Human Milk: Personalized Medicine in the NICU

Carrie-Ellen Briere, PhD, RN, CLC
Assistant Professor, UMass Amherst College of Nursing

New England Association of Neonatal Nurses, March 18, 2019
Conflicts of Interest

• None to report
Objectives

After this talk, you will be able to:

• Interpret current science of human milk to talk with NICU families about its importance

• Recall at least two examples of how human milk is personalized in mother-infant dyads

• Identify how NICU handling and delivery practices may impact bioactive components of human milk
The Big Picture

• Human milk is not *just* nutrition and immunity, it contains compounds which provide *signal* and *communication* between mother and infant

• These “non-nutritive” compounds are impacted by “everyday” practice in the NICU

• ANY human milk is better than NO human milk, but how can we get closer to the “ideal”?
Gestational Age at Birth

- 23 weeks
- 34 weeks
- 40 weeks

Immature and under-developed organs:
Intestines, Heart, Lungs, Brain, Kidneys, Liver, etc.
Benefits of Human Milk for Preterm Infants

In the NICU
• Reduced incidence of late onset sepsis
• Decreased NEC and severity of NEC
• Retinopathy of Prematurity (ROP)
• Improved Neurodevelopmental Outcomes

After Discharge into Childhood
• Fewer re-hospitalizations in the first year of life
 • ↓ Metabolic Syndrome
 • ↓ Insulin Resistance
 • ↓ Blood Pressure
 • ↓ Risk of Asthma
 • ↓ Risk of SIDS
• ↓ Respiratory Tract Infections
 • ↓ Ear Infections
• ↓ Risk of Childhood Cancer
Benefits for Breastfeeding Mothers

Mothers Who Breastfeed Have Reduced Risk of Developing:

- Breast Cancer
 - Greater reduction for each birth and each month of breastfeeding
 - In women BRCA1+ → Reduces risk by 1/3
- Ovarian Cancer
- Rheumatoid Arthritis
- Type 2 Diabetes
- Cardiovascular Disease
 - High Blood Pressure, High Cholesterol
“Bioactive” Components of Milk

• Bioactivity (noun): “Any effect on, interaction with, or response from living tissue”
 – Dictionary.com

• Bioactive (adjective): “having or producing an effect on living tissue”
 – Dictionary.com
Milk Varies Between Individuals: Milk is Different for Boys and Girls

- More fat for sons, more milk for daughters (Hinde, 2009)

- Driven by first infant
 - Very high fat and high protein for sons, and more dilute for first born daughters (Hinde, 2009)

- More calcium for girls (Hinde, 2013)
 - This may explain why there is faster skeletal development in female rhesus, chimps, and humans
Milk Varies Between Individuals: Milk is Different for Boys and Girls

• Why is it different? (Hinde, 2014)
 – Developmental priorities
 – Reproductive value (in terms of grand-offspring to the mother)

• When does the difference begin?
 – Is it the fetus that signals the mammary glands during development?
 – Is it a form of hormonal co-regulation of the infant-maternal dyad?
 – Or a combo of both
Bioactive Factors in Human Milk: Molecules and Cells

• Antimicrobial Factors
 – IgA, IgM, IgG, Lactoferrin, Lysozyme, Complement C3, Leukocytes, Bifidus Factor, Lipid and Fatty Acids, Antiviral Mucins, GAGs, Oligosaccharides

• Growth Factors
 – Epidermal (EGF), Nerve (NGF), Insulin-like (IGF), Transforming (TFG), Taurine, Polyamines

• Cytokines and Anti-inflammatory Factors

• Digestive Enzymes
 – Amylase, bile acid-stimulating esterase, bile acid-stimulating lipases, lipoprotein lipase

• Hormones
 – Feedback inhibitor of lactation (FIL), insulin, prolactin, thyroid hormones, corticosteroids, ACTH, oxytocin, calcitonin, parathyroid hormone, erythropoietin

• Transporters
 – Lactoferrin, Folate, Binder, Cobalamin Binder, IgF finder, Thyroxine Binder, Corticosteroid Binder
Bioactive Factors in Human Milk:
Molecules and Cells

