ahmed, Google’s Demis Hassabis—Misuse of Artificial Intelligence ‘Could do Harm’, BBC NEWS (Sept. 16, 2015), http://www.bbc.com/news/business-34266425. While some scholars have suggested that “there is a continuum between ‘robots’ and ‘artificial intelligence,’” Jack B. Balkin, The Path of Robotics Law, 6 CALIF. L. REV. CIRCUIT 45 (2015), the distinction is actually artificial (if you’ll pardon the expression). Without the ability to exhibit intelligent behavior, any so-called robot would be little more than an inanimate composite of metal, plastic, or bits. Accordingly, AI is better understood as a component feature of any robotics system, rather than an entity separate from it.

45 See id.
to one of three logical operators: AND, OR, and NOT.46 If chained together in the right way, these basic operators can produce behaviors of breathtaking complexity. Yet at bottom, even the most sophisticated algorithms are comprised of simple, logic-based building blocks.

For much of AI's history as a scientific field, the prevailing paradigm of system design involved explicitly encoding the algorithms that governed robots.47 This approach—sometimes termed the “classic,” “symbolic,” or “GOFAI” approach (short for “Good Old-Fashioned AI”)—required that scientists or engineers hand-code robot behaviors through “explicit, logical representation of facts about the world.”48 The expression \textit{dogs have four legs}, for example, might be represented as:49

$$\forall x (\text{is_a_dog}(x) \Rightarrow \text{number_of_legs}(x) = 4)$$

In plain English, this statement translates to: \textit{For every entity, if that entity is a dog, it has four legs.}

The precision and austerity of the GOFAI approach has obvious appeal. Among other features, explicitly encoded algorithms are inherently predictable and explainable. And robots programmed using this approach are still capable of exhibiting astonishingly complex behaviors,

46 See id.

47 See id.

49 This example derives from David Auerbach’s piece. See id.
ranging from mathematical calculations far surpassing human capabilities, to conquering world chess champions.50

But GOFAI also has its limits. How, for example, is an AI system embedded with a four-legged representation of dogs to categorize the small fraction that do not have four legs, either through accident or genetics? Without prospectively accounting for these types of outliers, hand-coded machines have no means of learning such distinctions on the fly.

In many instances, programmers can teach their robots how to handle these types of “edge cases”51 by prospectively encoding fail-safe measures that anticipate them. But even robust GOFAI approaches that account a wide array of edge cases are often no match for amorphous and ambiguous real-world environments.

Take, for example, the task of navigation. Classically encoded robots have long excelled at getting from point A to point B in warehouses or factories—whether traversing a floor on four wheels or a three-dimensional space with an articulated arm.52 This aptitude owed to the fact that warehouses and factories are, by and large, tightly controlled environments. As such, “programmers could anticipate the range of scenarios a [robot] may encounter, and c[ould] program if-then-else-type decision algorithms accordingly.”53

50 The latter example refers to IBM Deep Blue’s defeat of the world chess champion, Garry Kasparov, in 1997, which was accomplished using a brute force GOFAI approach. See Matt McFarland, \textit{Google Just Mastered a Game That Vexed Scientists—and Their Machines—For Decades}, WASH. POST (Jan. 27, 2016), https://www.washingtonpost.com/news/innovations/wp/2016/01/27/google-just-mastered-a-game-thats-vexed-scientists-for-decades/.

51 An “edge case” is a technical term that refers to scenarios which occur at the extremes of a given operating parameter—whether expected or unexpected.

53 See id.
On a smooth, clearly demarcated surface with little chance of encountering obstacles (much less inclement weather) the number of uncertainties and edge cases presented was reduced to manageable proportions. But translating a similar navigation task to a bustling city street was another matter entirely. Because the number of uncertainties a robot might encounter in most uncontrolled environments approaches infinity, navigating using a GOFAI approach requires a commensurate number of a priori if-then-else statements. Hand-coded algorithms, in other words, simply do not scale.

In the AI field’s earliest years, this inherent limitation of GOFAI—what Pedro Domingo terms the “knowledge acquisition bottleneck”\(^\text{54}\)—went largely unnoticed. At the time, microprocessing technology itself was in its infancy, meaning that roboticists typically curbed their enthusiasm.\(^\text{55}\) But as Moore’s law took hold, and computer scientists began expanding their ambitions, the shortcomings of GOFAI became increasingly apparent.

By the 1980s, it was clear a new approach would be necessary to move the field forward.\(^\text{56}\) But for decades, none appeared—leading to a painful period of stagnation that came to be known as the “AI Winter.”\(^\text{57}\) Thanks to recent breakthroughs in an innovative approach known as “machine learning,” however, the AI winter is emphatically over.\(^\text{58}\)

\(^\text{54}\) See DOMINGO, supra note __.

\(^\text{55}\) See Auerbach, supra note __ (noting a “lack of computational processing ability” limited AI’s potential in its early years).

\(^\text{57}\) See id.

\(^\text{58}\) See RAY KURZWEIL, THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY (Viking Press, 2006) (writing "the AI winter is long since over").
2. How Do Machines Learn?

Machine learning refers to a subfield of AI that turns the GOFAI approach to algorithmic design on its head. Rather than laying out a specific set of instructions for the robot follow, engineers instead specify a goal or set of goals for the robot to achieve when tackling a given problem, often referred to as an “optimizing function.” Having established the desired goal, the robot is then left to author its own algorithms for achieving it, which it does by practicing on illustrative examples of the problem at hand.

At the outset, the robot usually just flails around in the dark—trying things essentially at random without a good idea of what will or won’t work. But each time its experimental efforts move it closer to the goal specified by its designers, the robot receives positive feedback and uses statistical techniques to improve its algorithms accordingly.\(^{59}\) Thus, instead of repeatedly executing an unchanging set of instructions, machine learning approaches enable robots to iteratively write their own instructions as they go.\(^{60}\) And if given enough examples to train on, these systems can prove remarkably adept at solving staggeringly complex tasks that admit of no obvious GOFAI solutions.

Therein lies the promise of machine learning. In situations where the endless fine-tuning of algorithmic instructions would be impossible to do by hand, machines themselves are able to successfully navigate the “knowledge acquisition bottleneck.”\(^{61}\) The program, thus, becomes the

\(^{59}\) And when it performs poorly, \textit{vice versa}.

\(^{60}\) \textit{See DOMINGO, supra} note __.

\(^{61}\) \textit{See id.}
programmer—obviating the need for engineers to anticipate a near-infinite number of edge cases.

When embedded in a broader software or hardware application, the possibilities created by this powerful approach are seemingly endless. Indeed, many leading experts now view machine learning as one among a rarified number of “general purpose technologies” (GPTs), the likes of which include the modern engine, the internet, and electricity.62 Such technologies are distinguished by their ability to “significantly enhance productivity or quality across a wide number of fields or sectors.”63 Paul David’s canonical study established three criteria of GPTs that machine learning appears to possess in abundance: “they have pervasive application across many sectors; they spawn further innovation in application sectors, and they themselves are rapidly improving.”64

Today, companies as diverse as Walmart, Facebook, and General Motors are adopting machine learning systems at “unprecedented rates . . . due to their ability to radically improve data-driven decision making at a cost and scale incomparable to that of humans.”65 It is this engineering approach that allows autonomous vehicles, self-flying drones, and warehouse

64 See id. (citing Paul A. David, The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox, 80 AM. ECON. REV. 355, 355–361 (1990)).

“fetching” robots66 to function with seeming ease in unimaginably complex environments. And beyond these robots of the more “essentialist” variety, machine learning also powers a vast array of entities classified as “cyber-physical systems” (e.g. Internet of Things devices), as well as disembodied digital systems often classified as software “bots.”67

B. When Robots Do Harm

Machine learning is not without its limitations, however. By breaking from the GOFAI paradigm, robots powered by this technique must also embrace a higher degree of uncertainty than their classically-encoded counterparts. Because machines share in the task of writing their algorithms, using machine learning requires sacrificing some degree of fine-grained control over a machine’s algorithms. Accordingly, designers seeking to implement this powerful approach also understand that it can produce robots which are difficult to predict, tricky to debug, and hard or even impossible to understand.68

For many years, this engineering reality limited the most successful machine learning applications to domains with high degrees of fault tolerance. After all, it is one thing for a song recommendation engine to miss its mark 20% of the time. But it is quite another for an autonomous vehicle’s LIDAR system to miss oncoming vehicles at a similar clip.

68 See DOMINGO, supra note __.
In the last decade, however, advances in the field have enabled engineers to dramatically improve the accuracy, predictability, and performance of numerous machine learning applications—thus, enabling them to entrust robots with positions of greater decision making authority than ever before. It is these advances that have allowed for the introduction of high-stakes robotics systems including self-driving cars, medical diagnostic robots, and even experimental autonomous passenger drones. Yet, even the most performant of these systems remains imperfect—much like the human decision makers they seek to emulate.

Accepting imperfection means also accepting the possibility that robotics systems will sometimes cause harm to others. Indeed, robots acting in harmful, occasionally catastrophic, ways are already a regular fixture of modern life. Robotic cars, aircraft, and manufacturing systems have killed and maimed third-parties; robots tasked with making online purchases have

\footnotesize

been “arrested” for illicitly buying narcotics on the dark web;73 and robots powering our largest social media platforms have even influenced the course of national elections.74

How is the legal system to remedy the harms caused by these, and countless other, robots? The easy cases will be those involving identifiable defendants who deliberately use robots against others. But all signs suggests that such cases will be the exception, not the rule. Far more often, robots comprised of complex amalgamations of software and hardware, designed by vast numbers of contributors, operating along diffuse causal chains, and executing algorithms that range from enigmatic to outright inscrutable will take actions that hurt others. In such instances, it may be hard to tell who owns the robot, who operates it, who trained it, whether it operated as intended, whether the harm could have been avoided, and perhaps even who the victims are. It is these types of scenarios that will pose the greatest challenges for remedies law in the years and decades ahead.

The following sections survey some of the harms complex robotics systems are likeliest to cause, providing contemporary examples of each.

1. Unavoidable Harms

Many robots operating free from software bugs, hardware errors, or failures of engineering precaution will nevertheless harm others. Some dangers, after all, are inherent to a

product or service. In such instances, calling for the total elimination of the danger is tantamount to calling for a prohibition on a product or service itself.

Harms of this variety are often referred to as “unavoidable harms” or, in some tort circles, as “comment k harms.” Conceptually, the notion of such harms tends to evoke products such as cigarettes, pharmaceuticals, alcohol, or knives. But as Robert Peterson notes, virtually no product or service is perfectly “safe,” whether it is a peanut butter jar or a tea cozy—much less a complex robotics application.

An illustrative example of the types of unavoidable harms that robots will cause can be found in the autonomous vehicle (AV) context. Ever since the transition from the horse drawn buggy to the modern automobile, vehicular transportation has entailed error-prone humans, strapped to hulking masses of steel, navigating highly complex environments at highly dangerous speeds. Accordingly, “[f]or more than a century, safety professionals have begun with the assumption that cars would crash, and focused their efforts on reducing the damage.” Experts too numerous to list have convincingly argued that this same assumption will also hold for cars

76 See Welge v. Planters Lifesavers Co., 17 F.3d 209 (7th Cir. 1994).

77 See Peterson, supra note __.

driven by robots as opposed to humans.79 For even superhumanly safe self-driving systems are subject to the laws of physics. And if AVs driven by such systems unexpectedly encounter an individual or object without sufficient time or distance to prevent a collision, harm of some variety may be unavoidable.80

2. Deliberate Least-Cost Harms

A close relative of the “unavoidable harms” detailed above involves “deliberate least-cost harms.” These harms are similar to unavoidable ones insofar as they are foreseeable by designers and, in some sense, cannot be avoided. But unlike their entirely unavoidable counterparts, deliberate least-cost harms fall into a grey area where there is sufficient forewarning to meaningfully react to an impending harmful event, but no way to avoid the harm entirely. The question, thus, becomes one of triage: Which of the harmful outcomes is the least costly?81

79 Today’s human-driven car accidents can cause unavoidable injuries to drivers, passengers, bystanders, and property. But there is an important difference between contemporary cars and the robcars of the future. Injury from a car crash today is typically the result either of the design of the car or, far more commonly, the behavior of the humans. The law distinguishes those two types of harm, holding manufacturers responsible for injuries caused by product design and human drivers responsible for the injuries they cause.79 But self-driving cars, as the name implies, drive themselves. The “design” of the product, in other words, is also responsible for its behavior on the road.

80 See, e.g., Noah Goodall, Ethical Decision Making During Automated Vehicle Crashes, J. OF THE TRANSP. RESEARCH Bd. (Dec. 2014), doi:10.3141/2424-07 (noting that “[w]hile any engineering system can fail, it is important to distinguish that, for automated vehicles, even a perfectly-functioning system cannot avoid every collision”).

81 Not in strictly monetary terms.
This type of lesser-of-evils dilemma, where injury is both inevitable and variable, was canonized by the philosopher Judith Thomson in a thought experiment known as the “trolley problem.” In its most popular formulation, the trolley problem proceeds as follows:

[A]n observer [] is witness to a runaway trolley car barreling toward five unwitting workers on the tracks ahead. The observer, however, is standing at a switch. If pulled, it will divert the trolley onto another track where only one unlucky worker awaits. Tragedy, of some kind, is foreordained. But the observer holds the proverbial power to steer fate: Turn the trolley, killing the one or refrain from turning the trolley, killing the five?

Ever since the introduction of experimental AVs to U.S. roadways, scenarios involving killer robocars thrust into trolley problem-like dilemmas have captured the public and academic imagination. But situations of this kind will likely be the exception, not the rule, when it comes to deliberate least-cost harms. Far likelier, albeit subtler, scenarios involving least-cost harms

83 Thomson’s original experiment asked subjects to imagine themselves as the trolley driver rather than as an outside observer at a switch.

85 See, e.g., WENDELL WALLACH & COLIN ALLEN, MORAL MACHINES: TEACHING ROBOTS RIGHT FROM WRONG, 16 (Oxford U. Press 2009); Joel Achenbach, Driverless Cars Are Colliding With the Creepy Trolley Problem, Wash. Post (Dec. 29, 2015) (arguing “we’re suddenly in a world in which autonomous machines, including self-driving cars, have to be programmed to deal with Trolley Problem-like emergencies in which lives hang in the balance); John Markoff, Should Your Driverless Car Hit a Pedestrian to Save Your Life, N.Y. Times (June 23, 2016), https://www.nytimes.com/2016/06/24/technology/should-your-driverless-car-hit-a-pedestrian-to-save-your-life.html (discussing the “dilemma of robotic morality” and its implications for engineers designing robotic decision making systems); Matt Simon, To Make Us All Safer, Robocars Will Sometimes Have to Kill, Wired (Mar. 13, 2017) (The “trolley problem . . . illustrates a strange truth: Not only will robocars fail to completely eliminate traffic deaths, but on very, very rare occasions, they’ll be choosing who to sacrifice—all to make the roads of tomorrow a far safer place.”).

86 One curious approach is to ignore the problem altogether. German law simply forbids consideration of the trolley problem in programming AVs, saying that an AV headed for an accident cannot alter its
will involve robots that make decisions with seemingly trivial implications at an individual level, but which result in non-trivial impacts at scale. ⁸⁷

Self-driving cars, for example, will rarely face a stark choice between killing a child or killing two elderly people. But thousands of times a day, they will have to choose precisely where to change lanes, how closely to trail another vehicle, when to accelerate on a freeway on-ramp, and so forth. Each of these decisions will entail some probability of injuring someone. And making the “right” decision will require weighing the probability of causing harm, exploring what alternatives exist, and specifying how the car should value the different types of harms that will foreseeably impact different stakeholders.

Consider, for example, the seemingly trivial engineering choice of how much buffer to provide a cyclist. Suppose that a vehicle were programmed to give an extra inch or two of room to any cyclists it passed, out of an abundance of caution. From any single cyclist’s perspective the change would be scarcely perceptible. The vehicle would overtake them at a distance that appeared identical to any other self-driving cars programmed to not provide the extra distance.

But if that same design choice scaled to an entire fleet of vehicles that regularly encountered hundreds of thousands—or even millions—of cyclists, even a difference of such miniscule proportions could be expected to impact cyclist collision rates. Given this reality, providing the additional buffer room may seem like a no-brainer.

—

behavior to prefer one life over another. See Dave Gershgorn, Germany’s Self-Driving Car Ethicists: “All Lives Matter,” QUARTZ, Aug. 24, 2017. That does leave open the question of what the AV should do in an unavoidable accident situation, though. “Nothing” may often be the worst response.

