A Non-Revenue Water Tale of Five Cities

Tory Wagoner, PE/PLS
Cavanaugh & Associates, P.A.
- Fire Dept Usage
- Operational Flushing
- Tools for control include efficient flushing practices and awareness campaigns

Non-physical / revenue loss - slow meters, billing issues and theft
Cost impacts at ‘retail’ rate
Tools for control include data management, quality control policies/practices, meter testing & repair

Physical loss - leakage
Cost impacts at ‘wholesale’ rate
Tools for control include leakage and pressure management
Water Efficiency Management

1. Determine Loss Volumes
 - AWWA water audit
 - Apparent & Real Loss volumes

2. Distinguish Types of Leakage/Losses
 - Breakdown of types of leakage (Component Analysis Model)
 - Sources of Apparent Loss

3. Evaluate Economics
 - Costs of losses
 - Costs of intervention strategies

4. Implement Interventions
 - Leak detection
 - Repair time improvement
 - Pressure management
 - Cost effective!
Water Supplied

- Kansas
- Alabama
- Kentucky
- Indiana
- N Carolina
Non Revenue Water

- Kansas
- Alabama
- Kentucky
- Indiana
- N Carolina
Unavoidable Annual Real Loss (UARL)

Kansas | Alabama | Kentucky | Indiana | N Carolina

Million gallons (US)
Infrastructure Leakage Index (ILI)

- Kansas
- Alabama
- Kentucky
- Indiana
- N Carolina
Data Validity Score

- Kansas
- Alabama
- Kentucky
- Indiana
- N Carolina
System #1 - Kansas

- **Existing Programs:**
 - Leak Detection
 - Customer Meter Testing

- **Initial Assessment:**
 - Unrealistically low ILI – (0.2)

- **Validation Efforts:**
 - Finished Water Meter Testing
 - Billing Data

- **Next Steps:**
 - Calendar Year 2016 Audit – ILI solved?
 - Unmetered Interconnection?
 - Large Meter Testing Optimization
 - Small Meter Testing/Optimum Replacement
 - Leak Detection Optimization

Test - Thursday, October 20, 2016

<table>
<thead>
<tr>
<th>Clearwell</th>
<th>Test Meter</th>
<th>Wetwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Level</td>
<td>12.580 feet</td>
<td>Meter Reading: 512.83</td>
</tr>
<tr>
<td>Ending Level</td>
<td>12.327 feet</td>
<td>Time Start: 10:55 AM</td>
</tr>
<tr>
<td>Pump Flow</td>
<td>2 MGD</td>
<td>Time Start: 11:10 AM</td>
</tr>
<tr>
<td>Total Volume</td>
<td>2,523 cubic feet</td>
<td>Time End: 11:10 AM</td>
</tr>
<tr>
<td>0.019 MG</td>
<td>Meter Reading: 512.84</td>
<td>Total Volume</td>
</tr>
<tr>
<td>Meter Volume: 0.016 MG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clearwell</th>
<th>Test Meter</th>
<th>Wetwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Level</td>
<td>12.327 feet</td>
<td>Meter Reading: 512.84</td>
</tr>
<tr>
<td>Ending Level</td>
<td>12.065 feet</td>
<td>Time Start: 11:10 AM</td>
</tr>
<tr>
<td>Pump Flow</td>
<td>2 MGD</td>
<td>Time Start: 11:25 AM</td>
</tr>
<tr>
<td>Total Volume</td>
<td>2,613 cubic feet</td>
<td>Total Volume</td>
</tr>
<tr>
<td>0.020 MG</td>
<td>Meter Reading: 512.87</td>
<td>Meter Volume: 0.024 MG</td>
</tr>
<tr>
<td>Meter Volume: 0.016 MG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clearwell</th>
<th>Test Meter</th>
<th>Wetwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Level</td>
<td>12.065 feet</td>
<td>Meter Reading: 512.87</td>
</tr>
<tr>
<td>Ending Level</td>
<td>11.773 feet</td>
<td>Time Start: 11:25 AM</td>
</tr>
<tr>
<td>Pump Flow</td>
<td>2 MGD</td>
<td>Time Start: 11:40 AM</td>
</tr>
<tr>
<td>Total Volume</td>
<td>2,912 cubic feet</td>
<td>Total Volume</td>
</tr>
<tr>
<td>0.022 MG</td>
<td>Meter Reading: 512.89</td>
<td>Total Volume</td>
</tr>
<tr>
<td>Meter Volume: 0.016 MG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clearwell</th>
<th>Test Meter</th>
<th>Wetwell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Level</td>
<td>11.773 feet</td>
<td>Meter Reading: 512.89</td>
</tr>
<tr>
<td>Ending Level</td>
<td>11.500 feet</td>
<td>Time Start: 11:40 AM</td>
</tr>
<tr>
<td>Pump Flow</td>
<td>2 MGD</td>
<td>Time Start: 11:55 AM</td>
</tr>
<tr>
<td>Total Volume</td>
<td>2,722 cubic feet</td>
<td>Total Volume</td>
</tr>
<tr>
<td>0.020 MG</td>
<td>Meter Reading: 512.91</td>
<td>Total Volume</td>
</tr>
<tr>
<td>Meter Volume: 0.025 MG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Test Total:** 0.081 MG
- **Total Non-Revenue Water Volume (MG)**
 - Level 1: 3,634
 - Total: 250
- **Billed Consumption + NRW:**
 - 3,884
System #2 - Alabama

