A randomized trial of hormonal add-back therapy for adolescents treated with gonadotropin releasing hormone agonist for endometriosis

Amy D. DiVasta, MD, MMSc; Henry A. Feldman, PhD; Jenny Sadler Gallagher, BA; Natalie A. Stokes, BA; Marc R. Laufer, MD; Mark D. Hornstein, MD; Catherine M. Gordon, MD, MSc

I have no financial relationships to disclose or Conflicts of Interest (COIs) to resolve.

Study medications were donated from Abbott Pharmaceuticals, Duramed Pharmaceuticals, and Wyeth Pharmaceuticals.

No sponsor or donor had any role in the development, conduct, analysis, or presentation of the study or its findings.

Background

- Endometriosis is a debilitating disease complicated by pain, limitation of activities, and poor social function
- Gonadotropin releasing hormone agonists (GnRHa) are utilized for patients who have failed primary therapy
- Long-term GnRHa use is associated with deleterious effects on bone mineralization; adults lose 5-8% BMD in 3-6 mos of tx
Research Questions

- Add-back therapy is a promising adjunct to treatment, but never studied in adolescents
- Adolescents are at highest risk for the negative impact of GnRHa
- Was GnRHa plus add-back therapy with norethindrone acetate (NA) + conjugated equine estrogens (CEE) or NA + placebo superior to maintain bone health in adolescents treated with GnRHa for endometriosis

Methods

- Adolescents (n=51) initiating GnRHa therapy for endometriosis prospectively recruited at BCH from 2003-2008
- Randomized, double-blind, placebo-controlled trial
- Assignment to add-back therapy with either:
 - NA 5 mg PO daily + CEE 0.625 mg PO daily
 - NA 5 mg PO daily + placebo PO daily
- Treatment administered for 12 mos
- Study approved by the BCH IRB

Sample Recruitment

Inclusion criteria
- Age 15-22 y
- ≥ 2 y post-menarche
- Surgical diagnosis of endometriosis
- GnRHa therapy

Exclusion criteria
- Other diseases (celiac, DM) or medications (steroids) known to affect BMD
Methods: Outcome Measures

- Areal bone mineral density (BMD), bone mineral content (BMC), and body composition measures were obtained by DXA at baseline, 6 mos, and 12 mos
- Anthropometrics, quality of life measures, and laboratory studies were collected at 0, 3, 6, and 12 mos
 - Safety measures: LFTs, lipid panels

Methods: Statistical Analyses

- Baseline comparison of continuous measures between trial arms: Student t-test, Wilcoxon two-sample test, Fisher exact test
- Analysis followed the intention-to-treat principle
 - Repeated measures ANOVA
 - Primary test of treatment efficacy was time × treatment interaction
 - Variables with highly skewed distributions were log-transformed for analysis and retransformed for reporting
- Trial designed with 80% power to detect a rate of change of 0.017 g/cm²/yr in hip BMD

Results: Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>All Participants (n=51)</th>
<th>NA + CEE Arm (n=25)</th>
<th>NA + P Arm (n=26)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Min—Max</td>
<td>Mean ± SD</td>
<td></td>
</tr>
<tr>
<td>Age, yr</td>
<td>17.9 ± 1.7</td>
<td>15.4—22.6</td>
<td>17.7 ± 1.4</td>
<td>0.41</td>
</tr>
<tr>
<td>Height, cm</td>
<td>163.8 ± 4.8</td>
<td>155.6—176.6</td>
<td>162.9 ± 4.3</td>
<td>0.19</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>67.8 ± 13.4</td>
<td>50.9—116.6</td>
<td>66.7 ± 12.6</td>
<td>0.55</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>25.2 ± 4.6</td>
<td>19.7—41.3</td>
<td>25.1 ± 4.5</td>
<td>0.82</td>
</tr>
<tr>
<td>Total body BMD Z-score</td>
<td>−0.5 ± 0.8</td>
<td>−2.2—1.9</td>
<td>−0.4 ± 0.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Hip BMD Z-score</td>
<td>−0.0 ± 0.9</td>
<td>−1.4—2.0</td>
<td>0.1 ± 0.9</td>
<td>0.23</td>
</tr>
<tr>
<td>Lumbar spine BMD Z-score</td>
<td>0.2 ± 1.0</td>
<td>−1.5—2.9</td>
<td>0.1 ± 1.0</td>
<td>0.51</td>
</tr>
<tr>
<td>Mos since diagnosis</td>
<td>Median (Q1—Q3)</td>
<td>Min—Max</td>
<td>Median (Q1—Q3)</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>15 (9—24)</td>
<td>1—124</td>
<td>12 (9—20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N (%)</td>
<td></td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>40 (94)</td>
<td>23 (92)</td>
<td>26 (100)</td>
<td>0.24</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>—</td>
</tr>
</tbody>
</table>
Participants receiving NA+P exhibited stabilization of total body, lumbar spine, and hip BMD, BMD Z-scores, or BMC ($p_{\text{within}} > 0.30$ for all measures).

In NA+CEE group, both total body BMC and BMD increased over 12 mos ($BMD \ p=0.05$ and $BMC \ p<0.001$; $p_{\text{between}} = 0.02$)
No losses of total hip or lumbar spine BMD or BMC

Lean mass increased in NA+CEE by 12 mos (+1.4kg, $p=0.001$) but not in NA+P ($p_{\text{between}} = 0.006$)
No differences in fat mass seen ($p_{\text{between}} = 0.44$)
Results: QOL Measures

At baseline, overall scores for physical health (Physical Summary Score, PCS) in both add-back groups were significantly lower than the US mean (impaired). Baseline Mental Summary Scores (MCS) for both groups were not lower than the US mean.

Results: QOL Measures

While both groups improved over time ($p_{within} \leq 0.003$), the NA+CEE group showed greater increases in PCS score than the NA+P group ($p_{between} = 0.005$). Neither group showed significant changes in MCS over time ($p_{within} \geq 0.49$).

Results: Safety Measures
Conclusions

• Hormonal add-back successfully preserved bone health and improved QOL for adolescents with endometriosis treated with 12 mos of GnRHa
• Combination NA+CEE add-back appears to be more effective for increasing total body BMC, aBMD, lean mass, and physical health QOL than NA+P monotherapy
• No significant side effects of either regimen were observed

Limitations

• Sample was limited to skeletally mature young women
 – Results may not generalize to growing girls
• DXA measures provide 2-dimensional measures of BMD, and do not yield information regarding skeletal strength or microarchitecture
 – Future work will explore the effects of add-back on the peripheral skeleton and bone strength

Implications

• A combination regimen of oral NA+CEE appears to be safe and effective for increasing aBMD and BMC in young women with endometriosis during one year of GnRHa treatment, and superior to NA+P
• Given the prevalence of endometriosis, our data suggest NA+CEE to be a useful adjunctive therapy to prevent bone loss in young women while they receive appropriate medical treatment for their underlying disease
Acknowledgements

• Thanks to the CTSU at Boston Children’s Hospital, the Boston Center for Endometriosis, and the young women who made this research possible.

• Funding Sources: NICHD T32 HD043034, NICHD K23 HD060066, NIH UL1 RR-025758 (CTSU), McCarthy Family Foundation, Thrasher Research Fund, and Boston Children’s Hospital Department of Medicine.