⁸⁷ See Casey, Amoral Machines, supra note ___ (discussing how minute differences in how individual vehicles operate could have profoundly consequential macroscopic effects).
But not so fast. The same inch that benefits the cyclists might have the opposite effect for the vehicles’ passengers, putting them at a marginally higher risk of head-on collisions due to the vehicles’ position closer to the center of the roadway. Once again, the seemingly infinitesimal uptick in risk implicated by such a decision would be all but imperceptible during the course of any individual journey. But when viewed at scale, decisions of this kind will carry a profound ethical and legal weight—requiring designers to grapple with complex, highly fraught tradeoffs inherent to deliberate least-cost harms.

3. Defect-Driven Harms

One of the more obvious ways robots will cause harm is through traditional hardware or software “defects.”

Harms of this variety occur when a software bug, hardware failure, or insufficient level of precaution by designers causes a robot to injure others. For much of the field’s history, these types of defect-driven harms have been relatively easy to define and identify. They typically occur when designers intend a robot to work in a certain way, but screw up, causing it to behave differently, as was recently alleged in a case involving a robot that “escaped” from its section of a trailer hitch assembly plant, “entered [a technicians] work area, surprise[ed] her, and crushed her head between hitch assemblies.”

As robots continue take on increasingly sophisticated forms, however, defining and identifying these types of “defects” will likely become more challenging. Is a self-driving car to be

88 This piece does not discuss substantive tort law distinctions found in modern tort doctrine.

deemed “defective” if it brakes more slowly than a human driver? What if it braking faster than humans, but not as fast as other self-driving cars? Or as fast as other self-driving cars, but not as fast as it might possibly brake if reprogrammed?

Additional legal wrinkles involving defect-driven harms will also arise in systems involving “humans-in-the-loop,” where responsibility for controlling a robot is distributed between algorithmic and human decision makers. A boundary-pushing example of this phenomenon recently occurred in Tempe, Arizona, when a self-driving car deployed by Uber fatally struck a pedestrian. Although the vehicle was capable of autonomy under certain design parameters, it also relied on a backup driver to take control in the event of an emergency. Yet one night, when a pedestrian unexpectedly walked out in front of one such vehicle, neither the backup driver nor the self-driving system took steps to avoid the collision. As a result, the vehicle collided with the pedestrian at speeds in excess of 30mph without breaking or swerving. Should the backup driver be held responsible for failing to take over? Or was it unreasonable for Uber to put the operator in such a position to begin with? Does it matter how the car was programmed?

92 See id.

94 See id.
How the legal system will eventually resolve controversies involving these types of “moral crumple zones”95 remains an open question, even among experts.96 But none question the reality that robots exhibiting increasingly complex design defects will continue to harm individuals for the foreseeable future.

4. Misuse Harms

Sometimes, people will misuse robots in a manner that is neither negligent nor criminal but nevertheless threatens to harm others. Given the unpredictable nature of machine learning systems, and the nearly infinite variety of ways humans can interact with modern robotics applications, these types of harms are particularly difficult to guard against. Already, media reports are rife with examples of individuals attempting to manipulate robot behaviors, deceive or “trick” robot perception systems, probe robots for safety or security vulnerabilities, or deploy robots in ways that adversely impact others.97 Whether such forms of meddling are deemed to have been preventable by manufacturers, or to have fallen within the scope of the robot’s intended design, will have significant implications for the substantive legal doctrines that will govern the ultimate outcomes and for who bears the resulting liability.

96 Whether these types of questions will, ultimately, be resolved under the umbrella of negligence, breach of warranty, enterprise liability, or traditional product “defect” remains unclear.

A now infamous example of robot misuse comes from Microsoft’s Twitter chatbot, “Tay.” Unlike chatbots designed to maintain a static internal state upon deployment, Tay’s system updated itself in real time by learning from interactions with users.⁹⁸ Within hours of going live, however, hundreds of Twitter users began intentionally tweeting “misogynistic, racist, and Donald Trumpist remarks” at the robot.⁹⁹ Thanks to this barrage of unforeseen misuse,¹⁰⁰ “Tay rapidly morphed from a fun-loving bot . . . into an AI monster.” Tay lasted a mere sixteen hours on the platform before Microsoft intervened. After initially declining to comment, the company eventually noted that a “coordinated effort by some [Twitter] users to abuse Tay’s commenting skills” led it to shut the robot down.¹⁰¹

One notable feature of the Tay example is that Microsoft itself did not engage in misuse. Nor is there any reason to think that Tay’s design was defective. Rather, the robot’s rogue conduct resulted from the input of third-parties. But owners, too, will misuse robots, or at least use them in ways we may not expect. Drone owners, for example, might use them to spy on neighbors or invade their privacy. Similarly, self-driving car owners might modify their vehicles to protect occupants at all costs, even if doing so imposes greater risks on bystanders. And

⁹⁹ But we repeat ourselves.

¹⁰⁰ Misconduct from the perspective of Microsoft, at least.

predictive learning algorithms that might decide everything from the cost of your life insurance to where you end up in an emergency room queue to whether you are granted parole are all dependent on the training data they are fed. And that training is only as good as the (often imperfect) data users feed the robot.102

5. Unforeseen Harms

Many harms attributable to robots will be neither defect-driven, unavoidable, nor the result of misuse, but will simply be unforeseen by those who designed them.103 Harms of this variety are by no means unique to the field of robotics. Indeed, unpredictability is part and parcel of any sufficiently complex system. It’s why your computer periodically crashes104 and perhaps why new typos seem to pop up in our writing even though we’ve read through a draft at least 30 times.105

But if the last decade of progress in the field of robotics has taught us anything, it is that robotics systems using machine learning techniques can be extremely hard to predict, rendering them particularly susceptible to causing unforeseen harms. This phenomenon owes, in large part, to the fact that machine learning systems “enter[] into a social world already in motion, with an existing set of assumptions and expectations about what is likely and unlikely, possible

102 We discuss this problem in more detail infra notes ___-___ and accompanying text.

103 Either because of resource constraints involving safety testing or because they were genuinely unforeseeable.

105 OK, maybe not that last one.
and impossible.” Yet because such systems are, by definition, empowered to learn with limited direct human intervention, the behaviors that they develop can also be unconstrained by the norms, assumptions, and expectations that implicitly govern humans.

Sometimes, this lack of constraint can lead to astonishing, utterly unintuitive results. Robots deployed using machine learning techniques, for example, have devised wholly new tactics for conquering strategy games, have inadvertently set off wars of proliferation with bots on online platforms (leading to bizarre pricing decisions), and have even invented “codewords” to communicate with other AI systems that were indecipherable by their designers. Because of this unpredictability, many complex robots will carry an enormous range of unforeseeable risks—even where numerous precautions are taken in advance of deployment.

106 See Balkin, The Path of Robotics Law, supra note __.

107 See Domingo, supra note __.

108 See Balkin, The Path of Robotics Law, supra note __.

109 See David Silver et al., Mastering the Game of Go Without Human Knowledge, 555 Nature 354 (Oct. 19, 2017); Nicola Twilley, Artificial Intelligence Goes to the Arcade, NEW YORKER (Feb. 25, 2015), https://www.newyorker.com/tech/elements/deepmind-artificial-intelligence-video-games (writing that “without any human coaching, [an AI system designed to play arcade games] not only became better than any human player but [] also discovered a way to win that its creator never imagined”).

To be clear, the unpredictability inherent to machine learning is also one of its greatest strengths. An AI that just engages in rote calculation of equations we already know the answer to might get to the result faster than humans can, but it won’t be any better at understanding or predicting outcomes than humans. We *want* AIs to do unpredictable things, so long as those things lead to good results. If an AI can reliably conclude that butterfly population variance in Tibet affects the weather in Indonesia, it will be better than humans at predicting the weather. And if a self-driving car can conclude from subtle changes in the velocity of the cars surrounding it that a crash is imminent, it offers greater hope of avoiding such crashes than a human driver might.112

But the unpredictability of the path that robots will take to their goals means that they may do things that make perfect sense given what they were asked to maximize, but which turn out to reflect either poorly specified goals or flawed training data. The introduction’s example of a drone learning to intentionally sabotage its flight path provides just one of the now countless documented instances of unforeseen robot behaviors. Another comes from the healthcare domain.

In the 1990’s, a pioneering multi-institutional study sought to use machine learning techniques to predict health-related risks prior to hospitalization.113 After ingesting an enormous quantity of data covering patients with pneumonia, the system learned the rule:

112 See Rob Ludacer, *Watch a Tesla Predict an Accident and React Before It Even Happens*, BUS. INSIDER (Dec. 29, 2016), http://www.businessinsider.com/tesla-avoids-accident-before-happens-2016-12 (showing a video of Tesla’s Autopilot doing just that).

\[
\text{has_asthma}(x) \Rightarrow \text{lower_risk}(x)
\]

The colloquial translation being “that patients with pneumonia who have a history of asthma have lower risk of dying from pneumonia than the general population.”\(^{114}\)

The machine-derived rule was curious, to say the least. Far from being protective, asthma can seriously complicate pulmonary illnesses, including pneumonia. Perplexed by this counterintuitive result, the researchers dug deeper. And what they found was troubling.

They discovered that “patients with a history of asthma who presented with pneumonia usually [had been] admitted not only to the hospital but directly to the Intensive Care Unit (ICU).”\(^{115}\) Once in the ICU, asthmatic pneumonia patients went on to receive more aggressive care, thereby raising their survival rates compared to the general population.\(^{116}\)

The rule, in other words, reflected a genuine pattern in data. But the machine had confused correlation with causation—"incorrectly learn[ing] that asthma lowers risk, when in fact asthmatics have much higher risk.”\(^{117}\)

Thankfully, the relative simplicity of the machine learning model deployed by the researchers in this instance allowed them to detect, reverse engineer, and remedy the situation

\(^{114}\) Rich Caruana et al., *Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission* in *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* (2015).

\(^{115}\) See Buchanan et al., *supra* note __.

\(^{116}\) *Id.*

\(^{117}\) *Id.*
before any harmful behavior resulted.118 Indeed, the algorithm taught humans something about the flaws in existing care techniques. But that is a luxury which will not be afforded to all robot designers.119 Indeed, as Marc Canellas et al. have convincingly argued, the likelihood of these types of unpredictable events actually tends to rise alongside the complexity of computational models, even though the overall likelihood of an abnormal event may remain constant.120 This phenomenon owes to the highly leptokurkic121 failure curves often observed in complex systems, where a “reduced likelihood of failure in a general sense” tends to be accompanied by “an increase[d] likelihood of more severe failures.”122

118 See Caruana, supra note __.

119 IMB’s Watson, for example, was recently reported as displaying “multiple examples of unsafe and incorrect treatment recommendations.” Jennings Brown, IBM Watson Reportedly Recommended Cancer Treatments That Were ‘Unsafe and Incorrect’, GIZMODO (Jul. 25, 2018), https://gizmodo.com/ibm-watson-reportedly-recommended-cancer-treatments-tha-1827868882.

121 Leptokurkic distributions show higher peaks around mean values and higher densities of values at the tail ends of the probability curve.

122 Canellas et al., supra note __ at 41.
6. **Systemic Harms**

People have long assumed that robots are inherently “neutral” and “objective,” given that robots simply intake data and systematically output results. But they are actually neither. Robots are only as “neutral” as the data they are fed and only as “objective” as the design choices of those who create them. When either bias or subjectivity infiltrates a system’s inputs or design choices, it is inevitably reflected in the system’s outputs. Accordingly, those responsible for overseeing the deployment of robots must anticipate the possibility that algorithmically biased applications will cause harms of this systemic nature to third-parties.

Robots trained on poorly curated data sets, for example, run the risk of simply perpetuating existing biases by continuing to favor historical *haves* against *have-nots*. In such

instances, different outcome distributions in the data reflecting racial, ethnic, social, or economic disparities can become self-fulfilling prophecies—leaving already marginalized groups at the mercy of past injustices.

Similarly, the algorithmic goals and sub-goals that define robot behavior can also lead to biased results. After all, each decision in the process of developing an algorithm necessarily reflects the values of its designers. And when designers fail to consider particular stakeholders, or fail to specify goals that accurately map onto their desired outcomes, their robots may unfairly privilege certain individuals or groups over others. Hence, Cathy O’Neil’s provocative description of an algorithm as an “opinion embedded in mathematics.”

Instances of bias or subjectivity infiltrating robotics systems are already well documented. A recent example comes from the car insurance industry. U.S. law obliges all car owners to purchase insurance for their vehicles. But not all premiums are created equal. A recent study by Consumer Reports found that contemporary premiums depended “less on driving habits and increasingly on socioeconomic factors,” including an individual’s credit scores. After analyzing “2 billion car insurance price quotes from more than 700 companies,” the study found that “[c]redit scores . . . factored into [insurance] algorithms so heavily that perfect drivers with low credit scores often paid substantially more than terrible drivers with high scores.” The study’s findings raised widespread concerns that AI systems used to generate these quotes could “create

125 See id.

126 A credit score “summarizes an individual’s credit history and financial activities in a way that informs the bank about their creditworthiness.” See Lydia T. Liu et al., supra note __.
negative feedback loops that are hard to break.” According to one expert, “Higher insurance prices for low-income people can translate to higher debt and plummeting credit scores, which can mean reduced job prospects, which allows debt to pile up, credit scores to sink lower, and insurance rates to increase in a vicious cycle.” Similar examples of robotics systems causing, or threatening to cause, systemic harms have been documented in the domains of predicting policing, criminal sentencing, targeting advertising, search optimization, and facial recognition, among many others.

To be sure, all advantages are comparative. AI may replicate bias in existing legal systems. But it also has the potential to reduce that bias by replacing human instinct with actual metrics. But it is important that those new objective measures don’t simply replicate the problems of their subjective predecessors.

128 See id. (quoting Cathy O’Neil, a data scientist and author of Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy).

7. Collateral Harms

As we continue to invite robots into our homes, personal lives, and places of work, the types of collateral risks they pose to our privacy, security, environment, and even livelihoods will also grow in kind. Some harms, after all, simply arise as a byproduct of pervasiveness. And the threat of these types of harms emerging will be especially true in modern robots, given that they often combine the uncertainties of machine learning, the “promiscuity of data,” the inherent security risks of computational systems, and the threat of physically affecting the real world.

Take, for example, the now commonplace phenomenon of inviting “Internet of Things” (IoT) devices, such as an Amazon Echo or Google Home, into our homes to monitor our every utterance. For many (ourselves included), the convenience of simply issuing a voice command to set a cookie timer, play a song, or order a cab can be too good to pass up. Yet, in exchange for the capabilities offered by these powerful voice recognition bots, we must also accept the reality of their 24-7 surveillance of our most intimate settings.

All signs suggest that the invasiveness of robotics applications like these will only increase in the years ahead. As the capabilities and price points of home security bots, robo vacuums, office assistants, and even “robomaids” improve with time, so too will the scope and the granularity of the data they capture. Data collection practices of this magnitude will not only present legal oversight challenges to those tasked with gathering it, but they will also present novel challenges for those seeking to secure robots against external threats. As James

131 This phrase comes from the scholar Ryan Calo and refers to the fact that digital information “faces few natural barriers to dissemination.” See Calo, Robotics and the Lessons of Cyberlaw, supra note __ at 532.

132 Internet of Things refers to the embedding of networked devices in everyday objects, thereby allowing them to gather, send, and receive data.
Grimmelmann notes, “the more opportunities for innovation, the more possible targets for hacking.” Accordingly, the very same applications that now gather unprecedented amounts of data from users are also likely to pose unprecedented risks in the event that such data gets into the wrong hands.

Even if they aren’t hacked, the mere presence of these devices can change human behavior. People act differently when they think they are being watched or listened to, even if the thing doing the watching is only a picture of a pair of eyes taped to the computer. And if a robot is in your house, you’re not just imagining it: it probably is watching and listening to you.

Add to this brave new reality the awesome power of cloud computing and networking technologies, and the threat of collateral harms is only exacerbated. Armies of robots linked through networking technologies will enable single, centralized systems to impact our physical and digital environments in profound new ways. Seemingly microscopic design choices within systems controlling fleets of tens of thousands of autonomous vehicles, for example, could produce macroscopic effects including changes to traffic patterns, transportation pricing, congestion, and even energy grid usage. We may, for example, wake up one morning to discover that Google Maps has routed highway traffic through our quiet neighborhood streets. Such a decision harms people who never use Google Maps or self-driving cars. But so might its opposite.

134 Ryan Calo, People Can Be So Fake: A New Dimension to Privacy and Technology Scholarship, 114 PENN ST. L. REV. (2010); Margot E. Kaminski et al., Averting Robot Eyes, 76 MD. L. REV. 983 (2017) (noting this problem and offering design principles to minimize it).

