In the Matter of)
Facilitating the Deployment of Text-to-911 and PS Docket No. 11-153
Other Next Generation 911 Applications)
) Framework for Next Generation 911 Deployment) PS Docket No. 10-255
))

NOTICE OF PROPOSED RULEMAKING

Adopted: September 22, 2011 Released: September 22, 2011

By the Commission: Chairman Genachowski and Commissioners Copps, McDowell, and Clyburn issuing separate statements.

Comment Date: [60 days after publication in the Federal Register]
Reply Comment Date: [90 days after publication in the Federal Register]

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Heading</th>
<th>Paragraph #</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION AND EXECUTIVE SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II. BACKGROUND</td>
<td>13</td>
</tr>
<tr>
<td>A. Procedural History</td>
<td>14</td>
</tr>
<tr>
<td>B. Technical Background</td>
<td>22</td>
</tr>
<tr>
<td>III. DISCUSSION</td>
<td>33</td>
</tr>
<tr>
<td>A. Facilitating the Short-Term Deployment of Text-to-911</td>
<td>34</td>
</tr>
<tr>
<td>1. Expected Benefits of Text-to-911 Availability</td>
<td>35</td>
</tr>
<tr>
<td>2. Ongoing Text-to-911 Trials</td>
<td>42</td>
</tr>
<tr>
<td>3. Approaches Based on SMS and Existing Infrastructure</td>
<td>48</td>
</tr>
<tr>
<td>4. Approaches Based on Software Applications</td>
<td>57</td>
</tr>
<tr>
<td>B. 911 Prioritization in Major Emergencies</td>
<td>60</td>
</tr>
<tr>
<td>C. Facilitating the Long-Term Deployment of NG911 Text and Multimedia Applications</td>
<td>68</td>
</tr>
<tr>
<td>1. Expected Benefits of Availability of NG911 Text and Multimedia Applications</td>
<td>69</td>
</tr>
<tr>
<td>2. Standards Development for NG911 Applications</td>
<td>76</td>
</tr>
<tr>
<td>3. Approaches Based On IP-based Messaging or Real-Time Text</td>
<td>79</td>
</tr>
<tr>
<td>4. Approaches Based On Software Applications</td>
<td>84</td>
</tr>
<tr>
<td>D. The Commission’s Role in Expediting Deployment of Text-to-911 and Other NG911 Applications</td>
<td>87</td>
</tr>
<tr>
<td>1. Incentive-Based vs. Regulatory Approaches</td>
<td>88</td>
</tr>
<tr>
<td>2. PSAP-Based Triggers for Providers to Provide NG911 Solutions for Non-Voice Emergency Messaging to 911</td>
<td>90</td>
</tr>
<tr>
<td>a. State or Regional Approaches</td>
<td>92</td>
</tr>
</tbody>
</table>
b. Advanced Regional 911 Centers...101
E. Consumer Education and Disclosure Mechanisms..104
 1. Expected Benefits..105
 2. Approaches for Education and Disclosure ...107
F. Overlap with CVAA and EAAC...111
G. Legal Authority..115

IV. PROCEDURAL MATTERS...121
 A. Ex Parte Presentations..121
 B. Comment Filing Procedures..--------122
 C. Accessible Formats..123
 D. Regulatory Flexibility Analysis..124
 E. Paperwork Reduction Act Analysis...125

V. ORDERING CLAUSES..126

APPENDIX: Initial Regulatory Flexibility Analysis

I. INTRODUCTION AND EXECUTIVE SUMMARY

1. In this Notice of Proposed Rulemaking, we seek to accelerate the development and
deployment of Next Generation 911 (NG911) technology that will enable the public to send emergency
communications to 911 Public Safety Answering Points (PSAPs) via text, photos, videos, and data and
enhance the information available to PSAPs and first responders for assessing and responding to
emergencies. Sending text messages, photos, and video clips has become commonplace for users of
mobile devices on 21st century broadband networks, yet our legacy circuit-switched 911 system does not
support these forms of communication. While continuing to ensure reliable voice-based 911 service will
always be essential as we migrate to NG911, adding these non-voice capabilities to our 911 system will
significantly improve emergency response, save lives, and reduce property damage. Incorporating text
and other media into the 911 system will make it more accessible to the public, both for people with
disabilities and for people in situations where placing a voice call to 911 could be difficult or dangerous.

