Horizontal Directional Drilling: An Approach to Design and Construction
Presentation Outline

- General HDD overview
- Conceptual-level evaluation
- Detailed HDD design
- Contract documents
- Construction oversight and lessons learned
- Questions
General HDD Overview
Typical HDD Vertical Alignment

HDD Entry/Rig Side

HDD Exit/Pipe Side

Radius of Curvature

Reference: ASTM F1962-11
HDD Installation Methodology

- **Pilot hole**
 - First guided pass of HDD process

- **Reaming**
 - Secondary guided passes to enlarge borehole

- **Pullback**
 - Drill pipe, swivel and product pipe pulled towards borehole entry
HDD Site Layout – HDD Entry/Rig Side

- Crane
- Vacuum Excavation Truck
- Soil Separation Plant
- Power Unit
- Mud Pump
- Mud Pit
- Drill Pipe Storage
- HDD Drill Rig
- Operator Control Cab

Horizontal Directional Drilling: An Approach to Design and Construction
HDD Site Layout – HDD Exit/Pipe Side

- Vacuum Excavation Truck
- Mud Pit
- Tracer Wire
- Pull Head and Swivel
- Reamer
- Pipe Roller
- HDD Pipe String
Conceptual-Level Evaluation
Conceptual-Level Evaluation

- Pipe type selection
 - HDPE, fusible PVC (fPVC), restrained joint ductile iron, steel, etc.

- Easement requirements
 - HDD entry and exit areas
 - Pipe laydown area

- Route evaluation
 - Obstruction including foundations, utilities, etc.
 - Wetland boundaries
Conceptual-Level Evaluation

- Typical HDD limitations
 - 2 to 60 inch diameter pipe size
 - Up to 7,500 ft crossing length
 - Favorable ground conditions include sands, clays, silts and bedrock
 - Unfavorable ground conditions include boulders, weathered rock, hard to very hard rock, and manmade obstructions
Detailed HDD Design
Geotechnical Investigation Program

- Review existing geotechnical and geologic data
- HDD horizontal alignment alternatives
- Develop geotechnical investigation program
 - Site survey
 - Test borings
Geotechnical Laboratory Testing – Soil Testing

- **Index testing**
 - Sieves
 - Atterberg limits

- **Strength testing**
 - Triaxial (unconsolidated undrained)
Geotechnical Laboratory Testing – Rock Testing

- Rock testing
- Rock strength
 - UCS test
- Brazilian tensile
 - Point load index
- Abrasivity
 - CERCHAR
 - Rock type
 - Unit weight, porosity and specific gravity
 - Petrographic analyses
Design Analyses

- Perform hydraulic fracturing (frac-out) analyses
 - Areas of minimal cover such as low point beneath river, near HDD entry/exit

- Perform pullback analyses
 - Estimating pullback forces
 - Pipe tensile stress calculation
 - Pipe ring deflection calculation
Contract Documents
Contract Drawings

- HDD vertical and horizontal alignments
 - Stationing including HDD entry/exit points and points of curvature
 - HDD entry/exit angles
 - Minimum radii of curvature
 - Delineate temporary easements
 - Temporary casing (Yes or No?)

- Additional pertinent information
 - Test boring locations
 - Known utilities and obstructions
 - Wetlands boundaries
Specifications

- Contractor qualifications
 - Minimum years experience and successful installations
- Ballasting required (yes or no?)
- Allowable horizontal and vertical tolerances
- Borehole monitoring requirements
 - Drill head location
 - Drilling speed
 - Drilling fluid pressures and flow rates
 - Drilling fluid viscosity and density
Specifications

- **Submittals**
 - HDD work plan
 - Calculation packages
 - Contingency plans

- **Project kick-off risk meeting or conference call discussions**
 - Proposed schedule
 - Major milestones (pilot drilling, reaming, pullback, pipe testing)
 - Lines of communication
Construction Oversight and Lessons Learned
Mill Creek Force Main HDD – Columbia, South Carolina Coastal Plains Geology

- 1,650 ft wetlands crossing
- 30” fPVC DR 21 water force main
- Subsurface conditions
 - Approx. 30 ft loose poorly-graded sand to silty sand and soft to medium stiff silt (alluvium)
 - Approx. 6 to 15 ft hard silt or very dense clayey gravel (coastal plains deposit/“hardpan”)
 - Greater than 10 ft medium dense silty sand (coastal plains deposit)
Mill Creek Force Main HDD – Columbia, South Carolina

- Critical Success Factors
 - Identification of “hardpan” layer during geotechnical investigation and submittal review process
 - Kick-off meeting
 - Coordination between engineer and HDD Contractor’s engineer during construction

Reamer Damage due to Hardpan
Mill Creek Force Main HDD – Columbia, South Carolina