Suppose, instead, that the same routing algorithm avoided residential areas entirely, causing greater congestion on highways and interstates than was socially optimal.

Finally, some of the collateral harms presented by robots may not feel like traditional “harms” at all, but will be the unintended economic effects of certain behaviors, including net positive ones. Robots, for example, displace jobs. And though delivery drones, manufacturing robots, and driverless trucks may serve as the usual suspects in this regard, many other less obvious applications pose similar threats. A more accurate parole prediction algorithm, for example, could result in a smaller incarcerated population. As a consequence, cities and towns across rural America may need fewer prison guards and fewer construction workers to build their prisons. In the long term, algorithms like these will almost certainly prove to be a net benefit to society. But their short-term negative consequences may be especially pronounced for discrete segments of society—raising new questions surrounding the law’s role in remedying them.

II. Remedies and Robots

The injuries we described in the last part will lead to lawsuits of various types. Indeed, they already have. We don’t intend to discuss all the ways courts might apply the substantive

law to those legal harms. There is a growing literature doing just that.138 Rather, our focus is on the practical end game of these coming lawsuits: the law of remedies. Having identified a wrong, courts try to make it right by applying various remedies. But as we will see, when the defendant is a robot (or its owner) that can be easier said than done.

\textbf{A. The Law of Remedies}

A remedy, broadly defined, is anything that a judicial body can do for an individual who has been harmed or is threatened with harm. Remedies are the means by which substantive law is given its actual effect. Once a plaintiff is adjudged to have suffered harm under the laws governing primary rights and duties, the law must provide a remedy for those rights and duties to have meaning. Without a remedy, lawfulness and unlawfulness are rendered merely nominal distinctions—or, as it is often more pithily phrased, “No right without a remedy.”139

There are two fundamental kinds of remedies: those that are “compensatory” and those that are “preventative.”140 Compensatory remedies aspire to address the wrongs suffered by an individual through monetary transfers between plaintiff and defendant, compensating the

139 Frederick Pollock, \textit{The Continuity of the Common Law}, 11 Harv. L. Rev. 423, 424 (1898) (noting the phrase already functioned as a “maxim” in the 19th century).

140 DOUGLAS LAYCOCK, \textit{MODERN AMERICAN REMEDIES} 3-7 (Aspen Publishers 4th ed. 2011).
plaintiff for the injury suffered. Preventative remedies, meanwhile, aspire to avoid this transfer entirely. They seek to discourage, avert, or literally undo harm, rather than retrospectively compensating victims once harm has occurred. Some preventative remedies accomplish this aim by threatening lawbreakers with damages, specific performance, or restitution in an effort to deter unlawful conduct. But sometimes courts seek to prevent harm more directly by enjoining individuals from acting or, less commonly, ordering them to take affirmative steps to avoid violating the law.

One goal of remedies law is to make plaintiffs whole by restoring them to the condition they would have been in “but for” the wrong—what Doug Laycock calls restoring the “plaintiff’s rightful position.” Traditionally, this compensatory goal has focused on the plaintiff in the dispute—presumably a legal person. Compensation is normally accomplished through the award of legal damages.

141 Id. at 11.
142 Id. at 11-15.
143 It is possible to imagine robot plaintiffs. Robots can certainly be injured by humans. You might run a stop light and hit my self-driving car, for example. Or people might attack a robot. See, e.g., Isobel Hamilton, People Kicking These Food Delivery Robots is an Early Insight Into How Cruel Humans Could be to Robots, BUS. INSIDER (Jun. 9, 2018), https://www.businessinsider.com/people-are-kicking-starship-technologies-food-delivery-robots-2018-6?r=US&IR=T (the headline says it all); Russ Mitchell, Humans Slapped and Shouted at Robot Cars in Two of Six DMV Crash Reports This Year, L.A. TIMES (Mar. 5, 2018), http://www.latimes.com/business/autos/la-fi-hy-human-attacks-robot-cars-20180305-story.html; Silicon Valley Security Robot Attacked by Drunk Man—Police, BBC NEWS (Apr. 26, 2017), https://www.bbc.com/news/world-us-canada-39725535. The robot itself presumably won’t have a right to sue, at least for the foreseeable future. But the owner of the robot might sue for damages. That doesn’t seem to present significant remedies issues different from ordinary property damages cases, though. Valuing the loss of an individual robot or AI that has learned in ways that differ from factory settings may present difficulties akin to the valuation of any unique asset. But that’s likely to be rare, since people will presumably back up their unique AIs periodically.
But remedies law also focuses substantial attention on defendants. Equitable restitutionary remedies such as unjust enrichment, disgorgement, and constructive trust are designed not to compensate plaintiffs but to deprive defendants of the benefit of wrongful acts. These remedies are designed not to make the plaintiff whole, but to make the defendant “whole” (in the sense that he is no better off than he would have been but for the wrongdoing).

Injunctive relief can serve the purpose of putting either the plaintiff or the defendant in their rightful position. Injunctions order the defendant not to act (or, less commonly, to take some affirmative act). Generally, injunctions are designed to prevent a future harm or stop an ongoing one. But they can also aim to make affirmative changes in the world, by seeking to change existing structures that have led to past injuries.\(^\text{144}\)

Remedies law also contains many elements of moral judgment, punishment, and deterrence. For instance, the law will often act to deprive the defendant of gains, even if the result is a windfall to the plaintiff, because we think it is unfair to let the defendant keep those gains. Courts may also enhance damages beyond what is necessary to compensate plaintiffs or deprive defendants of profits in order to punish behaviors we deem reprehensible.

Most of these non-compensatory remedies laws were explicitly designed to change the behavior of people. But the remedial mechanisms used to shape human behavior cannot be relied upon to do the same when machines, not people, engage in harmful conduct. The remainder of this Part considers some of the complications that robots bring to various remedies rules.

\(^{144}\) Courts do this when they order structural reforms to prisons, hospitals, or schools, for instance. See, e.g., Missouri v. Jenkins, 515 U.S. 70 (1995); Hutto v. Finney, 437 U.S. 678 (1978).
B. The Nature of Remedies

1. Normative Versus Economic Perspectives

The choice of remedy for a given legal violation often stems from fundamental assumptions regarding the nature of the substantive law itself. Two views predominate. A “normative” view of substantive law sees it as a prohibition against certain conduct, with the remedy being whatever is prescribed by the law itself. The defendant, on this view, has engaged in a wrongful act that we would stop if we could. But because it is not always possible to do so—commonly because the act has already occurred—remedies law seek to do the next best thing: compensate the plaintiff for the damage done. This view is consistent with laws enforced by property rules.¹⁴⁵

An alternative view of substantive law, however, conceptualizes the role of remedies differently. Under this “economic” view, the substantive law alone forbids nothing. Rather, it merely specifies the foreseeable consequences of various choices, with the available remedies simply signaling the particular penalties associated with particular conduct. Damages, on this view, are simply a cost of doing business—one we want defendants to internalize but not

necessarily to avoid the conduct altogether.146 This approach is more commonly associated with liability rather than property rules.147

To help illustrate the difference between these two views, consider an everyday encounter with a traffic light. Under the normative view, a red light stands as a prohibition against traveling through an intersection, with the remedy being a ticket or fine against those who are caught breaking the prohibition. We would stop you from running the red light if we could. But because policing every intersection in the country would be impossible, we instead punish those we do catch in hopes of deterring others.

Under the economic view, however, an absolute prohibition against running red lights was never the intention. Rather, the red light merely signals a consequence for those who do, in fact, choose to travel through the intersection. As in the first instance, the remedy available is a fine or a ticket. But under this view, the choice of whether or not to violate the law depends on the willingness of the lawbreaker to accept the penalty.

In one of his more arresting turns of phrase, Oliver Wendell Holmes’ famously described the economic view of substantive law as that of a “bad man.” According to Holmes:

\begin{quote}
If you want to know the law and nothing else, you must look at it as a bad man, who cares only for the material consequences which such knowledge enables him to predict, not as a good one, who finds his reasons for conduct, whether inside the law or outside of it, in the vaguer sanctions of conscience.148
\end{quote}

146 See Ian Ayres & Eric Talley, Solomonic Bargaining: Dividing a Legal Entitlement to Facilitate Coasean Trade, 104 Yale L.J. 1027 (1995); see also Louis Kaplow & Steven Shavell, Do Liability Rules Facilitate Bargaining? A Reply to Ayres and Talley, 105 Yale L. J. 221 (1995) (responding the Ayres’s and Talley’s argument that, when bargaining is imperfect, "liability rules possess an 'information-forcing' quality" that "may induce both more contracting and more efficient contracting than property rules).147 See Calabrese & Melamed, supra note ___.

148 Oliver Wendell Holmes, Jr., The Path of the Law, 10 Harv. L. Rev. 457, 458-459 (1897).
The measure of the substantive law, in other words, is not to be mixed up with moral qualms, but is simply coextensive with its remedy—no more and no less.

While some law and economics scholars accept this precept as fundamental, in many behavioral contexts it does not tell the entire story. Although the actual consequences associated with lawbreaking play a substantial role in much of human decision making, many individuals nonetheless view law as having distinctly normative underpinnings. As Doug Laycock notes, “It is certainly true that some individuals will obey the law only if the consequences of violation are more painful than obedience. . . . [But the fact that] some individuals are unmoved does not eliminate the statement’s moral force for the rest of us.”149

An illustrative example of this phenomenon in action comes from the Ohio case, French v. Dwiggins, involving a fatal motorcycle accident.150 At issue was a recently passed statute expanding the avenues of recovery available to plaintiffs who pursued wrongful death claims. The court wrote that, although the expansion of remedies coincided with the timing of the accident, the defendant “could not be reasonably expected to conduct his affairs any differently” than under the prior regime. The court reasoned that when it came to this life and death matter, the marginal differences in available remedies played no role in the defendant’s decision making leading up to the accident.

149 Laycock, Modern American Remedies, supra note ___ at 7. See also Yuval Feldman, The Law of Good People: Challenging States’ Availability to Regulate Human Behavior (Cambridge Univ. Press forthcoming 2018) (arguing that we should focus legal rules on the signals they send to good people rather than just constraining the behavior of bad people).

Holmes, himself, could hardly have been said to disagree with the court’s reasoning.151 Despite his provocative use of the “bad man” metaphor to clarify the role of the legal rules for those acting out of pure self-interest, he understood the complex—oftentimes competing—roles that normative concerns play in everyday decision making.

2. \textit{Bad Men and Good Robots}

People are rarely forced to grapple with the distinctions between the normative or economic view of substantive law.152 But robots, or at least their programmers, are afforded no such luxury. Sure, robots can be prohibited from engaging in certain types of conduct, assuming their designers understand and control the algorithm by which they make decisions. But implementing a legal remedy via computer code necessarily involves adopting either a normative or economic view of the substantive law.

That’s because a true “prohibition” can only be communicated to a computer system in one of two basic ways: . It can be encoded in the form of an “IF, THEN”153 statement that prevents a robot from engaging in particular types of conduct, or it can be coded as a negative weight for

151 See, e.g., Marco Jimenez, \textit{Finding the Good in Holmes’s Bad Man}, 79 FORD. L. REV. 2069, 2069 (observing that “a careful reading of Holmes suggests that he was himself well aware of the intimate relationship between law and morality, and seems to have recognized, somewhat surprisingly, that only by engaging in an analytical separation of these two concepts can they then be normatively reunited in an intellectually consistent and satisfying manner”).

152 Corporations are more likely to do so. Because we can’t put a corporation itself in jail, corporate compliance—even with penalties designed to stop conduct rather than just internalize costs—might nonetheless be viewed as a cost of doing business for the corporation.

153 An IF, THEN statement—or “if-then-else statement”—refers to an expression that conditionally executes a statement or group of statements.
engaging in that same conduct. An IF, THEN statement operates like an injunction, while a weight in a decision-making algorithm operates like a liability rule.

Returning to the example of the red light, a programmer seeking to prohibit a robot from breaking the law could do so with an IF, THEN statement along the lines of: “If the robot encounters a red light, then it will not travel into the intersection.” Similarly, a programmer seeking to achieve that same prohibition in a probabilistic system could do so by assigning an infinitely high negative consequence to traveling into the intersection when the light is red.

An IF, THEN statement is an absolute rule. If a triggering event occurs, then a particular consequence must inexorably follow. As a practical matter, so is an infinitely negative weight.\footnote{No matter how improbable, any non-zero probability multiplied negative infinity returns negative infinity.} Both achieve the functionally equivalent result of prohibiting the unlawful conduct—the goal of a normative vision of substantive law. But in order to achieve this normative vision, the prohibition must be implemented without regard for the cost of a ticket.

Because the law is encoded as an absolute in its programming, the robot will always obey the law. That’s not true of people. If we want legal rules to be self-executing, the ability to impose perfect obedience may be a good thing.

By contrast, if the underlying theory of a remedy is economic, the machine’s decisionmaking calculus is fundamentally different. Once more, the example of the traffic light helps to clarify this distinction. To an economist, the substantive law and its remedy do not signal a “self-executing refusal never run a red light” but instead an understanding that “running a red light is associated with a small chance of a modest fine and a somewhat increased chance of a
traffic accident which will damage the car and may require the payment of damages to another.”

Under this view, the remedy, and its risks, are both expressed in stochastic terms. They translate into probabilistic costs within the robot’s overall decisionmaking calculus. Those costs won’t be infinite, unless perhaps the penalty is death. They will instead reflect a “price” for running a red light that the algorithm might decide to pay depending on what benefits light-running offers.

Thus, under the economic view, the choice of whether or not to obey a law is, of necessity, the choice of a Holmesian “bad man.” Normative views of substantive law—which we know shape certain aspects of human behavior—cannot be expected to translate cleanly into the robotics context with their associated remedies intact. If we want robots to adopt normative views of the law, prohibitions against unlawful conduct will need to be embedded in robots without regard to their economic remedies, requiring outright prohibitions of the type that famously got Asimov’s robots into so much trouble. After all, it’s hard to operate a robot with too many absolute prohibitions. And this will be particularly true of machine learning systems that develop their own algorithms, making it difficult for engineers to reliably predict how encoded prohibitions will interact with other rules.

Encoding the rule “don’t run a red light” as an absolute prohibition, for example, might sometimes conflict with the more compelling goal of “not letting your driver die by being hit by

155 And probably not even then, unless the robot’s algorithm preferences its own survival over most other outcomes (which it probably won’t).

156 ISAAC ASIMOV, THE REST OF THE ROBOTS 43 (1964) (remarking “[t]here was just enough ambiguity in the Three Laws [of robotics found in his works] to provide the conflicts and uncertainties required for new stories, and, to my great relief, it seemed always to be possible to think up a new angle out of the sixty-one words of the Three Laws”).

157 “Don’t become Skynet” does seem like a good one to include, though. See Genetic Algorithms Tip: Always Include This in Your Fitness Function, XKCD https://xkcd.com/534/.
an oncoming truck.” Humans know that “don’t run a red light” doesn’t really mean “don’t ever run a red light.” Rather it translates, roughly, to “don’t run a red light unless you have a sufficiently good reason and it seems safe.” Likewise, even weightier normative prohibitions, such “though shalt not kill,” come with an implied “unless . . .” But designers can’t put that in an IF, THEN statement unless they understand and specify all the exceptions to the rule.

More plausibly, robots operating in the real world will have to adopt algorithmic approaches to almost all complex problems that weigh particular actions against various goals and risks. As a result, the role of remedies in discouraging socially detrimental conduct will need to be reimagined in terms of cost internalization, as opposed to normative sanction or punishment. Deterrence makes sense where we are trying to affect individual behavior. But the logical way to "deter" a machine is to put the actual costs into the calculus it uses to make the decision. In practice, that translates into quantifying, and then operationalizing, the price we want robots to have to pay if they take certain actions we want to deter.\(^{158}\) And under the broadest interpretation of the economic view, even doctrines seemingly designed to prevent or deter conduct—like injunctions or prison sentences—could simply be construed as costs, albeit very high ones.

That said, we think it makes more sense to distinguish between remedies designed to internalize costs and those designed to enjoin, deter, or punish behavior. While some defendants faced with the latter may treat punitive damages or even prison sentences as mere costs of doing...

\(^{158}\) See Casey, Amoral Machines, supra note __.
business, the remedy’s ultimate intent is to deter unlawful conduct, not to simply internalize its social costs.