- **Antimicrobial Factors**
 - IgA, IgM, IgG, Lactoferrin, Lysozyme, Mucins, GAGs, Oligosaccharides
- **Growth Factors**
 - Epidermal (EGF), Nerve (NGF), Insulin-like (IGF), Transforming (TFG), Taurine, Polyamines
- **Cytokines and Anti-inflammatory Factors**
 - Tumor Necrosis Factor, Interleukins, Interferon-g, Prostaglandins, A1-Antichymotrypsin, A1-Antitrypsin, Platelet Activating Factor, Acetyl hydrolase
- **Digestive Enzymes**
 - Amylase, bile acid-stimulating esterase, bile acid-stimulating lipases, lipoprotein lipase
- **Hormones**
 - Feedback inhibitor of lactation (FIL), insulin, prolactin, thyroid hormones, corticosteroids, ACTH, oxytocin, calcitonin, parathyroid hormone, erythropoietin
- **Transporters**
 - Lactoferrin, Folate, Binder, Cobalamin Binder, IgF finder, Thyroxine Binder, Corticosteroid Binder

Human Milk Oligosaccharides

Cannot be digested by humans

Two Roles (there are more!):

- Act as a “decoy” in the gut to prevent “bad” bacteria from attaching to mucosal surfaces, ↓ infection
- Feed the “good” gut bacteria (prebiotic)
Bioactive Factors in Human Milk: Molecules and Cells

• Antimicrobial Factors
 – IgA, IgM, IgG, Lactoferrin, Lysozyme, Complement C3, Leukocytes, Bifidus Factor, Lipid and Fatty Acids, Antiviral Mucins, GAGs, Oligosaccharides

• Growth Factors
 – Epidermal (EGF), Nerve (NGF), Insulin-like (IGF), Transforming (TFG), Taurine, Polyamines

• Cytokines and Anti-inflammatory Factors

• Digestive Enzymes
 – Amylase, bile acid-stimulating esterase, bile acid-stimulating lipases, Lipoprotein lipase

• Hormones
 – Feedback inhibitor of lactation (FIL), insulin, prolactin, thyroid hormones, corticosteroids, ACTH, oxytocin, calcitonin, parathyroid hormone, erythropoietin

• Transporters
 – Lactoferrin, Folate, Binder, Cobalamin Binder, IgF finder, Thyroxine Binder, Corticosteroid Binder

Epidermal Growth Factor: Stimulates cell proliferation and maturation

HB-EGF (heparin-binding): Protects against damage from hypoxia/ischemia

NGF (nerve): Promotes neuron growth and maturation

(Ballard & Morrow, 2013)
Bioactive Factors in Human Milk:
Molecules and Cells

- **Antimicrobial Factors**
 - IgA, IgM, IgG, Lactoferrin, Lysozyme, Complement C3, Leukocytes, Bifidus Factor, Lipid and Fatty Acids, Antiviral Mucins, GAGs, Oligosaccharides

- **Growth Factors**
 - Epidermal (EGF), Nerve (NGF), Insulin-like (IGF), Transforming (TFG), Taurine, Polyamines

- **Cytokines and Anti-inflammatory Factors**
 - Tumor Necrosis Factor, Interleukins, Interferon-g, Prostaglandins, A1-Antichymotrypsin, A1-Antitrypsin, Platelet-Activating Factor, Acetyl hydrolase

- **Digestive Enzymes**
 - Amylase, bile acid-stimulating esterase, bile acid-stimulating lipases, lipoprotein lipase

- **Hormones**
 - Feedback inhibitor of lactation (FIL), insulin, prolactin, thyroid hormones, corticosteroids, ACTH, oxytocin, calcitonin, parathyroid hormone

- **Transporters**
 - Lactoferrin, Folate, Binder, Cobalamin Binder, IgF finder, Thyroxine Binder, Corticosteroid Binder

Erythropoietin: Promotes red blood cell production and intestinal development
(Ballard & Morrow, 2013)
Prebiotic vs. Probiotic

• Prebiotic:
 – Promotes growth and activity of beneficial bacteria (e.g. HMOs)

• Probiotic:
 – Live micro-organisms, seen as beneficial bacteria for the gut
Gut Bacteria (Microbiome) and Intestinal Health

- “Good” microbes in milk help protect infants
 - Bifidobacteria, lactobacillus
 - These bacteria might help regulate gene expression which promotes barrier protection in the gut (so the bad microbes can’t get out of the gut!) and digestion
 - Might reduce the inflammatory response in the gut
Human Milk Oligosaccharides (HMOs)