2. In addition, these 21st century communications technologies will provide PSAPs with
better information that can be synthesized with existing databases to enable emergency responders to
assess and respond to emergencies more quickly and effectively. Not only will PSAPs be able to receive
text messages, photos, and video clips from the public, but also NG911 can provide them with the tools
they need to quickly process and analyze the incoming information. In addition, PSAPs and emergency
responders will be able to combine information received from the public with other information sources
(e.g., video feeds from traffic or security cameras, automated alarms or sensors in a neighborhood,
building, or vehicle) to develop a detailed and data-rich assessment of the emergency in real time. This in
turn will enable public safety officials to decide on the appropriate response more quickly, saving
precious minutes and seconds that can be critical in many emergencies.

3. In this Notice, we provide a procedural history, together with technical background,
regarding three broad classes of text-capable communications, namely Short Message Service (SMS), IP-
based messaging, and Real-Time Text (RTT), comparing their characteristics, strengths, and limitations in
supporting emergency communications.1 This description relies largely on current industry standards,
early prototypes, and the record in this proceeding.

4. We then examine potential short-term methods for sending text messages to 911. We do

1 Throughout this document, the term “Real-Time Text” refers to SIP-based text consistent with IETF RFC 4103,
16, 2011).
so because of the widespread availability and increasing use of text in communications systems and because many of the emerging IP-based mechanisms for delivering text also have the capability, with relatively minor technical adjustment, to support delivery of photos, videos, and other data as well. We seek comment on what role the Commission should play to facilitate—and, if necessary, accelerate—the implementation of text-to-911 capabilities by providers in the short term. We explore the full range of options for the FCC, including both non-regulatory and regulatory approaches, and seek to adopt the least burdensome approach that would achieve the desired result. We also recognize that we must carefully assess the costs and benefits of different regulatory options to determine the Commission’s proper role.

5. We seek to strengthen the record to determine whether to encourage development of interim text-to-911 solutions and, if so, how to maximize their effectiveness and utility to the public and to PSAPs, while minimizing cost and the potential for negative PSAP operational impacts or consumer confusion. Specifically, we explore the potential for using SMS as an interim solution for text-based communication to 911, given the near-universal availability and consumer familiarity with SMS. The responses to our December 2010 Notice of Inquiry in this proceeding identify a number of possible limitations when using SMS for emergency communications, but some commenters also contended that these limitations could be surmounted by appropriate engineering approaches. We also examine other short-term options that would rely on software applications capable of delivering text over the existing IP-based infrastructure. We examine the potential costs and benefits of both SMS-based and software-based interim approaches as compared to developing more comprehensive text-to-911 solutions over the longer term that will provide more reliable real-time communication and can also support delivery of photos and video.

6. Next, we seek comment on whether 911 traffic should be prioritized to ensure that people in need of assistance have reliable access to emergency services, especially during times of serious emergencies such as large-scale natural and manmade disasters. The August 23, 2011 East Coast earthquake and Hurricane Irene have been recent reminders that concentrated demands on the capacity of commercial communications networks during and immediately after emergencies can hinder the ability of consumers to make voice calls, which in turn can jeopardize their ability to contact 911. We seek comment on how best to address this concern in both legacy networks and the emerging broadband networks that will support NG911, including options for prioritizing 911 traffic.

7. We then turn to long-term implementation of NG911, with particular focus on IP-based alternatives for delivering text, photos, videos, and other data to 911 that would leverage the increasing percentage of mobile devices that have the ability to access the Internet. We seek comment on the potential for developing downloadable smartphone applications that both consumers and IP-capable PSAPs could acquire to support capabilities for an early roll-out of text and multimedia functionality. We note that such applications could also provide early access to key NG911 capabilities for mobile callers, especially those with hearing and speech disabilities.