For the vast majority of applications, legal remedies will likely be incorporated into machines through their “economic” formulation—resulting in robots that, by design, adopt this view of substantive law exclusively. Unless specifically programmed otherwise, distinctions between normative and economic goals will be utterly lost on robots. Thus, while it may be true to say that it is the rare “individual [who] will obey the law only if the consequences of violation are more painful than obedience,”¹⁵⁹ this will be definitionally true of robots. And for reasons made clear in virtually every sci-fi plot line featuring robots, it will only be on the rarest of occasions that it actually makes sense to completely bar robots from engaging in certain types of conduct.

It, thus, appears that Holmes’s archetypal “bad man” will finally be brought to corporeal formhough, ironically, not as a man at all. And if Holmes’s metaphorical subject is truly “morally impoverished and ana, tlytically deficient,” as some accuse, it will have significant ramifications for robots.¹⁶⁰

C. Teaching Robots to Behave

Each of the major types and purposes of remedies we identified in section A will face challenges as applied to robots and AI. In this section we consider each in turn.

¹⁵⁹ Laycock, Modern American Remedies, supra note ___ at 7.
¹⁶⁰ See CHRISTOPH BEZEMEK, BAD FOR GOOD - PERSPECTIVES ON LAW AND FORCE, THE FORCE OF LAW REAPPLIED 1 (Springer Bezemek/Ladavac eds. 2016).
1. **Who Pays?**

The first purpose of damages—to compensate plaintiffs for their losses and so return them to their rightful position—is perhaps the easiest to apply to robots. True, robots don’t have any money, so they can’t actually pay damage awards themselves. In fact, the European Union Parliament specifically cited this fact in its recommendation against giving robots personhood, noting that they are not fully functioning members of society that could afford to pay their debts.\(^{161}\)

But this problem is hardly insurmountable. The law will rise to challenge. Someone built the robots, after all. And someone owns them. So if a robot causes harm, it may make sense for the company behind it to pay, just as when a defective machine causes harm today.

But it’s not that easy. Robots are composed of many complex components, learning from their interactions with thousands, millions, or even billions of data points, and often designed, operated, leased, or owned by multiple different companies. Which party is to internalize these costs? The one that designed the robot or AI in the first place? The one that collected and curated the data set used to train its algorithm in unpredictable ways? The users who bought the robot and deployed it in the field? Sometimes all of these roles will be one in the same, falling upon individuals operating in a single company, as was arguably the case when a self-driving Uber car killed a pedestrian in Tempe, Arizona.\(^{162}\)

\(^{161}\) See Amanda Wurah, *We Hold These Truths to Be Self-Evident, That All Robots Are Created Equal*, J. OF FUTURE STUD., DOI:10.6531/JFS.2017.22(2).A61.

\(^{162}\) See Wakabayashi, *surpra* note __.
In such instances, assigning responsibility may be easy. But often the chain of legal responsibility will be more complicated. Is a self-flying passenger drone an inherently dangerous product? If so, one set of rules might apply depending on whether it is the passenger or, instead, a third-party who is injured. Is the injury caused by this hypothetical drone the result of a design defect? If so, it may be the designer who should bear the risk. But suppose instead that it was the result of a software defect that a different designer introduced through an aftermarket modification. Here, the law commonly shifts responsibility away from the manufacturer, if the modification was one that it didn’t intend. Indeed, companies regularly void warranties when third-parties modify their products or use them in unexpected ways. Things will get even more complicated if, as seems likely, some or all of the robot code is open source, raising the question of who ultimately is responsible for the code that goes into the car.

Robot designers, owners, operators, and users will, of course, fight over who bears true legal responsibility for causing the robot to behave the way it did. And these complex distinctions don’t even account for the role of third-parties causing robots to behave in adverse ways, as recently happened when Microsoft’s chatbot, Tay, turned into a proverbial Nazi after interacting with trolls on Twitter.

165 See Lothar Determann & Bruce Perens, Open Cars, 32 BERKELEY TECH. L.J. 915 (2017); Bryan Casey, Open Source Robots (working paper 2018).

166 See Vincent, supra note ___. In retrospect, this event probably should have been a wake-up call for 2016.
These problems can, and will, eventually be resolved by the courts. But long before any consensus is reached, we should expect no shortage of finger-pointing, as different companies and individuals clamor to shift responsibility for harms to others in the causal chain—whether just to minimize their costs or because there are legitimate disputes about how the behavior of different actors in the chain interacted to cause the harm. And if the AI is self-learning, we may really never know who is to blame.

2. **Law as Action: Shaping the Behavior of Rabota Economicus**

The second prong of the remedies triad—damage awards and equitable remedies designed to internalize costs and deter socially unproductive behavior—will likely prove even more problematic. If we want to deter a robot, we need to make sure that it is programmed to account for the consequences of its actions. Embedding this type of decision making in robots often means quantifying the various consequences of actions and instructing the robot to maximize the expected net monetary benefits of its behavior.

This might sound like heaven to an economist. Finally, we will have a truly rational *homo economicus* (or, more accurately, a *rabota economicus*)¹⁶⁷ who will internalize the social costs of its actions (at least insofar as those costs are accurately calculated in the courts) and modify its behavior accordingly. And if machine learning systems estimate these costs correctly, robots will

be Learned indeed—presumably deciding to do harm only when it is socially optimal (i.e. when $B < PL$).168

But not so fast. Things are more complicated. Robots won’t reflexively care about money. They will do whatever we program them to do. We can align robot incentives with social incentives by properly pricing, punishing, or deterring the companies that design, train, own, or operate robots. Those companies, in turn, should internalize the relevant costs of their robots’ actions. It might be reasonable to assume that corporations and people want to maximize their rational self-interest and will, thus, program their robots accordingly. But not all will, either intentionally or unintentionally. There are at least three potential problems.

First, the goal of cost internalization through legal liability can only be accomplished by proxy. And it isn’t clear who the proxy will be. All the problems we noted in the prior section about assigning responsibility to compensate victims will return in spades as we try to force robots to account for the costs of their conduct. Even truly rational, profit maximizing companies with perfect information about the costs of their actions won’t internalize those costs unless they expect the legal system to hold them liable. If they are wrong, either in fearing liability when none exists or in believing someone else will foot the bill, their pricing will not accurately reflect reality.

Second, we are unlikely to have anything resembling “perfect” information about the potential harms robots may cause. As noted in Part I, robots operating in complex environments can do a wide variety of harmful things. Some of those things we want to stop altogether. Some

168 United States v. Carroll Towing Co., 159 F.2d 169, 171-73 (2d Cir. 1947) (the case in which Judge Learned Hand first expressed his canonical negligence formula).
we want to discourage except in unusual circumstances. Some we want to outright permit but still price appropriately to account for externalities imposed on others. And some we want to permit despite their costs to society because the alternatives are worse.

Getting robots to make socially beneficial, or morally “right,” decisions means we first need a good sense of all the things that could go wrong. Unfortunately, we’re already imperfect at that. Then we’d need to decide whether the conduct is something we want to ban, discourage, tax, or simply permit. Having done so, we would then need to decide who in the chain of robot design, training, ownership, and operation should be responsible for the harm, if anyone. Then, we would need to figure out how likely each adverse outcome is in any given situation. Finally, we would need to assign a price to those potential harms—even the amorphous ones, such as a reduction in consumer privacy. And we’d want to balance those harms against reasonable alternatives to make sure the decision the robot made was the right one, even if it did cause harm.

Our entire system of tort law has been trying to accomplish this feat for centuries. And it hasn’t worked very well. Indeed, most of tort is composed of standards, as opposed to hard and fast rules, for good reason. Standards give us the leeway to reserve judgement for later, when we might have a better idea of the actual facts leading up to an event.

Tort law, for example, requires us to value injury, and—if we are to deter conduct—to decide on a multiplier to that value that serves as an optimal deterrent. While there are some circumstances in which we calculate these values formulaically, the primary way we do so is

169 See, e.g., H. Laurence Ross, Settled Out Of Court (2d ed. 1980) (discussing the routinization of negligence and insurance compensation formulas for auto accidents).
by leaving it to juries to pick the right number after an injury has already occurred. Effective
deterrence in robots would, therefore, require accurate predictions about how juries might
assess specific harmful events, not to mention a host of other computationally complex
considerations. Scholars already find these types of predictions difficult, if not impossible, in the
human context.\footnote{See LAYCOCK, supra note __ at 165-6 (discussing multiple studies showing disagreement among juries
“over how to convert severity of injury into dollars”).} And we know virtually nothing of how juries will react to harmful events
caused by robots, particularly those exhibiting behaviors they can’t understand because the
algorithm is inscrutable.\footnote{See infra notes __ - __ and accompanying text.} As we discuss below,\footnote{See infra notes __ - __ an accompanying text.} this reality on the ground may even lead to
feedback loops, in which the very act of trying to price harms in a decision-making algorithm
changes the jury’s view of the robot’s responsibility.\footnote{See, e.g., Malcom Gladwell, The Engineer’s Lament: Two Ways of Thinking About
Automotive Safety, THE NEW YORKER (May 4, 2015), https://www.newyorker.com/magazine/2015/05/04/the-engineers-lament (describing
jurors’ horror at internal memos that seemed to callously weigh the value of human lives against business considerations).}

The problem is even more complex than that, though, because robots don’t necessarily
care about money. They will maximize whatever they are programmed to. If we want them to
internalize the costs of their behavior, we will need to put those costs in terms robots can
understand—for example, as weights that go into a decision-making algorithm. That’s all well
and good for robots already designed to maximize profit in purely monetary terms—say, a day-
trading AI. But lots of robots will be designed with something other than money in mind. A
policing or parole algorithm might minimize the likelihood that a released offender commits
another crime. A weather-prediction system may maximize successful prediction outcomes. A
surgery robot might maximize success in the surgery without considering certain side effects down the road. And a self-driving car might minimize time to destination subject to various constraints like generally obeying traffic laws and reducing the risk of accidents. But to build deterrence into those algorithms, we must convert certain divergent values into a common metric, whether it be money or something else.

A final complexity involving *rabota economicus* emerges for economic costs that are not directly reflected by legal remedies. The cost of any given decision, after all, is not just a function of the legal system. In many instances, extralegal forces such as ethical consumerism, corporate social responsibility, perception bias, and reputational costs will provide powerful checks on profit maximizing behaviors that might, otherwise, be expected to produce negative societal externalities.\(^{174}\) By pricing socially unacceptable behavior through the threat of public backlash, these and other market forces help to fill some of the gaps left by existing remedies regimes. But they may open up other holes, creating rather than internalizing externalities. In fact, in certain circumstances, these factors may end up utterly swamping the costs of actual legal liability. For instance, if I make it clear that my car will kill its driver rather than run over a pedestrian if the issue arises, people might not buy my car. The economic cost of lost sales may swamp the costs of liability from a contrary choice. [In the other direction, car companies could run into PR problems if their cars run over kids]. Put simply, it is aggregate profits—not just profits related to legal sanctions—that will drive robot decision making.

\(^{174}\) See Casey, *Amoral Machines*, supra note ___ at fn 69 (discussing “the warped incentive signals conceivably sent [to robots] by transaction costs, first- and third-party insurance intermediaries, administrative costs, technical limitations, agency costs, information costs, detection costs, judgement proofing, human error and incompetence, consumer psychology, potential media backlash, and judicial and regulatory uncertainty”).
Further, even when a profit maximizing corporation is wholly responsible for the conduct of a robot, incentives may misalign for other reasons. Corporations might want robots that maximize the long-term value of their brand even if doing so imposes unnecessary hidden costs. Or, conversely, they may task their robots with creating content that goes viral and, therefore, maximizes short-term visibility—even if it is divisive and potentially contrary to the corporation’s long-term interest. Corporations may also decide that first-mover advantages are worth the risk of causing some injury in order to capture a long-term market. “Move fast and break things” is a slogan in Silicon Valley, one that has served many disruptive tech companies well. But this same slogan can take on somewhat more sinister cast when it is self-driving cars that are literally moving fast and breaking things.

Corporations are also likely to be siloed in ways that interfere with effective cost-internalization. Machine learning is a specialized programming skill, and programmers aren’t economists. Even those who are employed by profit maximizing companies interested in effectively internalizing their legal costs may see no reason to take the law into account, or may not be very good at it even if they try to. They may resent constant interference from the legal department in their design decisions. And agency costs mean that different subgroups within companies may be motivated by different incentives—as when sales divisions, manufacturing

176 At least not most of them.
divisions, and service departments all get compensated based on different and potentially conflicting metrics.177

Further, designers aren’t the only people whose motivations we need to worry about. What a self-learning robot will maximize depends not only on what it is designed to do—the default optimizing function or functions that it starts with—but also how it learns. To efficiently deter behavior we must be able to predict it. But if we don’t know how the robot will behave because it might discover novel ways of achieving the goals we specify, simply pricing in the cost of bad outcomes might have unpredictable effects. And even if it doesn’t, we once again have to confront the possibility that not all engineers will design their robots to maximize profit. Even if the designer of my self-driving car defaults to an algorithm that appropriately balances the risks to everyone associated with driving, I might personally prefer a car that protects its passengers at the expense of pedestrians. And if I (or, more realistically, a car company that wants to market to me) instructs the car accordingly, simply pricing the social cost of accidents into the algorithm won’t modify behavior in the way we hope.

This complex relationship between deterrence, responsibility, and financial liability does not, alone, differentiate robots from corporations or people. Deterrence is imperfect among humans, too, because humans aren’t motivated entirely by money and because they can’t always pay for the harm they cause. But what is different here is that the possibility of deterrence working \textit{at all} will depend entirely on the robot’s code. A robot programmed to be indifferent to

money won’t be deterred by any level of legal sanction. And while making the responsible legal party pay178 might encourage that party to design robots that do take adequate care, the division of responsibility between component makers, software designers, manufacturers, users, owners, and third-parties means that the law must be careful about who exactly it holds accountable.179

C. Deterrence Without Rational Actors: Is There Still a Role for Morality and Social Opprobrium in Robot Remedies?

1. Equitable Monetary Relief and Punishment

So far, we have focused on internalizing the costs of accidents or other injuries that result from otherwise socially desirable activities, such as driving cars. But we also need to worry about genuinely “bad” behavior by robots that may merit prohibition. Many of our equitable monetary remedies are aimed at this sort of conduct. Their goal is not to make defendants internalize costs—to put a price on socially valuable behavior because of the costs it imposes—but to prevent the behavior. If you steal my car, the law says that you don’t get to keep it even if you value it more than me. Rather, you hold it in constructive trust for me.180 If you make profits by infringing my copyright or trade secret (but not my patent), the law will require you to disgorge those profits, paying me the money you made even if I never would have made it myself.181 We

178 Or face time behind bars.

179 As it gets easier to design AIs, these entities will be increasingly judgement proof. That will make us want to look upstream past the owner/user to the manufacturer. A second and more significant category of circumstances where a robot might depart from purely profit maximizing behavior involves instances where the chain of legal responsibility running from the robot to the manufacturer is intermediated by a downstream user.

180 See LAYCOCK, supra note ___ at 699-711.

181 Id. at 655-63.
require defendants to give up such “unjust enrichment,” not because we think we need to do so to compensate the plaintiff, but because we don’t want the defendant to have the money.182

These equitable rules share some similarities with the cost-internalization measures discussed in the last section. But there are two key differences: (1) the money a defendant must pay is not limited to what is needed to compensate the plaintiff, and (2) the defendant must give up all gains, making the entire activity unprofitable. The focus here is not on the plaintiff’s rightful position but on the defendant’s rightful position. And in the class of cases in which we often use these remedies, the defendant’s rightful position is one in which she didn’t engage in the activity at all.183

From an economic perspective, depriving defendants of their gains is simply a matter of coming up with a number. It might be greater than, equal to, or less than the damages we would otherwise impose to internalize the costs of unlawful conduct or to restore the plaintiff’s rightful position. But there is something psychologically effective about taking away a defendant’s gains altogether. Indeed, in certain contexts, it might be a better means of deterring humans than the threat of paying compensatory damages, even if those damages turn out to be higher than a disgorgement remedy would. When it comes to robots, however, there is little reason to think that the notion of taking “all your profits” will have the same psychological effects. True, if you set “profit = 0,” a profit maximizing AI would not engage in the conduct. But that same logic would apply with equal force if the damages award made the activity unprofitable too.

182 Id.

183 Id.
Remedies focused on the defendant’s rightful position do have one significant economic advantage over damages remedies intended strictly as *ex ante* deterrents: we can calculate them after the fact once we have all the necessary information. If we want to use the threat of damages to deter conduct, we need to predict the likelihood and severity of the harm that the conduct will cause.\(^{184}\) But if we care only about depriving the defendant of benefits on the theory that that doing so will deter her, we just need to wait to set the number until the parties get to court and figure out how much the defendant actually gained. That often won’t be trivial. The benefit of stealing a trade secret, for example, can be as amorphous as a “quicker time to market” or a “more competitive product.”\(^{185}\) But it’s still likely to be easier than predicting in advance who will be injured and by how much.