• Cannot be digested by humans

• **Two Roles (there are more!):**

 – Act as a “decoy” in the gut to prevent “bad” bacteria from attaching to mucosal surfaces, ↓ infection

 – Feed the “good” gut bacteria (prebiotic)
Image From:
Moossavi et al., Cell Host & Microbe 2019 25, 324-335.e4DOI: (10.1016/j.chom.2019.01.011)
Just in: The Breastmilk “Mycobiome”

• Fungi is present in breastmilk

• Varies by delivery mode (Vaginal vs. C-section), geographic location, maternal age, and pre-pregnancy BMI

• Hypothesized bacteria-fungal interactions
Stem Cells in Human Milk

Stem Cells help the body grow, repair, renew

Properties of a Stem Cell:

Self Renewal
- Can make more of itself

Differentiation
- Can become a specialized cell
The Future of Human Milk

Human milk has long-term benefits, yet the mechanisms that link receipt of human milk to these remain unknown (e.g. cancer, neurodevelopment, cardiovascular disease)
Human Milk Stem Cells: A(n abbreviated) Timeline

First published study identifying these cells in full-term mothers’ milk
Human Milk Stem Cells: A(n abbreviated) Timeline

- Human milk cells have variable expression of pluripotency genes (typically found in hESCs)
 - OCT4, SOX2, NANOG
- In vitro differentiation into cell lines of all 3 germ layers
Human Milk Stem Cells: A(n abbreviated) Timeline

Mouse models show:
- Milk stem cells survive gut
- Found as functioning cells in multiple organs
 - Blood, thymus, liver, pancreas, spleen, brain
Human Milk Stem Cells: A(n abbreviated) Timeline

Stem-cell populations vary based on maternal/infant characteristics
Human Milk Stem Cells: A(n abbreviated) Timeline

2007: hMSC identified in milk for hospitalized preterm infants
Image from Briere et al., 2016
Milk Stem Cells are Found Throughout the Body

(Hassiotou et al., 2014; Aydin et al., 2018)
Stem Cell Therapy Improves Gut Barrier Function!

• Preterm rat pups received an intraperitoneal injection of stem cells or a control fluid and were then subjected to “experimental” NEC

 – Rats who received the stem cells had **less gut permeability**

 – **Concerns:**
 • Stem cell therapies can cause tumors and immunologic responses (not breastmilk stem cells though…)

(McCulloh et al., 2018)
Can Stem Cells “Heal” Intraventricular Hemorrhage?

- Germany
 - 31 VLBW infants with intraventricular hemorrhage (all received breastmilk)
 - 16 received nasal drops of breastmilk daily for 28 days

<table>
<thead>
<tr>
<th>Condition</th>
<th>Intranasal Breastmilk</th>
<th>Comparative Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe Porencephalic Defects</td>
<td>21% (3/14)</td>
<td>58% (7/12)</td>
</tr>
<tr>
<td>Progressive Ventricular Dilatation</td>
<td>71% (10/14)</td>
<td>91% (11/12)</td>
</tr>
<tr>
<td>Surgery for Post hemorrhagic Hydrocephalus</td>
<td>50% (7/14)</td>
<td>67% (8/12)</td>
</tr>
</tbody>
</table>

The researchers did not find any statistical significance, which means that these differences could be due to chance

(Keller et al., 2018)
• Pathways of breast milk uptake in oral cavity and nasal passages
Human Milk is Protective in Infants with Congenital Heart Disease

• Exclusive human milk diet:
 – Lower risk of NEC
 – Better weight gain

(Davis & Spatz, 2018)
Exosomes and Intestinal Cell Health in Times of Stress

- Human milk contains exosomes
 - These vesicles have protein, lipid, and microRNA

- Exosomes were isolated from human milk

- Exosomes were added to Intestinal epithelial cells (in a dish) and exposed to a type of oxidative stress (hydrogen peroxide)
 - The exosomes protected the epithelial cells!

(Martin et al., 2018)
What Can You Do Today?

- Use fresh human milk whenever possible
- Get those infants to their mom’s breast! (First oral feeding should be at-breast!)
- Help and encourage mothers to provide as much as direct-breastfeeding as possible
- Delay the use of bottles when possible
- Help mothers transition to direct breastfeeding and understand what is “typical”
- Talk with families about human milk and its role as a personalized medicine
 - It is not “just” nutrition
References