• **Existing Programs:**
 o Leak Detection based on High Volumes of perceived leakage
 o % Based Performance Indicator
 - Large Industry left → % ↑ → “Water Loss Problem”

• **Initial Assessment:**
 o High Pressure = High UARL = ILI of 2.1

• **Validation Efforts:**
 o Level 1 Water Audit

• **Next Steps:**
 o M36 Methodology based tracking & metrics
 o Finished Water Meter Testing
 o Large Meter Testing Program
 o Leak Detection Optimization
System #3 - Kentucky

- **Existing Programs:**
 - Leak Detection based on High Volumes of perceived leakage
 - % Based Performance Indicator
 - Finished Water Meter Testing
 - Master Meter Testing

- **Initial Assessment:**
 - Unrealistic ILI of 13
 - Preliminary Bottom-up Analysis

- **Validation Efforts:**
 - Level 1 Water Audit

- **Next Steps:**
 - M36 Methodology based tracking & metrics
 - Billed Metered Level 2 Validation
 - Large Meter Testing Program
 - Leak Detection Optimization
System #4 - Indiana

- Existing Programs:
 - Leak Detection
 - Customer Meter Testing
 - Rolling 12 month auditing

- Initial Assessment:
 - % Metric used as Indicator

- Validation Efforts:
 - Level 1 Water Audit
 - Customer Meter Inaccuracy Analysis
 - Billing Data Analysis

- Next Steps:
 - Large Meter Testing Optimization
 - Redistricting/Pressure Reduction
 - Leak Detection Optimization
 - Unmetered Fire Line Analysis
 - Small Meter Testing Analysis
System #5 – North Carolina

- **Existing Programs:**
 - Capital based line replacement

- **Initial Assessment:**
 - High Pressure = High UARL

- **Validation Efforts:**
 - Level 1 Water Audits
 - Billing Data Analysis
 - Real Loss Component Analysis
 - Lag-time adjustment (bi-monthly billing)

- **Next Steps:**
 - Large Meter Testing Optimization
 - Pressure Optimization
 - District Metered Areas
 - Leak Detection Optimization
 - Finished Water Meter Testing
SAVE THE DATE
December 4 - 5, 2017
Paradise Point Resort · San Diego, CA

The North American Water Loss Conference (NAWL) will assemble policy and technical experts on non-revenue water management in North America.

Visit ca-nv-awwa.org after January for more information.

Presented by:
American Water Works Association
California-Nevada Section

In cooperation with the Alliance for Water Efficiency and the NAWL 2017 Conference Planning Committee.

Sponsorships will be available.
A Non-Revenue Water Tale of Five Cities

Tory Wagoner, PE/PLS
Cavanaugh & Associates, P.A.