This same calculus doesn’t work for injuries that are the byproduct of productive behavior. It doesn’t make sense to say that a self-driving car that hits a pedestrian should disgorge its profits. It likely didn’t profit from hitting the pedestrian. And we don’t want to force defendants to disgorge all the value they make from driving. But defendant-focused equitable monetary remedies, like disgorgement or constructive trust, may have advantages for robot torts for which our goal is to stop the conduct altogether, not to simply to price it efficiently.

\(^{184}\) See supra notes ___ - ___ and accompanying text.

For examples, see K-2 Ski Co. v. Head Ski Co., 506 F.2d 471, 474 (9th Cir. 1974) (“We are satisfied that the appropriate duration for the injunction should be the period of time it would have taken Head, either by reverse engineering or by independent development, to develop its ski legitimately without use of the K-2 trade secrets.”); Winston Research Corp. v. Minn. Mining & Mfg. Co., 350 F.2d 134, 145–46 (9th Cir. 1965) (discussing injunction protection for a machine company); Verigy US, Inc. v. Mayder, No. C-07-04330 RMW, 2008 WL 564634, at *9, *11 (N.D. Cal. Feb. 29, 2008) (granting a five-month injunction to account for the lag time defendant would have faced in getting to market absent misappropriation).
2. Detection, Deterrence, and Punitive Damages

The fact that robots won’t be affected by the psychological impact of certain remedies also has consequences for how we should think about the threat of detection. For a robot to be optimally deterred by remedies like disgorgement—which rely on human psychology to maximize their effects—we must also detect and sanction the misconduct 100% of the time.\(^{186}\) That, in turn, leads us to the problem of robots (or their masters) that hide misconduct.

To be sure, many robot harms will be well publicized. The spate of autonomous vehicle accidents covered by media in recent years provides one stark example. But countless robot harms will be of far subtler, so-called “blackbox,”\(^{187}\) varieties and will, therefore, be much harder to detect.\(^{188}\)

Makers and trainers of robots may have incentives to hide their behavior, particularly when it is profitable but illegal. If a company’s parole algorithm concludes (whether on the merits of the data or not) that black people should be denied parole more often than similarly situated white people, it might not want the world to know. And if you, as an owner, tweaked the algorithm on your car to run over pedestrians rather than put your own life at risk, you might

\(^{187}\) This term refers to algorithms that are inscrutable to outsiders, either by virtue of complexity, lack of technical fluency, or trade secrets protection.

seek to hide that too. We have already seen remarkable efforts by companies conspiring to cover up wrongdoing, many of which succeeded for years.189 Often such conspiracies are brought down by sheer virtue of their scale—i.e. the fact that many people know about and participate in the wrongdoing. This same property may be less true of future robotics firms, which may require fewer people to participate and cover up unlawful acts.190

Further, robots that teach themselves certain behaviors might not know they are doing anything wrong. And if their algorithms are sophisticated enough, neither may anyone else for that matter.191 Deterrence will work on a robot only if the cost of the legal penalty is encoded in the algorithm. A robot that doesn't know it will be required to disgorge its profits from certain types of conduct will not accurately price those costs and so will optimize for the wrong behaviors.

The economic theory of deterrence responds to the improbability of getting caught by ratcheting up the sanctions when you are caught, setting the probability of detection times the penalty imposed equal to the harms actually caused.192 Proportionality of punishment makes

190 Desai and Kroll argue for protections for whistleblowers who identify flaws in robotic design in an effort to reduce the risk of such cover-ups. Desai & Kroll, \textit{supra} note __, at 3.

191 Pricing algorithms may effectively replicate the anticompetitive effects of a cartel by predicting the behavior of their rivals, for instance. See Kellie Lerner & David Rochelson, \textit{How Do you Solve a Problem Like Algorithmic Price Fixing}, ANTITRUST & TRADE REG. DAILY (BNA), Feb. 7, 2018.

sense here. As the chance of detection goes down we want the damage award to go up. And machines can do this math far better than humans can.193 Indeed, this idea may be tailor-made for robots. Becker’s “high sanctions infrequently applied” approach seems unfair in many humans contexts because it can have widely varied interpersonal effects: even if we get equal deterrence from a 100\% chance of a year in prison or a 10\% chance of 10 years in prison, the lottery system that punishes a few very harshly seems intuitively unfair. We want our laws to protect both victims and wrongdoers against some forms of moral bad luck (whereas Becker’s approach exacerbates it). But robots will internalize the probability of punishment as well as its magnitude, so we may be able to encourage efficient behavior without worrying about treating all robots equitably. Further, we are unlikely to feel bad for harshly-punished robots in the ways that we might for human beings.

Even if we decide to heed Becker’s advice, getting the numbers right presumes that we have a good estimate of the proportion of torts committed by robots that go undetected. That’s tough to do, especially for newly introduced technologies. And it also requires programmers to predict the multiplier and feed those calculations into the algorithm, something that might not be a straightforward undertaking for any of the variety of reasons covered in the last section (not to mention the possibility that we get the numbers wrong, which will either over- or under-deter certain behaviors).

193 High sanctions, for example, “may lead juries to be less likely to convict defendants, or may induce individuals to engage in greater efforts to avoid detection.” Polinsky & Shavell, supra note \(__\) at \(__\) (citing James Andreoni, \textit{Reasonable Doubt and the Optimal Magnitude of Fines: Should the Penalty Fit the Crime?}, 22 RAND J. OF ECON. 385 (1991); Arun Malik, \textit{Avoidance, Screening and Optimum Enforcement}, 21 R. AND J. OF ECON. 341 (1990)).
Maybe society will, instead, be able to force corporations to internalize their costs through non-legal mechanisms—e.g. by voting with their wallets when a company’s robots engage in misconduct. But this, too, is easier said than done, particularly for the types of “systemic harms” described in Part I. In the era of big data and even bigger trade secrets, structural asymmetries often prevent meaningful public engagement with the data and software critical to measuring and understanding the behavior of complex machines. Because private companies retain almost exclusive control over both the proprietary software running the machines and their resultant data, barriers to accessing the information necessary to understand the reasons behind particular machine decisions can often be insurmountable. What’s more, even in circumstances where the information is available, evidence of unlawful decision making can still be notoriously difficult to detect. As the AI Now Institute notes, “[u]nintended consequences and inequalities [of sophisticated computational systems] are by nature collective, relative and contextual, making measurement and baseline comparisons difficult” and creating the “potential for both over- and under-counting biases in measurement of distributions given the limits on observable circumstances for individuals, problems with population gaps and possible measurement errors.”

Current trends in AI appear likely to only exacerbate this problem. As Bryce Goodman and Seth Flaxman observe, even after “putting aside any barriers arising from technical fluency [and]

ignoring the importance of the training model,” modern machine learning techniques pose significant “tradeoff[s] between the representational capacity of a model and its interpretability.”\(^\text{196}\) Systems capable of achieving the richest predictive results tend to do so through the use of aggregation, averaging, or multilayered techniques which, in turn, make it difficult to determine the exact features that play the largest predictive role.\(^\text{197}\) Thus, even more so than with the past generation of algorithms governing machines, understanding how modern robots arrive at a given decision can be prohibitively difficult, if not technically impossible—even for the designers themselves.\(^\text{198}\) As a result, potentially unlawful or defective decision making within such systems can often only be demonstrated in hindsight, after measuring the unevenly distributed outcomes once they have already occurred. And as systems get more complex, maybe not even then.

The risk presented by this combination of factors is not so much that corporations will intentionally build bad robots in order to eke out extra profits, but that bad “effects [will] simply happen, without public understanding or deliberation, led by technology companies and governments that are yet to understand the broader implications of their technologies once they are released into complex social systems.”\(^\text{199}\) Indeed, much of the misconduct that tomorrow’s designers, policymakers, and watchdogs must guard against might not be intentional at all. Self-learning machines may develop algorithms that take into account factors we may not want them

\(^{196}\) See Bryce Goodman & Seth Flaxman, European Union Regulations on Algorithmic Decision-Making and a “Right To Explanation”, ICML WORKSHOP ON HUMAN INTERPRETABILITY IN MACHINE LEARNING (2016).

\(^{197}\) Id.

\(^{198}\) Id.

\(^{199}\) See ALEX CAMPONO ET. AL, AI NOW 2017 REPORT (2017).
to, like race or economic status. But on some occasions, taking precisely those factors into account will actually get us to the ultimate result of interest.

For this reason, we think AI transparency is no panacea. Transparency is a desirable goal in the abstract. But it may inherently be at odds with the benefits of certain robotics applications. We may be able to find out what an AI system did. But, increasingly, we may not be able to understand why it did what it did. Calls for transparency are useful to the extent that they identify bad behavior, defective designs, or rogue algorithms. But mostly what people want when they talk about transparency is an explanation they can understand. Why was my loan application denied? Why did the car swerve in the way it did? For some robots, we simply won’t know the answer. Even if we see how the algorithm comes to a conclusion, we won’t necessarily be able to understand how it derived a relationship between, say, butterfly populations in Mongolia and thunderstorms in Ethiopia, or why it thinks the precise time of day and year should affect the speed at which it proceeds through an intersection.

Are we right to be bothered by this? Should we have a right to understand the mens rea of robots? Or to impute explanations so we can appropriately channel opprobrium? Our punitive and deterrence remedies are based on identifying and weeding out bad behavior. The search for

200 See, e.g., FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT CONTROL MONEY AND INFORMATION. (Cambridge, MA: Harvard University Press 2015); Katyal, supra note __.

202 We made these examples up. The real ones are likely to be even weirder. The whole point is that they are inexplicable to humans. Even today, AI is making decisions humans struggle to understand. Dave Gershgorn, AI Is Now So Complex Its Creators Can’t Trust Why It Makes Decisions, QUARTZ, Dec. 7, 2017. Some companies are studying the decisions of their own AIs to try to unpack how they are made. See Cade Metz, Google Researchers Say They’re Learning How Machines Learn, N.Y. TIMES, Mar. 7, 2018, at B3.
that bad behavior is much of what drives the “intuitive appeal of explainable machines.” But our intuitions may not always serve us well. The question is whether the demand for an explanation is actually serving legitimate purposes (Preventing Skynet? Stopping discrimination?) or just making us feel that we’re the ones in charge. The punitive and equitable monetary side of remedies law wants to understand the “why” question because we want to assign blame. But that might not be a meaningful question when applied to a robot. More on this later.

3. Inhuman, All Too Inhuman

a. Punishing Robots for Responding to Punishment

Even economic forms of deterrence—both legal and extralegal—will look different than they currently do when people or corporations are being deterred. Deterrence of people often takes advantage of cognitive biases and risk aversion. People don’t want to go to jail, for instance, so they will avoid conduct that might lead to that result. But robots can be deterred only to the extent that their algorithms are modified to include external sanctions as part of the risk-reward calculus. Once more, we might view this as a good thing—the ultimate triumph of a rational law and economics calculus of decision making. But humans who interact with robots may

204 See infra note ___-___ and accompanying text.

205 See Peter M. Asaro, Punishment, Reinforcement Learning, and Machine Agency, http://peterasaro.org/writing/cosmopolis.globalist.it%20%20Punishment,%20Reinforcement%20Learning%20Machine%20Agency.htm (“a key intuitive difference between humans . . . and machines is that when a human misbehaves, you punish it, whereas when a machine does, you fix it. On our present theory, however, it becomes clear that punishing and fixing are essentially the same: punishing is a clumsy, external way of modifying the utility function.”).
demand a non-economic form of moral justice even from entities that lack the human capacity to understand the wrongfulness of their actions (a fact that anyone who has ever hit a malfunctioning device in frustration can understand). 206

Indeed, the sheer rationality of robot decision making may itself provoke the ire of humans. Any economist will tell you that the optimal number of deaths from many socially beneficial activities is more than zero. Were it otherwise, our cars would never go more than five miles an hour. Indeed, we would rarely leave our homes at all.

Effective deterrence of robots requires that we calculate the costs of harm caused by the robots interacting with the world. If we want a robot to take optimal care, we need it to figure out not just how likely a particular harm is but how it should weight the occurrence of that harm. The social cost of running over a child in a crosswalk is high. But it isn’t infinite. 207

Even today, we deal with those costs in remedies law unevenly. The effective statistical price of a human life in court decisions is all over the map. 208 The calculation is generally done ad hoc and after the fact. That allows us to avoid explicitly discussing politically fraught concepts

208 “Global variation in estimates of the value of life range from $70,000 to $16.3 million.” *See* Deborah L. Rhode et al., *Legal Ethics* 645 (U. Casebook Series, 7th ed. 2016) (citing Eric A. Posner & Cass R. Sunstein, *Dollars and Death*, 72 U. CHI. L. REV. 537 (2005); Binyamin Appelbaum, *As U.S. Agencies Put More Value on a Life, Businesses Fret*, N.Y. TIMES (Feb. 17, 2011)). “In the United States, federal agencies operate with figures generally ranging from roughly $6 to $9 million—but tort awards for wrongful death are typically a fraction of that, and even agency estimates tend to shift with the political winds.” *See* Rhode et al., *supra* note __ at 645.
that can lead to accusations of “trading lives for cash.” And it may work acceptably for humans, because we have instinctive reactions against injuring others that make deterrence less important. But, in many instances, robots will need to quantify the value we put on a life if they are to modify their behavior at all. Accordingly, the companies that make robots will have to figure out how much they value human life, and they will have to write it down in the algorithm for all to see (at least after extensive discovery).

The problem is that people strongly resist the idea of actually making this calculus explicit. They oppose the seemingly callous idea of putting a monetary value on a human life, and juries punish companies that make explicit the very cost-benefit calculations that economists want them to. Human instincts in this direction help explain why we punish intentional conduct more harshly than negligent conduct. A deliberate decision to run over a pedestrian strikes us as worse than hitting one by accident because you weren’t paying attention. Our assumption is that, if you acted deliberately, you could have chosen not to cause the harm, thereby making you a bad actor who needs to modify your behavior. But that assumption often operates even when causing that harm was the socially responsible thing to do, or at least was justified from cost-benefit perspective.

Things are more complicated, of course. We do try to create justifications and excuses in the law, even for intentional conduct that we think is socially acceptable. But juries often have a

visceral desire to hold someone responsible when bad things happen. And they are inclined to treat killing or injuring a human being as a bad act even if it was (statistically) inevitable. They will rebel against treating it as a mere cost of doing business. Thinking about it in such terms offends many people’s sense of human decency.

b. Punishment as Catharsis: Punching Robots

Punishment may serve other, non-monetary purposes as well. We punish, for instance, to channel social opprobrium. That can set norms by sending a message about the sorts of things we won’t tolerate as a society. And it may also make us feel better. We have victim allocation in court for good reason, after all. It may provide useful information to courts. But it also helps people to grieve and to feel their story has been heard.

Our instinct to punish is likely to extend to robots. We may want, as Christina Mulligan puts it, to punch a robot that has done us wrong.\(^{212}\) Certainly people punch or smash inanimate objects all the time.\(^{213}\) Juries might similarly want to punish a robot, not to create optimal cost internalization but because it makes the jury and the victim feel better. It’s already quite easy to think of robots as humans.\(^{214}\) We naturally anthropomorphize.\(^{215}\) That instinct is likely to get stronger over time, as companies increasingly deploy “social robots” that intentionally pull on

\(^{212}\) See Mulligan, supra note __.

\(^{213}\) See supra note ___ and accompanying text.

\(^{214}\) See also, e.g., Robbi Gonzalez, Hey Alexa, What Are You Doing to My Kid’s Brain?, WIRED (May 11, 2018), https://www.wired.com/story/hey-alexa-what-are-you-doing-to-my-kids-brain/ (describing the tendency for children to anthropomorphize chat bots like Amazon’s Alexa).

\(^{215}\) See Calo, Robotics and the Lessons of Cyberlaw supra note ___ at 538 (terming this phenomenon “social valence”).
these strings.216 Humans will expect human-like robots to act, well, human. And we may be surprised, even angry, when they don’t. Our instinct may increasingly be to punish humanoid robots as we would a person—even if, from an economic perspective, it’s silly.217 Making us feel better may be an end unto itself. But hopefully there is a way to do it that doesn’t involve wanton destruction of or damage to robots.

\section*{D. Ordering Robots to Behave}

All these problems with monetary remedies as deterrents seem to point in the direction of using injunctive relief more with robots than we currently do with people.218 Rather than trying to encourage robot designers to build in correctly priced algorithms to induce efficient care, wouldn’t it be easier just to tell the robot what to do—and what not to do?