8. We also seek comment on the path towards integration and standardization of IP-based text-to-911 as commercial providers migrate to all-IP networks and as 911 authorities deploy Emergency Services IP networks (ESInets) that will enable PSAPs to receive the full range of IP-based traffic, including voice, text, photos, video, and data. In this all-IP environment, text-to-911 is one of several non-voice services that will be supported by “native” IP communications end-to-end solutions, such as the Internet Multimedia Subsystem (IMS). However, providers may have varying timetables for developing the capacity to deliver IMS communications to PSAPs. PSAP deployment of ESInets is also

3 See infra, note 41 (referencing 3GPP, IP Multimedia Subsystem (IMS) Emergency Sessions).
likely to be non-uniform. We seek comment on the necessary steps for providers and PSAPs to support integrated IMS-based communications and the time that this process is likely to take.

9. With over 6,800 PSAPs in the United States, spanning a wide range of sizes and resources, individual PSAPs are likely to have highly varying timetables for developing the technical and operational capability to handle incoming texts in the short term, as well as texts and other media in the longer-term implementation of NG911. While there are significant public safety benefits to enabling the public to send texts and other media to 911 in areas where PSAPs are capable of receiving and processing them, we seek to avoid imposing unnecessary costs on providers to implement NG911 in areas where PSAPs have not yet achieved such capability. For this reason, we seek comment on whether PSAPs should demonstrate a threshold level of technical NG911 capability as a precondition to any obligation by providers to deliver text or other media to PSAPs and whether such demonstration should be at the state or regional level. We also seek comment on potential state or local regulatory barriers to NG911 deployment and whether states should demonstrate that they have adopted legal or regulatory measures to eliminate such barriers to facilitate NG911 deployment.

10. Given that text-to-911 and other NG911 capabilities will likely not be simultaneously deployed nationwide, consumers may be uncertain where non-voice communication with 911 is available. Even where text-to-911 or other NG911 applications are available, the specific capabilities and operational characteristics of these applications may vary. We therefore seek comment on how to best educate consumers about the availability and limitations of text-to-911 and other NG911 solutions, particularly during the transition from legacy 911 to full implementation of NG911, without imposing an undue burden on providers.

11. As noted above, adding text and other media capabilities to our 911 system promises to bring significant benefits for people with disabilities. In this regard, we seek comment on the relationship between this proceeding and our ongoing implementation of the Twenty-First Century Communications and Video Accessibility Act of 2010, \(^4\) which, among other things, sets goals for achieving equal access to emergency services for people with disabilities “as a part of the migration to a national Internet protocol-enabled emergency network.” \(^5\) We believe that the transition to NG911 and the implementation of the CVAA can be achieved through development of common text-to-911 and multimedia-to-911 solutions that serve both objectives. In this Notice, therefore, we seek comment on the potential for coordinating the two proceedings to promote broader and more rapid NG911 deployment.

12. Throughout this Notice, we seek comment to further strengthen our record on these important aspects of the evolution towards NG911 systems and capabilities. In particular, we seek detailed data that quantifies the benefits that text-to-911 and other NG911 applications will bring to the public and to emergency responders, while also quantifying the costs to providers, PSAPs, and consumers. We emphasize the importance of comments being detailed, specific, and supported by data where appropriate. We intend to confer particular weight on arguments and estimates that are supported by data or are otherwise well documented.

II. BACKGROUND

13. In this section, we review the procedural history leading up to this Notice. We also provide technical background information classifying the likely technical options for text-to-911, and we recap the record on those options that the Commission received in response to the Notice of Inquiry.

\(^5\) 47 U.S.C. § 615c(a).
A. Procedural History

14. In December 2010, as recommended in the National Broadband Plan, the Commission released a Notice of Inquiry on NG911, which initiated a comprehensive proceeding to address how NG911 can enable the public to obtain emergency assistance by means of advanced communications technologies beyond traditional voice-centric devices.\(^6\) The Notice of Inquiry sought comment on a number of issues related to the deployment of NG911 networks, including: (1) NG911 capabilities and applications; (2) NG911 network architecture; and (3) the proper roles of the FCC, other federal agencies, and state, tribal, and local governments.\(^7\)