- Lessons Learned
 - During Submittal Review Process, Confirm Contractor’s Equipment Acceptable for Hard Drilling Conditions
 - Prior to Drilling, Confirm Contractor’s Equipment Same as Submittals Prepared by Contractor’s Engineer
 - Frequently Monitor Bore Path for Frac-Out Conditions
 - Confirm Contractor has Frac-Out Contingencies Prepared Prior to Drilling
Neely Road Force Main – Brevard, North Carolina Piedmont Geology

- 350 ft French Broad River Crossing
- 24” HDPE DR 9 Sanitary Sewer Force Main
- Subsurface Conditions
 - Approx. 12 to 14 ft Very Loose to Loose Sand and Very Soft to Medium Stiff Silt (Alluvium)
 - Approx. 0 to 11 ft Hard Silt or Medium Dense Sand (Residual Soils)
 - Approx. 7 to 22 ft Partially Weathered Rock (PWR)
 - Moderately Hard to Hard Gneiss
Neely Road Force Main – Brevard, North Carolina

- Open cut of French Broad river proposed for original design due to:
 - High rock strength (Gneiss with UCS of up to 22,000 psi)
 - High frac-out potential for overburden drill (through soil and PWR)

- Critical success factors
 - flexibility to allow contractor to submit bid alternate for HDD
 - contractor accepting responsibility for monetary and schedule impacts from frac-out within French Broad River
 - Detailed HDD design review
Neely Road Force Main – Brevard, North Carolina

Lessons Learned

- Obtain test boring within waterbody, if possible, and/or bathymetric survey to identify actual subsurface stratigraphy
- For water drills, confirm contractor frac-out contingencies are prepared prior to drilling
- Present options to owner to determine allowable risk tolerance for high-risk HDD drills
G. Robert House WTP Force Main Extension – Suffolk, Virginia - Coastal Plains Geology

- 3,865 ft Nansemond River crossing
- 18” fPVC DR 18 sanitary sewer force main
- subsurface conditions
 - Approx. 5 to 64 ft very soft to soft clay or loose sand (Alluvium)
 - Greater than 10 ft medium dense sand
G. Robert House WTP Force Main Extension – Suffolk, Virginia

- Critical success factors
 - Bathometric survey identified obstructions including abandoned bridge abutment and piers
 - Geotechnical baseline report resulted in lower than anticipated bids
G. Robert House WTP Force Main Extension – Suffolk, Virginia

- Lessons Learned
 - Perform route evaluation to determine potential utility conflicts and identify man-made obstructions
 - Preparation of GBR may reduce bidding costs
 - Use of conductor casing during pilot hole drilling may prevent frac-out in loose or soft soils

<table>
<thead>
<tr>
<th>Layers</th>
<th>Unit Weight (pcf)</th>
<th>Friction Angle (degrees)</th>
<th>Cohesion (psf)</th>
<th>Young’s Modulus (kpsi)</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand (top)</td>
<td>120</td>
<td>30</td>
<td>0</td>
<td>500</td>
<td>0.28</td>
</tr>
<tr>
<td>Very Soft Clay</td>
<td>90</td>
<td>3</td>
<td>175</td>
<td>100</td>
<td>0.36</td>
</tr>
<tr>
<td>Soft Clay</td>
<td>90</td>
<td>3</td>
<td>450</td>
<td>300</td>
<td>0.36</td>
</tr>
<tr>
<td>Stiff Clay</td>
<td>95</td>
<td>3</td>
<td>1,000</td>
<td>500</td>
<td>0.36</td>
</tr>
<tr>
<td>Sand (bottom)</td>
<td>120</td>
<td>32</td>
<td>0</td>
<td>600</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Notes:
1. Baseline soil properties are based on CDM Smith interpretation of GET subsurface investigation.
Governors Island Water Main – New York, New York
Similar to Carolinas Mountain Geology

- 2,275 ft New York Harbor crossing
- 24” Steel casing pipe with 12” ductile iron sanitary sewer carrier pipe
- Subsurface conditions
 - Approx. 4 to 10 ft sandy fill (land)
 - Approx. 3 to 25 ft of very stiff clay
 - Approx. 8 to 30 ft sand or sand and silt
 - Approx. 11 to 42 ft of glacial till
 - Schist
Governors Island Water Main – New York, New York

- Critical success factors
 - Identification of glacial till layer with boulders during geotechnical investigation
 - Extensive geotechnical laboratory testing program on rock core samples
Lessons learned

- Drilling through unfavorable layers, such as glacial till, consider the following:
 - Minimize distance drilled through layer
 - Require contractor to submit contingency plans for obstructions
- Use of conductor casing during pilot hole drilling near HDD entry may prevent frac-out in loose or soft soils
Questions?