\section*{1. Be Careful What You Wish For}

First, the good news: injunctions against robots might be simpler than against people or corporations, because they can be enforced with code. A court can order a robot, say, not to take race into account in a processing an algorithm. Likewise, it can order a self-driving car not to exceed the speed limit. Someone will have to translate that injunction, written in legalese, into code the robot can understand. But once they do, the robot will obey the injunction. This virtual

216 Like Asimov’s fiction, Westworld’s days as pure fantasy may be numbered.

217 It’s an open question whether we will react differently to a self-learning AI that isn’t in corporeal form and doesn’t act in human-like ways.

guarantee of compliance seems like a significant advantage over existing injunctions. It is often much harder to coerce people (and especially groups of people in corporations) to comply with similar court orders—even when the consequences are dire.

But, once again, not so fast. As the adage goes (and as legions of genies in bottles have taught us): be careful what you wish for. Automatic, unthinking compliance with an injunction is a good idea only if we’re quite confident that the injunction itself is a good idea. Now, obviously the court thinks the injunction improves the world. Otherwise, it wouldn’t issue it. But the fact that injunctions against people aren’t self-enforcing offers some potential breathing room for parties and courts to add a dose of common sense when circumstances change. This is a common problem in law. It’s a major reason we have standards rather than rules in many cases.219 And it’s the reason that even when we do have rules, we don’t enforce them perfectly. To a person (and even to a police officer), “don’t exceed the speed limit” implicitly means “don’t exceed the speed limit unless you’re rushing someone to the emergency room or it would be unsafe not to.” “Don’t cross the double yellow line” implicitly means “don’t cross the double yellow line unless you need to swerve out of the lane to avoid running over a kid.” No cop is going to ticket you for such a maneuver. Similarly, even if an injunction says “don’t cut lumber on this property,” a court isn’t going to hold you in contempt for taking down the one rotten tree that’s about to fall on your neighbor’s house. That’s because people understand that rules and injunctions come with the implied catchall “unless you have sufficient justification for departing from the rule” exception.

219 See supra note ___ - ___ and accompanying text.
Try telling that to a robot, though. Machines, unlike at least some humans, lack common sense. They operate according to their instructions—no more, no less. If you mean “don’t cross the double yellow line unless you need to swerve out of the lane to avoid running over a kid” you need to say that. Meanwhile, Av should probably avoid adults too, so better put that in the algorithm. . . And maybe dogs. . . And deer and squirrels, too. Or maybe not: crossing into oncoming traffic is dangerous, so while we might do it to avoid hitting a kid even if it raises the risk of a head-on collision we shouldn’t do it to avoid a squirrel unless the risk of a head-on collision seems low. (Sorry, squirrels). If you want the self-driving car to do all that, you need to tell it exactly when to swerve and when not to swerve. That’s hard. It’s more plausible to give each outcome weights—killing squirrels is bad, but head-on collisions are much worse, and killing a kid is (Probably? Maybe?) worse still. But then we’re back to deterrence and cost internalization, not injunctions.

Further, even if we can specify the outcome we want with sufficient precision in an injunction, we need to be extremely careful about the permissible means a robot can use to achieve that result. Think back to our example from the introduction. The drone did exactly what we told it to. The problem is that we weren’t sufficiently clear in communicating what we wanted it to do. We wanted it to head to the center of the circle without shutting down and without human intervention. But we didn’t say that, because we didn’t anticipate the possibility of the drone doing what it did.\footnote{Former Secretary of Defense Donald Rumsfeld famously described these types of foreseeability concerns: There are known knowns. These are things that we know we know. There are known unknowns. That is to say, there are things that we know we don’t know. But there are also unknown unknowns. There are things we don’t know we don’t know. And if one looks}
The “be careful what you wish for” problem is a major one for robotics and AI. Tim Urban of Wait But Why tells the hypothetical story of Turry, a self-learning AI that is designed to mimic handwritten greeting cards. If you don’t specify the things it can’t do, or at least impose cost weights, an AI could literally take over all the resources of the world and devote them to producing handwritten greeting cards. Computer programmers will, we hope, be aware of this problem and be extremely careful about phrasing their instructions to a robot in just the right way, with precise caveats and limiting conditions to prevent them turning into Skynet or Turry. But judges aren’t computer programmers, and they are unlikely to be as knowledgeable or as careful in what they order robots to do or not do. And even if we could do it, an injunction of this sort represents a pretty significant intrusion into the product design process, something courts have been unwilling to do in other circumstances. Whether or not courts are right to shy away throughout the history of our country and other free countries, it is the latter category that tend to be the difficult ones.

222 This is a variation on Eliezer Yudkowsky’s and Nick Bostrom’s famous “paper clip maximizer” thought experiment.

223 Search King, Inc. v. Google Technology, Inc., No. CIV-02-1457-M, 2003 WL 21464568, at *4 (W.D. Okla. May 27, 2003) (ruling that Google’s page rankings were “subjective result[s]” that constituted “constitutionally protected opinions . . . entitled to full constitutional protection”); Langdon v. Google, Inc., 474 F. Supp. 2d 622, 629–30 (D. Del. 2007) (refusing to affirmatively order Google and Microsoft to rank certain search results prominently); United States v. Microsoft Corp., 253 F.3d 34 (D.C. Cir. 2001) (applying balancing test to judge whether new product is predatory); United States v. Microsoft Corp., 147 F.3d 935 (D.C. Cir. 1998) (deferring to a company’s claims of product improvement to avoid enmeshing the court in design decisions); Allied Orthopedic Appliances, Inc. v. Tyco Health Care Grp., 592 F.3d 991, 998–99 (9th Cir. 2010) (permitting companies to introduce any product that constitutes “improvement” over predecessors).
from telling companies how to design products generally, we think that’s a good instinct when it comes to robotics, at least in the early stages of the industry.

To issue an effective injunction that causes a robot to do what we want it to do (and nothing else) requires both extreme foresight and extreme precision in drafting it. If injunctions are to work at all, courts will have to spend a lot more time thinking about exactly what they want to happen and all the possible circumstances that could arise. If past experience is any indication, they are unlikely to do very well at it. That’s not a knock on courts. Rather, the problem is twofold: Words are notoriously bad at conveying our intended meaning,224 and people are notoriously bad at predicting the future.225 And if we fall into either of these traps, the consequences of drafting the injunction incompletely may be quite severe.

2. “What Do You Mean You Can’t?!”

Courts that nonetheless persist in ordering robots not to do something may run into a second, more surprising problem: it may not be simple or even possible to comply with the

225 These two facts combine to provide the plot line of virtually every Isaac Asimov novel. ISAAC ASIMOV, THE REST OF THE ROBOTS 43 (1964) (remarking “[t]here was just enough ambiguity in the Three Laws [of robotics found in his works] to provide the conflicts and uncertainties required for new stories, and, to my great relief, it seemed always to be possible to think up a new angle out of the sixty-one words of the Three Laws”).
injunction. Just as robots don’t have money, they also don’t read and implement court opinions.226 And they aren’t likely to be a party to the case in any event. Enjoining a robot, in other words, really means ordering someone else to implement code that changes the behavior of the robot.

The most likely party to face such an injunction is the owner of the robot. They are the ones who will likely have been determined to have violated the law, say by using a discriminatory algorithm in a police profiling decision or operating a self-driving car that has behaved unsafely. But most owners won’t have the technical ability, and perhaps not even the right, to modify the algorithm their robot runs. The most a court could order may be that they ask the vendor who supplied the robot to make the change, or perhaps to take the robot off the market as long as it doesn’t comply with the injunction.227

Even if the developer is a party to the case, perhaps on a design defect theory, the self-learning nature of many modern robots makes simply changing the algorithm more complicated still. A court may, for instance, order the designer of a robot that makes predictions about recidivism for parole boards not to take race into account.228 But that assumes that the robot is

227 More on this below when we consider the robot death penalty. \textit{See infra} notes ___-___ and accompanying text.

228 Far from hypothetical, courts have considered these types of arguments on multiple occasions in recent years. \textit{See, e.g.}, State v. Loomis, 881 N.W.2d 749, 767 (Wis. 2016); Malenchik v. State, 928 N.E.2d 564 (Ind. 2010).
simply doing what it was originally programmed to do. That may be less and less common as machine learning proliferates. Ordering a robot to “unlearn” something it has learned through a learning algorithm is much less straightforward than ordering it to include or not include a particular function in its algorithm. Depending on how the robot learns it might not even be possible.

Life gets easier if the courts can control what training information is fed to robots in the first place. At the extremes, a court might order a company to take badly-trained robots out of service and to train new ones from scratch. But as the example in the introduction indicates, the effects of training material on robots are not always predictable. And the results of training are themselves unpredictable, so even controlling the training dataset is no guarantee that a robot, once trained, will behave as the court wants it to.

Further, the future may bring robots that are not only trained in complicated ways but that train themselves in ways we do not understand and cannot replicate. Ordering such a robot to produce or not produce a particular result, or even to consider or not consider a particular factor, may be futile. If we don’t understand how the robot makes decisions we can’t effectively guide those decisions. It is one thing to look at a transparent algorithm written by programmers and see whether it includes the race of the parolee as a factor. It is quite another to try to untangle whether a robot has learned that race matters by looking at the data and how that learning is implemented in an always-changing algorithm that doesn’t itself explicitly include race. An algorithm that is simply told to minimize the risk of recidivism but not to take race directly into account might end up generating proxies that are correlated with race instead. That’s fine if those proxies are in fact the variable of interest. If, say, the fact that members of a
minority group commit disproportionately more crimes results from the fact that they are poorer than average, an algorithm that gets to the same result by considering family poverty instead of race may solve the problem. But if the algorithm has really just found a proxy for race (say, the street you grew up on in a segregated neighborhood) we aren’t any better off. And it is much harder to tell a robot not to consider “race or anything that serves as a proxy for race.”

Courts are used to telling people to do something and having them do it. They may have little patience for the uncertainties of machine learning systems. And they are quite likely to have even less patience with lawyers who tell them their “client” can’t comply with the court’s order.

3. Unintended Consequences

Even when the injunction is simple and clearly identifies who should change the algorithm and how, ordering a robot to change how it “thinks” is likely to have unintended consequences. Consider two examples.

(1) We don’t want self-driving cars to hit pedestrians. But just brute-forcing that result might lead to other problems, from taking crowded freeways instead of less-crowded surface streets to running into other cars. Some of those consequences could be worse, either because a head-on collision kills more people than running over the pedestrian would or, more likely, because instructing the car to act in a certain way may cause it to avoid a very small chance of killing a pedestrian by avoiding surface streets altogether (even though the collective cost of traffic jams might be quite great). This is a version of the same problem we saw in damages: we

229 Whether we want to disproportionately punish poor people is another matter, of course, but doing so isn’t race discrimination.
need to assign a cost to various outcomes if we want an algorithm to weigh the alternatives. But here the injunction effectively sets the cost as infinite.\footnote{It is possible a company will simply factor the cost of contempt into the algorithm, but that seems unlikely. And if they do, courts will probably not be happy about it.} That’s fine if there really is nothing to balance on the other side. But that will rarely be true.

(2) The case against algorithmic bias seems one of the strongest, and easiest to enjoin, cases.\footnote{To the extent that the algorithms are transparent to third-parties, of course. Yet, even detecting bias within a system can be less straightforward than may initially appear. See Corbett-Davies et al., \textit{Algorithmic Decision Making and the Cost of Fairness}, https://arxiv.org/pdf/1701.08230.pdf (pushing back on Julia Angwin’s claim that the COMPAS criminal sentencing algorithm was biased).} And if that bias results simply from a bad training set,\footnote{See supra notes _ - _ and accompanying text. See also, e.g., Reuters Staff, \textit{New Zealand Passport Robot Tells Applicant of Asian Descent to Open Eyes}, \textsc{REUTERS} (Dec. 7, 2016) (reporting on facial recognition software failure that resulted from an evidently unrepresentative training set).} it may be straightforward to fix. But if an algorithm takes account of a prohibited variable like race, gender, or religion because that variable matters in the data, simply prohibiting consideration of that relevant information can have unanticipated consequences. One possible consequence is that we make the algorithm worse at its job. We might be fine as a society with a certain amount of that in exchange for the moral clarity that comes with not risking discriminating against minorities. But where people are in fact different, insisting on treating them alike can itself be a form of discrimination. Being male, for example, is an extremely strong predictor of criminality. Men commit many more crimes than women, and male offenders are much more likely to reoffend. We suspect police and judges know this and take it into account, consciously or unconsciously, in their arrest, charging, and sentencing decisions, though they would never say so out loud. But a robot won’t conceal what it’s doing. A court that confronts such an robot is likely to order the it not to take gender into account effectively sets the cost as infinite. That’s fine if there really is nothing to balance on the other side. But that will rarely be true.

(2) The case against algorithmic bias seems one of the strongest, and easiest to enjoin, cases. And if that bias results simply from a bad training set, it may be straightforward to fix. But if an algorithm takes account of a prohibited variable like race, gender, or religion because that variable matters in the data, simply prohibiting consideration of that relevant information can have unanticipated consequences. One possible consequence is that we make the algorithm worse at its job. We might be fine as a society with a certain amount of that in exchange for the moral clarity that comes with not risking discriminating against minorities. But where people are in fact different, insisting on treating them alike can itself be a form of discrimination. Being male, for example, is an extremely strong predictor of criminality. Men commit many more crimes than women, and male offenders are much more likely to reoffend. We suspect police and judges know this and take it into account, consciously or unconsciously, in their arrest, charging, and sentencing decisions, though they would never say so out loud. But a robot won’t conceal what it’s doing. A court that confronts such an robot is likely to order the it not to take gender into account effectively sets the cost as infinite. That’s fine if there really is nothing to balance on the other side. But that will rarely be true.

(2) The case against algorithmic bias seems one of the strongest, and easiest to enjoin, cases. And if that bias results simply from a bad training set, it may be straightforward to fix. But if an algorithm takes account of a prohibited variable like race, gender, or religion because that variable matters in the data, simply prohibiting consideration of that relevant information can have unanticipated consequences. One possible consequence is that we make the algorithm worse at its job. We might be fine as a society with a certain amount of that in exchange for the moral clarity that comes with not risking discriminating against minorities. But where people are in fact different, insisting on treating them alike can itself be a form of discrimination. Being male, for example, is an extremely strong predictor of criminality. Men commit many more crimes than women, and male offenders are much more likely to reoffend. We suspect police and judges know this and take it into account, consciously or unconsciously, in their arrest, charging, and sentencing decisions, though they would never say so out loud. But a robot won’t conceal what it’s doing. A court that confronts such an robot is likely to order the it not to take gender into account effectively sets the cost as infinite. That’s fine if there really is nothing to balance on the other side. But that will rarely be true.

(2) The case against algorithmic bias seems one of the strongest, and easiest to enjoin, cases. And if that bias results simply from a bad training set, it may be straightforward to fix. But if an algorithm takes account of a prohibited variable like race, gender, or religion because that variable matters in the data, simply prohibiting consideration of that relevant information can have unanticipated consequences. One possible consequence is that we make the algorithm worse at its job. We might be fine as a society with a certain amount of that in exchange for the moral clarity that comes with not risking discriminating against minorities. But where people are in fact different, insisting on treating them alike can itself be a form of discrimination. Being male, for example, is an extremely strong predictor of criminality. Men commit many more crimes than women, and male offenders are much more likely to reoffend. We suspect police and judges know this and take it into account, consciously or unconsciously, in their arrest, charging, and sentencing decisions, though they would never say so out loud. But a robot won’t conceal what it’s doing. A court that confronts such an robot is likely to order the it not to take gender into account effectively sets the cost as infinite. That’s fine if there really is nothing to balance on the other side. But that will rarely be true.

(2) The case against algorithmic bias seems one of the strongest, and easiest to enjoin, cases. And if that bias results simply from a bad training set, it may be straightforward to fix. But if an algorithm takes account of a prohibited variable like race, gender, or religion because that variable matters in the data, simply prohibiting consideration of that relevant information can have unanticipated consequences. One possible consequence is that we make the algorithm worse at its job. We might be fine as a society with a certain amount of that in exchange for the moral clarity that comes with not risking discriminating against minorities. But where people are in fact different, insisting on treating them alike can itself be a form of discrimination. Being male, for example, is an extremely strong predictor of criminality. Men commit many more crimes than women, and male offenders are much more likely to reoffend. We suspect police and judges know this and take it into account, consciously or unconsciously, in their arrest, charging, and sentencing decisions, though they would never say so out loud. But a robot won’t conceal what it’s doing. A court that confronts such an robot is likely to order the it not to take gender into account effectively sets the cost as infinite. That’s fine if there really is nothing to balance on the other side. But that will rarely be true.