15. In the last several years, there have been other important efforts to address the need for a transition to an NG911 network. In the New and Emerging Technologies 911 Improvement Act of 2008, Congress tasked the National E9-1-1 Implementation Coordination Office (ICO) with developing “a national plan for migrating to a national [Internet Protocol] IP-enabled emergency network capable of receiving and responding to all citizen-activated emergency communications and improving information sharing among all emergency response entities.”\(^8\) The Department of Commerce’s National Telecommunications and Information Administration (NTIA) and the Department of Transportation’s (DOT) National Highway Traffic Safety Administration (NHTSA) jointly manage ICO and released its migration plan in September 2009.\(^9\)

16. In March 2010, the National Emergency Number Association (NENA) released a handbook to serve as a guide for public safety personnel and government officials responsible for ensuring that federal, state, and local 911 laws and regulations effectively enable the implementation of NG911 systems.\(^10\) Specifically, the NENA Handbook provides an overview of key policy, regulatory, and legislative issues that need to be considered to enable the transition to NG911. The NENA Handbook states that “it is critical that state regulatory bodies and the FCC take timely and carefully scrutinized action to analyze and update existing 9-1-1, PSTN, and IP rules and regulations to ensure they optimize 9-1-1 governing authority choices for E9-1-1 and NG9-1-1 and foster competition by establishing a competitively neutral marketplace.”\(^11\)

17. 3GPP has also published a report on the use of Non-Voice Emergency Services (NOVES) that provides a general description of perceived needs.\(^12\) In addition, ATIS has created its own Interim Non-voice Emergency Services (INES) Incubator.\(^13\) The ATIS INES Incubator “provides the

\(^6\) See Notice of Inquiry, 25 FCC Rcd 17869.

\(^7\) See Notice of Inquiry, 25 FCC Rcd 17869 at ¶¶ 31, 44, 65.

\(^9\) ICO, A National Plan for Migrating to IP-Enabled 9-1-1 Systems, 1-3 (ICO Plan).

industry with a ‘fast-track’ process for resolving technical and operating issues” and serves as “an alternative approach toward solutions development.”

18. On October 8, 2010, the President signed the CVAA into law. As directed by the CVAA, the Chairman established the Emergency Access Advisory Committee (EAAC) for the purpose of achieving equal access to emergency services by individuals with disabilities as part of our nation’s migration to NG911. The EAAC is composed of state and local government representatives responsible for emergency management and emergency responder representatives, national organizations representing people with disabilities and senior citizens, communications equipment manufacturers, service providers, and subject matter experts. The CVAA directed the EAAC to conduct a national survey of people with disabilities and then to make recommendations on the most effective and efficient technologies and methods to enable NG911 access. The EAAC conducted its survey from March 16, 2011, to April 25, 2011, and received over 3,000 completed responses. On July 21, 2011, the EAAC submitted the report on the completed survey to the Commission. The EAAC will make its recommendations to the Commission in December 2011, which the Commission is then empowered to implement by regulation.

19. In addition, other federal agencies have initiated efforts to address access to 911 in an Internet-enabled environment for people with disabilities. On March 17, 2010, the United States Access Board proposed draft guidelines for real-time text functionality for adoption by federal agencies as part of its efforts to update guidelines on Section 508 of the Rehabilitation Act. In a separate proceeding, the Department of Justice is currently reviewing comments received in response to an Advanced Notice of Proposed Rulemaking (ANPRM) on NG911 access to emergency services by people with disabilities. Current DOJ regulations under the Americans with Disabilities Act (ADA) require direct and equal access to telephone emergency services for people with disabilities who use TTYs. In its ANPRM, DOJ notes

