Composites Technology & Applications Overview:
Plus Special Automotive Technology Focus

Day 1

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Introduction** | - Who are the attendees? Who is the Instructor?
- What is SAMPE – and other organizations |
| **Composites “Market” – What does it entail?** | - What are the 3 major markets?
- What does each market contain?
- How does tooling support each market?
- Where are the growth areas?
- What does the future look like in each? |
| **Fiber materials across the industries** | - What are the critical fibers today?
- What are their properties, typical costs, where used, why used there, etc.?
- Fiber limitations – any known?
- What is “sizing”, “coupling agents”, and fiber “interfaces”? Why are they important? |
| **Textiles and fabrics – key material forms for manufacturing** | - What nomenclature defines these?
- What are the various forms?
- What is unique about each form (drape, strength, cosmetics, knockdown factor, etc.)? |
| **Resin materials – those important “glues”** | - Thermosets vs. thermoplastics – differences
- Temperature ranges of interest and markets?
- Processing differences – and markets too!
- Discussion of all the key families – properties, process methods, limits, costs, etc. |
| **Manufacturing – traditional FRP methods** | - FRP vs. Advanced Composites – overview of differences
- Some basic processes – contact molding, filament winding, pultrusion, chop & spray, SMC, BMC, etc.
- Process overviews – and – applications coverage with examples |
| **Composites Test Methods** | - What tests are needed the most?
- What test data do material suppliers most often provide – and why?
- Methods for tension, compression and shear
- Fracture mechanics tests for defects and damage assessment
- Physical tests (DSC, Tg, fiber-resin-void content, and other important parameters) |
| **Tooling Technologies** | - Where are metal tools used and why?
- While “heavier” than composites, what advantages do metal tools still have?
- Where are composites used as tooling materials and structures?
- What aspects need to be considered when using composite tools?
- What other new materials are out there for “tooling” to produce composites?
- What are their properties and what makes them unique? |
| **Manufacturing – introduction to Vacuum Bagging and Hand Layup** | - Coverage of vacuum bagging and hand layup
- What is the process – and the variables?
- Out-of-autoclave? Where is the fit – autoclaves? |

DAY One – Summary, Wrap-up, Questions

Day 2

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
</table>
| **Day 2 Start-up – Questions from the students** | - Any questions from Day 1?
- Any topics you want clarified? |
| **Design and analysis – at least a brief review of key concepts** | - Briefly – how does micromechanics, laminate plate theory (LPT) and structural analysis all fit together?
- What is “quasi-isotropic”, or QI, behavior?
- What is “balance and symmetry” and why is it important? What is the “potato chip” effect?
- Quick look at “failure criteria” and what it means for test programs to establish design allowables
- Joints – bonded vs. bolted – what criteria to use?
- Some overall “Best Practices” |
| **Automotive Composites Technology – Special Focus Topic** | - The resins and fiber reinforcements are different – but where are they different?
- Resin families and types used
- Thermosets vs. Thermoplastics
- Other systems being developed
- “Rapid cure” and “snap-cure” systems
- Work on reducing “cure cycle times”
- Fiber reinforcement forms and issues:
- Differences from traditional “aerospace” materials
- Fiber types, fiber lengths and forms
- Glass- vs. Carbon-fiber materials
- Alternative carbon fiber properties
- Manufacturing methods ARE different:
- HP-RTM, HP-CRTM and T-RTM
- GMT, LFT and numerous others
- “Over-molding”, “Surface-molding”
- Manufacturing – Resin Infusion and Liquid Molding processes
- This is a big area – how do the terminologies differ internationally?
- What has changed with this technology over last 20+ years?
- Coverage of RTM, VARTM, SCRIMP and VIP
- Coverage of RFI and SQRTM
- Comparison of the above methods, where they fit into the industries and markets – numerous examples … plus some variants (like TERTM, RARTM, etc.)
- Design & analysis approaches and challenge areas
- Sandwich and Core Technologies – making things lighter, yet stiffer in bending
- What are “sandwich construction and structures”?
- How are these unique to lightweighting and bending stiffness improvements?
- What are the critical components (laminates, adhesives, core materials, etc.)?
- Closeout and termination issues
- Manufacturing – Automated Tape Laying, Fiber Placement and Robotics – the growth areas!
- ATL, AFP, ATP and Robotics – what are these processes?
- Videos of recent developments
- Manufacturing with fiber placement – advances in technology – why this is important today |

DAY Two – Summary, Wrap-up, Questions
AUTOMOTIVE PHOTOS

Hyundai “Intrado” Concept Car

LFT – Long Fiber Thermoplastic Structure
Thermoformed Thermoplastic Composites Panel (90 seconds)

process cycle time < 90 sec

Thermoformed CF/TP Truck Bed Liner
“Bumper-Stop” Composite Springs

Hemp Natural Fiber Composite Structures
Seat Pan Using Injection Resin Molding System

BMW Carbon Fiber RTM Structural Parts
KraussMaffei “Overmolded” Class A Finished Composite Parts

Composite Flywheel Energy Storage Systems for Engines