(2) The case against algorithmic bias seems one of the strongest, and easiest to enjoin, cases. And if that bias results simply from a bad training set, it may be straightforward to fix. But if an algorithm takes account of a prohibited variable like race, gender, or religion because that variable matters in the data, simply prohibiting consideration of that relevant information can have unanticipated consequences. One possible consequence is that we make the algorithm worse at its job. We might be fine as a society with a certain amount of that in exchange for the moral clarity that comes with not risking discriminating against minorities. But where people are in fact different, insisting on treating them alike can itself be a form of discrimination. Being male, for example, is an extremely strong predictor of criminality. Men commit many more crimes than women, and male offenders are much more likely to reoffend. We suspect police and judges know this and take it into account, consciously or unconsciously, in their arrest, charging, and sentencing decisions, though they would never say so out loud. But a robot won’t conceal what it’s doing. A court that confronts such an robot is likely to order the it not to take gender into account effectively sets the cost as infinite. That’s fine if there really is nothing to balance on the other side. But that will rarely be true.
account, since doing so seems a rather obvious constitutional violation. But it turns out that if you order pretrial sentencing algorithms to ignore gender entirely, you end up discriminating against women, since they get lumped in with the heightened risks of recidivism that men pose.233

Ordering a robot not to violate the law can lead to additional legal difficulties when injunctions are directed against discrete subsystems within larger robotics systems. These types of injunctions seem likeliest to be granted against newly introduced subsystems within a tried and true application—given that older systems will, by definition, have a longer track record of success. Not only could targeting one component of a larger system change it in unpredictable and often undesirable ways, doing so could also discourage innovation. With the field of AI improving by leaps and bounds, maybe we should be less protective of tried-and-true approaches and more willing to experiment. Even though some of those experiments will fail, the overall arc is likely to bend towards better systems than we have now. But we won’t get there if courts are too quick to shut down new systems while leaving established but imperfect procedures in place. If the alternative to a flawed predictive policing algorithm is the gut instincts of a large number of cops, some of whom are overtly racist and others of whom are subconsciously biased, we might be better off with the robots after all.

III. Rethinking Remedies for Robots

We’ve seen that robots and AI pose a number of challenges to the law of remedies as it is currently applied. In this section, we offer some preliminary thoughts about how we might redesign the law for the world that is fast approaching. We don’t intend this to be the last word on how to design remedies for robots. Much more remains to be done. Rather, we hope it marks the beginning of a conversation on these issues. The suggestions we outline below will help align the law of remedies with what we know about the behavior of robots.

A. Compensation, Fault, and the Plaintiff’s “Rightful” Position

Compensation is the easiest remedy to translate to robots because its focus is on the (presumably human or corporate) plaintiff. The harm is to plaintiffs, not robots, and the same valuation measurement problems arise here that always do in calculating damages. But as we have seen, robot defendants do introduce some complications. Who is responsible when a robot misbehaves? The designer? The manufacturer? The owner? Under current tort law the answer may depend on whether the harm resulted from a design defect, a problem in training, or an

234 A different issue arises when the robot is itself the injured party. What would it mean to put a robot in its rightful position? What that likely means, at least until we recognize robot rights, is putting the robot’s owner or operator in its rightful position. While there are issues here, we think they are likely to be more straightforward than most of the ones we have discussed. If a robot is damaged or destroyed through negligence or vandalism, we will normally treat that as we would damage to any other property. It’s easy enough to replace parts for pre-programmed bots, but if the algorithms learned from unique, one-off interactions and cannot be recovered, robots might not be so easy to replace. Hopefully emergent AI will be backed up regularly, though, so it could still be replaced.

We can imagine deliberately unique robots, though. Technologies like block chain are now being used to impose scarcity (e.g. crypto kitties, digital cats you can raise and trade via the blockchain. Because cats. And blockchain). We could see this same phenomenon transposed to robot personalities, so as to artificially impose scarcity. Tay, for instance, was a unique chat bot deployed by Microsoft. Like too many people, when exposed to the Internet, Tay quickly became a fascist. See supra note __. When Microsoft shut her down, her “learning” was gone and could not be replaced. Few would lament that in this specific case, but we can imagine valuation difficulties if a tortious or malicious act destroys a unique AI personality.
error in operation. But learning AIs will blur this line; the designer might not be the one training
the AI in ways that caused it to subsequently do harm.

Many (though not all) of the problems with compensating plaintiffs for robot injury come
from tort law’s focus on fault as a prerequisite to responsibility. We generally hold people
responsible for accidental injuries only if they are negligent. The focus on fault may make sense
where people are concerned, but it is much less meaningful as applied to a robot. What does it
mean for a robot to be negligent? This isn’t really a remedies question, though it may be a
causation question. But it’s not obvious that it is a question worth asking. True, we might want
to single out certain design or implementation choices that we think are problematic and
discourage them. But in many environments in which robots operate there are more direct
regulatory means to do so. NHTSA, for instance, approves or mandates the introduction of many
vehicle safety technologies. So, too, does the FAA for aircraft. If we think a particular design
shouldn’t be on the market at all, some regulatory bodies will be able to simply prohibit it.

Tort law does, as noted above, also serve to raise the cost of products that cause harm
and therefore deter the deployment of inefficient ones. In theory, tort law makes that calculus
directly by setting $B < PL$ or demanding some other risk-utility test.\footnote{United States v. Carroll Towing Co., 159 F.2d 169, 171-73 (2d Cir. 1947).} But in doing so, the law
makes a threshold judgment as to whether there should be any liability for costs imposed on
others. An alternative formulation would require an actor to pay for any harm it causes, negligent
or not. That shifts the focus of deciding whether B is less than PL to the company that makes the
product rather than to the courts.
Perhaps we just want someone to pay the costs of any harm robots cause, even if that occurred without a wrongful or illegal act. We often use negligence as a proxy for whether the defendant’s conduct was justified despite the costs it imposes, but that will be harder to do with robots. And maybe we don’t want to ask a jury to decide who was at fault if programmers can actually code in a standard of care that internalizes the harm the robot imposes on others.

Existing remedies laws might get us there, though not without modification. We do impose strict liability in some circumstances. That’s easier when the plaintiff is a passive victim like someone injured by pollution from a factory or from a product that unexpectedly exploded. It’s more problematic when both the plaintiff and the defendant might have contributed to the cause of the injury. When two cars collide, one reason we try to decide who was at fault (or whether both were in part) is to fairly allocate the cost of injury to the party who was best positioned to avoid it. Allocating that fault will raise new challenges when a robot-driven car gets into an accident because its driving capabilities and the sorts of evidence it can provide will be different than human drivers. We can’t cross-examine the robot to interrogate its state of mind. On the other hand, AVs are likely to record every aspect of the accident, giving us a better record than fallible human memory currently does. A second reason we focus on blame is that we need to worry that the parties might lie about what happened. But self-driving cars are likely to keep clear records and video that may make it easier to figure out what happened. And it may make

236 Albeit, not in the case of defective products.

237 See, e.g., Francesca M. Favaro, Examining Accident Reports Involving Autonomous Vehicles in California, PLoS ONE. https://doi.org/10.1371/journal.pone.0184952 (reconstructing autonomous vehicle accidents through the data collected by onboard recording devices).
less sense to try to assess fault when two robotic cars collide, though we expect that will be a
much rarer occurrence.238

Yet another reason we assess fault against people is that blame for wrongdoing can encourage more careful behavior. As we discussed in Part II, that isn’t likely to work, or at least to work in the same way, with robots. Without the element of moral culpability that underlies much remedies law, we might be better off looking to insurance schemes or no-fault liability regimes to internalize the costs robots impose rather than using existing legal rules in a fruitless quest to get robots to act morally. As robots and AI take on more responsibility in our society, the law should move away from efforts to assess blame and towards a system that internalizes the costs those machines impose on those around them. Doing so will make the problem of coding effective care easier. And it may increasingly mean tort cases involving robots don’t show up in the legal system at all, but in some sort of regulatory compensation system.239

That might incline us towards some sort of a no-fault system as self-driving cars and self-flying planes increasingly share space with their human-operated counterparts.240 While we

could assess the overall safety of an autonomous vehicle and—assuming it was safer than the human standard—deny liability altogether in crashes, we think the determination of what AV behavior falls below the standard of care is likely to be hard for the foreseeable future. Adding in the metric of fault doesn’t make much sense, and depriving injured parties of any remedy might not make sense either. The simplest way to train AVs to avoid doing unnecessary harm is to make them responsible for the harm they cause whether or not they were “negligent.”

That doesn’t solve all problems with AVs, particularly when they interact with humans, because we still must decide when an AV “causes” an accident with a human driver. While occasional fatal crashes have dominated the headlines, most AV-human car accidents involve humans running into AVs, often because the AV did something legal and presumably safe but unexpected, like driving the speed limit or coming to a complete stop at an intersection. While that may suggest that we want to program AVs to behave in a more predictable way, it’s hard to fault the AV for being rear-ended because it came to a complete stop at an intersection. Without the addition of a contributory negligence defense (which functions a lot like plain old B<PL from a fault perspective), innovators would end up disproportionately bearing costs, human drivers wouldn’t be priced off the roads as quickly as they should, and companies would also be apt to

241 For a suggestion along these lines, see Mark A. Geistfeld, A Roadmap for Autonomous Vehicles: State Tort Liability, Automobile Insurance, and Federal Safety Regulation, 105 CALIF. L. REV. 1611, 1612 (2017). Geistfeld would leave an exception for cars that were designed or manufactured defectively and for those that were hacked.

spend less on safety from a competitive perspective, since no amount of investment could get them off the liability hook when people, themselves, created the hazards.243

Thus, while we think moral fault makes little sense in accidents involving AVs, and perhaps any consideration of blame is problematic when considering accidents between two AVs,244 we will still need to compare the behavior of humans and AVs in order to make sure that we give proper incentives to human drivers. Comparative negligence may still matter for robot drivers, therefore. But it is the idealized cost-internalization vision of negligence reflected in Learned Hand’s formula, not consciousness of fault or state of mind, that we should care about.

B. Punishment, Deterrence, and the Human Id

Deterrence, unlike compensation, is forward-looking. We want robots to internalize the costs of their actions even apart from compensation of particular victims. The good news is that cost internalization has the potential to work better with robots than it does with people.245 Robot algorithms may allow us to internalize costs further down the causal chain than tort law normally does, for example by accounting for the social cost of pollution or other nebulous injuries to society as a whole. But these must be priced, again requiring fraught social tradeoffs to be made explicit. And the pricing should be cost-based. We should minimize the

243 For a more detailed discussion of these issues, see Bryan Casey, working paper.

244 Even then we might want to assess liability against the AV that is using an outdated or less-safe algorithm, to encourage the development of better safety technology in AVs.

psychologically-driven aspects of deterrence (jail, disgorgement of ill-gotten gains) and replace them with more rational measures of cost.

Doing so is at odds with many of the mechanisms we have for deterrence, however. Often those mechanisms are directed at showing moral opprobrium or at punishing people in ways we expect them to react to psychologically. Christina Mulligan’s idea of punching robots who wrong us\(^\text{246}\) sounds silly, but there is a serious idea behind it. Much of our law of remedies, including our search for fault (but also the way in which we punish), is designed not to compensate plaintiffs or even to internalize costs for defendants but to make us feel better. This sometimes involves “sending a message,” but often the defendant isn’t the target of the message. Perhaps it is society as a whole; large punitive damage awards or harsh criminal penalties can signal the things we won’t tolerate as a society, and overly lenient sentences can do the opposite. That is a broader social conversation, albeit one usually carried out in the context of legal remedies.\(^\text{247}\) But often, remedies are purely cathartic: we want someone to blame to make ourselves feel better for the bad thing that happened to us. When there is no obvious candidate for blame, we go to considerable lengths to find one.\(^\text{248}\) Punishment in this sense is a form of psychological compensation—the very act of punishing the defendant is the compensation.

\(^{246}\) Mulligan, supra note ___ at ___.

\(^{247}\) The recent controversy that erupted over a Stanford University swimmer’s six-month sentence for sexual assault provides just one examples. See The judge Who Sentenced Brock Turner to Six Months in Stanford Rape Case is Fighting a Recall, ASS’D PRESS (May 18, 2018), http://www.latimes.com/local/lanow/la-me-persky-recall-20180518-story.html.

\(^{248}\) For instance, we have relaxed the rules of causation in remedies law in order to compensate indirect victims of large oil spills. Oil Pollution Act, 33 U.S.C. § 2701 (2006).
This seems socially wasteful. Punishing robots, not to make them behave better but just to punish them, is kind of like kicking a puppy that can’t understand why it’s being hurt. The same might be true of punishing people to make us feel better, but with robots the punishment is stripped of any pretense that it is sending a message to make the robot understand the wrongness of its actions.

We don’t deny that there is a real phenomenon at work here, or even that it may benefit the victim psychologically. But it might not make sense to serve those goals when suing robots. Is there a way to make us stop? To channel that instinct into other areas than the legal system where it might be more productive? Should we just abandon the signaling function of remedies altogether? Perhaps, but we probably won’t, human nature being what it is.

Rather, if we want to rationalize remedies for robots, we might need to take human decision makers (especially untrained ones like juries) out of the remedies equation in some cases (or at least closely constrain the remedies they can order and the reasons that justify those remedies).249 Juries are likely to have an instinct to punish bad behavior by robots. But punishment makes sense only if we think compensation for damages is inadequate and so defendants will take insufficient precautions or engage in socially harmful behavior we want them to stop.250 A robot that calculates the cost of its various decisions accurately will make bad

249 One day, we may even want to go further by putting robots in charge of remedies decisions. See, e.g., Eugene Volokh, Chief Justice Robots, PULSE LUNCH TALK (JAN. 24, 2018), https://law.ucla.edu/news-and-events/4096/2018/1/24/pulse-lunch-talk-c--professor-eugene-volokh/ (discussing possibility of automating such legal decisions).

250 It might be, for various reasons. We cut off liability with proximate cause before we have traced all the harm from wrongful acts. See Pruitt v. Allied Chem. Corp., 523 F. Supp. 975 (E.D. Va. 1981) (denying relief for indirect injury from pollution); Lemley, Fruit of the Poisonous Tree, supra note __. We are bad at valuing pain and suffering and do so in idiosyncratic ways that will sometimes undercompensate plaintiffs. And we have imposed caps on liability in many circumstances that undercompensate for actual injuries.
decisions if we add in data on the likelihood of punitive damages that exceed those costs. And if the robot is being punished precisely because it is calculating how many people it’s ok to kill, the problem becomes recursive and we will undo the purpose of optimal deterrence and cost internalization.

C. Reeducating Robots

Injunctions, as we have seen, are both important and problematic remedies for robots. Can courts order a robot to do better—to change its programming? Perhaps we can require changes in design, or we might compel some sorts of modifications to learning algorithms.

Courts in general favor injunctions that preserve the status quo and prohibit parties from changing things (so-called prohibitory injunctions). They are traditionally more reluctant to order parties to do affirmative things to change the state of affairs (mandatory injunctions). It does happen, particularly in impact litigation after a final finding of liability. But courts tend to shy away from involving themselves in the details of running a business or designing a product if they can avoid it. With robots, though, there’s no avoiding it—whether the injunction is mandatory or prohibitory. An order for a robot to do something and an order for it to not do something both

See Michael Kang, Don’t Tell Juries About Statutory Damage Caps: The Merits of Nondisclosure, 66 U. Chi. L. Rev. 469 (1999) (noting “[i]t has become increasingly common for Congress and state legislatures to enact statutory limits on the amount of money damages that a plaintiff can recover in a jury trial). But if we are not compensating plaintiffs properly, the solution is to compensate them properly, not to add a damages multiplier to awards whether or not they are actually compensatory.

See supra notes ___-___ and accompanying text (discussing this problem).

See supra notes ___-___ and accompanying text (discussing this phenomenon in antitrust context).
require redesigning the product. Courts should take care when and how they grant those injunctions.

In light of this reality, what exactly will courts order robots to do? One likely compromise is not to order the code to be written in a specific way, but rather to order the company to find a way to achieve a specific result. As we saw in Part II, that by no means solves the problems with injunctions against robots. But it does offer some flexibility to the company that needs to rewrite their code, ideally without introducing other problems in the process.

One way to increase that flexibility is to give companies time to comply. Courts generally expect their orders to be obeyed quickly. But writing quick code often means writing bad code, particularly in an ever-changing, complex machine learning system. Courts and regulators should be patient. Self-driving cars go through years of testing before we are comfortable that they will drive safely. We shouldn’t just rewrite that code and put it on the streets without testing. So courts should delay implementation of their orders against robots to enable the defendant to develop and test a solution that doesn’t cause more problems than it solves. Regulators have so far shown admirable restraint in not rushing to mandate particular rules for AVs.253

Turning that results-oriented goal into an injunction runs into legal problems, though. Obviously we don’t want cars to run over kids, but a judge can’t simply order that. Court orders can’t just say “obey the law”;254 they must give clear notice of what the defendant must do. So

254 FED. R. CIV. P. 65(b) (“Every order granting an injunction and every restraining order shall set forth the reasons for its issuance; shall be specific in terms; [and] shall describe in reasonable detail . . . the act or acts sought to be restrained.”); Burton v. City of Belle Glade, 178 F.3d 1175, 1201 (11th Cir. 1999) (rejecting
an injunction might say “stop the car if the likelihood that a pedestrian will imminently enter the intersection is greater than 0.2%.”

In some cases, orders might require robots to make their algorithms worse. An injunction preventing the police from taking gender into account in predicting criminality may make it harder to predict who will commit crimes. We might nonetheless want to order it, either to counteract existing bias reflected in the training data or simply because recognizing gender differences in criminality violates a constitutional norm even if the differences are real. But in doing so we are departing from the real world, ordering companies to train their robots to make decisions based on the society we would like to have rather than the one we do have.

One compensating advantage to robot injunctions is that the orders involve rewriting code, and in a connected world these changes can often be shipped out retroactively. Tesla updates the software periodically in cars it has already sold. Unlike traditional products, where an injunction is generally limited to the sale of products in the future, court orders against robots can affect existing robots already in the hands of consumers.255 That makes the injunction much

an injunction that simply forbade future discrimination); Hughey v. JMS Dev. Corp., 78 F.3d 1523 (11th Cir. 1996) (overturning injunction that forbade discharge of waste in violation of the Clean Water Act).

more effective, though it also may raise due process concerns on the part of owners not a party to the case whose robot suddenly behaves differently or stops working altogether.\footnote{ Cf. Hassell v. Bird, ___ Cal.4th ___ (2018) (stressing that “the courts’ power to order people to do (or to refrain from doing) things is generally limited to the parties in the case”).}

\section*{D. The Robot Death Penalty?}

One area of remedies that becomes easier when the defendant is a robot is criminal law. We worry about the consequences of depriving people of liberty even when they have done something wrong. We worry even more about depriving them of life. It is an adage that we put a heavy thumb on the scale in favor of innocence, allowing the guilty to go free before punishing the innocent.\footnote{ Alexander Volokh, \textit{In Guilty Men}, 146 U. Penn. L. Rev. 173 (1997) (providing evidence of widespread support for this sentiment throughout history).} We require guilt to be proven beyond a reasonable doubt, and we have special protections before imposing the death penalty.\footnote{ John Bessler, \textit{Tinkering Around the Edges: The Supreme Court’s Death Penalty Jurisprudence}, AM. CRIM. L. REV. Cogitationes (2012) (discussing limitations surrounding imposition of death penalty).} Some states and most countries have in fact abolished the death penalty altogether.

But robots aren’t people, and we might worry less about robot liberty.\footnote{ For a suggestion that robots can be held liable for crimes just as people can, see Gabriel Hallevy, \textit{Dangerous Robots—Artificial Intelligence vs. Human Intelligence}, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3121905.} True, robots will be entitled to due process, if for no other reason than that they are owned by people or companies that would lose valuable property if their robots disappeared. But one new and significant form of remedy becomes available against robots that isn’t available against people in most circumstances: the robot death penalty. If a robot is causing unjustified harm and we can’t
stop it, either because we don’t understand how it works or because the harm is inextricably bound up with its programming, we might simply shut it down.260 Turning off malfunctioning robots is a simple and effective, if blunt, instrument to enforce an injunction. And removing the robot from commercial deployment may allow us to figure out what went wrong by engaging in the sorts of testing we couldn’t do without jeopardizing operational function.

\textit{Should} we shut down misbehaving robots? In some cases the answer is yes. Corporations do it all the time.261 And essentially any time you change the code you are changing the robot, replacing it with a new and (hopefully) improved one.

Whether courts can order a robot shut down over the objections of its owner is a slightly harder question, but the answer is still probably yes. Courts kill pets that repeatedly attack others and can order other types of machines shut down if they are unreasonably dangerous.262 If robot can be replaced by others with competing algorithms, we probably want to shut it down if it is operating below the standard of care. One way learning algorithms improve is through natural selection,263 and shutting down the bad ones is just a form of that process. But if an AI has developed unique attributes as a result of its own learning, we have the problem of dual-use

260 We distinguish this from the case where humans use robots to commit crimes. A human can use a drone to fire missiles, for instance, or to spy on people. \textit{See} Amanda McAllister, \textit{Stranger than Science Fiction: The Rise of A.I. Interrogation in the Dawn of Autonomous Robots and the Need for an Additional Protocol to the U.N. Convention Against Torture}, 101 MINN. L. REV. 2527 (2017). If the robot is the instrument of the crime but not its cause it is the human, not the robot, that should face criminal penalties.

261 \textit{See, e.g.,} Perez, \textit{ supra} note __.

262 \textit{See} Safia Hussain, \textit{Attacking the Dog-Bite Epidemic: Why Breed Specific Legislation Won’t Solve the Dangerous Dog Dilemma}, 74 FORDHAM L. REV. 2847 (2006); \textit{see also supra} notes ___ - ___ and accompanying text.

263 These often go by the name “genetic algorithms.”
technologies. A self-learning AI may behave differently in both good and bad ways, and those differences may be related. The robot death penalty kills off the good as well as the bad. So we want to do it only if we think the harm the robot is causing is sufficiently great and the unique benefit of its approach sufficiently low that the cost of losing the benefit is worth it.

For this reason, the use of the robot death penalty should probably be rare. Shutting down a robot, especially a self-learning one, means shutting down an avenue of innovation. We should do that only if there is strong evidence that the AI does more harm than good and that there isn’t a less intrusive way to solve the problem. Just as courts should be reluctant to tell robots to change how they behave, they should be reluctant to turn the robots off altogether.

Further, the robot death penalty presents more serious due process issues with respect to the existing stock of robots in the hands of people other than the defendant. Courts generally can’t reach out and take away property in the hands of non-parties without due process, even if those products cause problems and even if the court can order the company to stop selling new copies of the product. But the malleability of software presents some grey areas here. It is OK to order a defendant to push out changes to the product, though it’s an easier case if the recipient has the choice of whether to accept those changes. The company can probably stop supporting

the product remotely. But a software “upgrade” that is really just an effort to “brick” an existing product seems a reach too far.\footnote{See, \textit{e.g.}, Universal City Studios Productions LLLP v. TickBox TV LLC, No. CV 17-7496-MWF (ASx) (C.D. Cal. Jan. 30, 2018). It appears that the court is poised to order a device maker to use its software update mechanism to remove functionality and content from users’ devices.}

Finally, there is the possibility that the law will recognize robots as sentient entities with their own rights.\footnote{See \textit{Peter M. Asaro, A Body to Kick, but Still No Soul to Damn: Legal Perspectives on Robotics}, in \textit{ROBOT ETHICS: THE ETHICAL AND SOCIAL IMPLICATIONS OF ROBOTICS} 169 (Patrick Lin, Keith Abney and George A. Bekey eds., CAMBRIDGE: MIT Press, 2012).} That isn’t as far-fetched as it sounds. Corporations aren’t people either, but they get legal rights (in some instances more rights than people).\footnote{See, \textit{e.g.}, \textit{Citizens United v. Federal Election Commission}, 558 U.S. 310 (2010).} Animals also have some rights, though fewer than humans or corporations.\footnote{See \textit{Hussain, supra note __}; \textit{Christopher Sepe, Animal Law Evolution: Treating Pets as Persons in Tort and Custody Disputes} 2010 \textit{U. Ill. L. Rev.} 1339 (2010). Animals have only limited standing to bring cases, but they sometimes can. \textit{See, \textit{e.g.}, Naruto v. Slater, 2018 WL 1902414 (9th Cir. April 23, 2018)} (finding that a crested macaque alleged facts sufficient to establish Article III standing because it was the apparent author and owner of selfies it took and may have suffered legally cognizable harms); \textit{Cetacean Cmty. v. Bush}, 386 F.3d 1169, 1175 (9th Cir. 2004) (stating that mere fact that plaintiffs were animals did not rule out possibility of standing). But the law also refuses to treat animals as anything other than property in many instances. \textit{See, \textit{e.g.}, \textit{Johnson v. Douglas}, 723 N.Y.S.2d 627, 628 (Sup. Ct. 2001)} (refusing to allow emotional distress damages because dog was considered personal property).} Charles Stross has called corporations the first Al’s.\footnote{See \textit{Charles Stross, Dude, You Broke the future!, CHARLIE’S DIARY} (Dec. 2017), \url{http://www.antipope.org/charlie/blog-static/2018/01/dude-you-broke-the-future.html}.} Like Al’s, corporations are created by people, designed to serve ends dictated by people, but over time come to serve their own purposes.\footnote{\textit{Id}.} It’s not impossible that in the future we will extend at least some legal rights to robots as well, particularly unique robots with learned
behavior. And one of those rights may well be the right not to be shut down without due process.272

E. What Robots Can Teach Us about Remedies for Humans

Robots present a number of challenges to courts imposing remedies on robotic and AI defendants. Working through those challenges is valuable and important in its own right. But doing so can also teach us some things about the law of remedies as it currently applies to people and corporations.

First, much of remedies, like much of law, is preoccupied with fault—identifying wrongdoers and treating them differently. There may be good reasons for that, both within the legal system and in society as a whole. But it works better in some types of cases than in others. Our preoccupation with blame motivates many remedies, particularly monetary equitable relief. It distorts damage awards, particularly when something really bad happens and there is not an obvious culprit. It also applies poorly to corporations, which don’t really have a unitary purpose in the way a person might.273 As importantly, it is also costly, requiring us to assess blame in traffic cases that could otherwise be resolved more easily if we didn’t have to evaluate witness credibility. A fault-based legal system doesn’t work particularly well in a world of robots. But perhaps the problem is bigger than that: it might not work well in a world of multinational

272 Cf. Asimov’s three laws of robotics, \textit{supra} note __, which would allow any person to kill a robot for any reason. Isaac Asimov clearly never anticipated Reddit. Trying to implement the three laws of robotics would leave the world strewn with the carcasses of robots killed by griefers.

273 For an argument that current methods of punishing corporations are ineffective and that corporations should face organizational remedies—the equivalent of rewriting their “code”—see Mihailis E. Diamantis, \textit{How to Punish a Corporation} (working paper 2018).
corporations either.274 We should look for opportunities to avoid deciding fault, particularly when human behavior is not the primary issue in a legal case.275

A second lesson is the extent to which our legal remedies, while nominally about compensation, actually serve other purposes, particularly retribution. We described remedies law at the outset of the paper as being about “what you get when you win.” But decades of personal experience litigating cases276 have reinforced the important lesson that what plaintiffs want is quite often something the legal system isn’t prepared to give. They may want to be heard, they may want justice to be done, or they may want to send a message to the defendant or to others. Often what they want—closure, or for the wrong to be undone—is something the system not only can’t give them but that the process of a lawsuit actually makes worse. The disconnect between what plaintiffs want and what the law can give them skews remedies law in various ways. Some do no harm: awards of nominal damages or injunctions that vindicate a position while not really changing the status quo. But we often do the legal equivalent of punching robots—punishing people to make ourselves feel better, even as we frequently deny compensation for real injuries. It’s just that it’s easier to see when it’s a robot you’re punching.

274 We are by no means the first to have advanced this line of argument.

275 Shavell, supra note __. This does not mean, however, that we don’t need laws. Some have suggested that we won’t need rules or standards in the future because we can just rely on machine judgment to decide what the right thing to do is in any specific situation. See Anthony J. Casey & Anthony Niblett, The Death of Rules and Standards, 92 IND. L.J. 1401 (2017). For the reasons we explained in Part I, we think that highly unlikely. Robots will cause all sorts of harm the legal system will want to remedy. Cf. Dan L. Burk, Algorithmic Fair Use, ___ U. CHI. L. REV. ___ (forthcoming 2018) (explaining why algorithms won’t effectively replace standards in many cases).

276 Lemley, not Casey.
A final lesson is that our legal system sweeps some hard problems under the rug. We don’t tell the world how much a human life is worth. We make judgments on that issue every day, but we do them haphazardly and indirectly, often while denying we are doing any such thing. We make compromises and bargains in the jury room, awarding damages that don’t reflect the actual injury the law is intended to redress but some other, perhaps impermissible consideration. And we make judgments about people and situations in and outside of court without articulating a reason for it, and often in circumstances where we either couldn’t articulate that decisionmaking process or where doing so would make it clear we were violating the law. We swerve our car on reflex or instinct, sometimes avoiding danger but sometimes making things worse. We don’t do that because of a rational cost-benefit calculus, but in a split-second judgment based on imperfect information. Police decide whether to stop a car, and judges whether to grant bail, based on experience, instinct, and bias as much as on cold, hard data.

Robots expose those hidden aspects of our legal system and our society. A robot can’t make an instinctive judgment about the value of a human life, or about the safety of swerving to avoid a squirrel, or about the likelihood of female convicts reoffending compared to their male counterparts. If robots have to make those decisions—and they will, just as people do—they will have to show their work. And showing that work will, at times, expose the tolerances and affordances our legal system currently ignores. That might be a good thing, ferreting out our

racism, unequal treatment, and sloppy economic thinking in the valuation of life and property. Or it might be a bad thing, particularly if we have to confront our failings but can’t actually do away with them. It’s probably both. But whatever one thinks about it, robots make explicit many decisions our legal system and our society have long decided not to think or talk about. For that, if nothing else, remedies for robots deserve serious attention.

IV. Conclusion

Robots and AI systems will do bad things. When they do, our legal system will step in to try to make things right. But how it does so matters. Our remedies rules, not surprisingly, aren’t written with robots in mind. Adapting those rules to deal with bad robots will require a nuanced understanding of how robots and AI work, but also some fundamental rethinking of what remedies we award and why. That rethinking, in turn, will expose some issues that affect people, not just robots. We need a law of remedies for robots. But in the final analysis, remedies for robots may also end up being remedies for all of us.
Remedies for Robots
Article deals with how the legal concepts of intentionality and fault map to AI applications. When something goes wrong, who is there to blame? So when a chatbot says or does something that results in a breach of contract or consumer fraud claim, how do we analyze it. Who do you hold accountable? Who are the defendants? This paper adds another layer, which is: how do the traditional concepts of remedies play out? Injunctive relief? Specific performance? Punitive damages? Against whom?

Facial Recognition Madison Square Garden
This article discusses how Madison Square Garden purportedly secretly used facial recognition software to identify event attendees. This raises a number of legal issues, including privacy rights; biometrics laws; first amendment; and consumer protection. Was there sufficient notice? What is being done with the data? Is it properly stored and secured? What about law enforcement access requests? Can attendees opt out? Is this being used as a way to limit secondary ticket sales?

Wisconsin vs. Loomis
The Wisconsin Department of Corrections uses the COMPAS assessment to predict an offender’s risk to reoffend and to reoffend violently and to gain information about individual needs of that offender. Loomis challenged the use of COMPAS at sentencing: (1) because COMPAS is a proprietary tool and a defendant cannot see how it works, therefore it might present courts with inaccurate information; and (2) because COMPAS relies on gender in its assessment the use of COMPAS at sentencing improperly causes a court to sentence a defendant based on his gender. Both claims implicating Loomis’s due process rights. The Wisconsin Supreme Court rules that the State of Wisconsin can continue to use COMPAS to aid judges with sentencing decisions. The court concluded that "...if used properly, observing the limitations and cautions set forth herein, a circuit court's consideration of a COMPAS risk assessment at sentencing does not violate a defendant's right to due process". Loomis then filed a writ of certiorari to the U.S. Supreme Court but the court declined to hear the case and denied the petition.

Can artificial intelligence take the bias out of hiring
This article discusses how AI can be used to take bias out of hiring by detecting skills needed for certain jobs. In a traditional hiring process, recruiters and hiring managers also bring their own biases to the process, studies have found, often choosing people with the “right-sounding” names and educational backgrounds. Now algorithms can be used to eliminate some of the bias. The software can focus on skills and not on how the name sounds, photos, markers for age, etc.