15 See CVAA, supra note 4.
17 See EAAC Members Announcement PN.
18 47 U.S.C. § 615c (c).
20 47 U.S.C. § 615c(g) (providing that “[t]he Commission shall have the authority to promulgate regulations to implement the recommendations proposed by the [EAAC], as well as any other regulations, technical standards, protocols, and procedures as are necessary to achieve reliable, interoperable communication that ensures access by individuals with disabilities to an Internet protocol-enabled emergency network, where achievable and technically feasible”).
23 A TTY, also called a “text telephone,” and sometimes “telecommunications device for the deaf,” is a text device that employs graphic communication in the transmission of coded signals through a wire or radio communication system. See Telecommunications Services for Individuals with Hearing and Speech Disabilities and the Americans
that many individuals with disabilities are now relying on IP-based and digital wireless devices instead of TTYs as their primary mode of telecommunications "and that 9-1-1 call-taking centers are shifting from existing traditional telephone emergency services to new IP-enabled NG 9-1-1 services." The ANPRM addresses two objectives: (1) to identify and remove accessibility barriers for people with disabilities and who attempt to use personal digital or telecommunications devices to directly interact with PSAPs in voice, sign language, or text; and (2) to enhance the ability of PSAPs to incorporate essential accessibility elements into their IP-based system in a coordinated and effective manner. Finally, in compliance with the NET 911 Act, the ICO’s national plan for migrating to an IP-enabled emergency network explored various solutions for providing enhanced 911 access to people with disabilities.

20. In March 2011, the Communications Security, Reliability, and Interoperability Council’s (CSRIC) Working Group 4B (CSRIC 4B) released a report entitled “Transition to Next Generation 9-1-1.” CSRIC is a Federal Advisory Committee that was tasked with providing guidance and expertise on the nation’s communications infrastructure and public safety communications. Notably, the CSRIC 4B Report highlighted that “the FCC must establish clear rules for accomplishing the transition to NG9-1-1” and that “[i]f SMS has a role as an interim non-voice service used to contact a PSAP, how it is deployed… will need to be resolved by the FCC.”

21. On August 30, 2011, the Transportation Safety Advancement Group (TSAG) released a report summarizing information that experts in law enforcement, fire-rescue, emergency medical services (EMS), and transportation operations would like to receive as end users of NG911 systems. The report provides insight into the cultural, organizational, and operational environments of these organizations.

(Continued from previous page)

25 See id.

26 NET 9-1-1 Act (requiring the ICO to include within its national plan, the identification of solutions and steps to implement those solutions for providing 9-1-1 access to people with disabilities, and to consult with representatives of the disability community, as well as other interested stakeholders in doing so); 47 U.S.C. § 942(d); ICO Plan at 1-3, 1-11, 2-3, 4-11, 6-2, 6-6.

29 CSRIC 4B Report at 144.

30 Id.

B. Technical Background

22. In the Notice of Inquiry, we distinguished between use of “primary” and “secondary” media types to communicate with PSAPs. In brief, primary media types are those that are used to initiate a call or communications session with the PSAP, while secondary media types are those that are used to provide additional information to the PSAP after the call or session has been established. In the current E911 system, voice and TTY-based text are the only primary media that are widely available, and secondary media, such as photos and video, are not available.

23. In addition, while we focus in this Notice on enabling consumers to deliver text and other non-voice media to PSAPs, we note that the adoption of NG911 technology will also provide PSAPs with new tools to process and analyze this information. In the Notice of Inquiry, we cited the potential for NG911 to accommodate a full range of specialized devices and functionalities that would enable PSAPs to combine multiple streams of information in real time to fashion responses to particular emergency scenarios. Examples of such devices and functionalities include environmental sensors capable of detecting chemicals, highway cameras, security cameras, alarms, gunshot sensors, personal medical devices, and telematics in vehicles or on consumer devices. For example, in a traffic accident, NG911 would not only enable the PSAP to receive the 911 call for help from the caller seeking assistance, but also would enable it to correlate the call with 911 calls from others at or near the scene and combine the information with video from nearby traffic cameras to assess the impact on traffic and identify the first responders that could reach the scene the fastest. In addition, if any vehicles in the accident had automatic collision notification systems, the PSAP would receive additional information regarding the severity of the crash that could help determine the likely medical needs of accident victims and the appropriate emergency medical response. Similarly, in a 911 call scenario reporting a crime such as a robbery or assault, NG911 would enable the caller to send important visual information such as a photo of the suspect or a vehicle involved in the crime, and would enable first responders to correlate this information with other sources, such as nearby security cameras, gunshot sensors, or alarm systems, and to quickly access relevant databases that could help identify the suspect or the suspect’s vehicle.

24. In this Notice, we primarily focus on developing text-based mechanisms that would serve as new primary media types for contacting a PSAP, supplementing voice calling capability and also supplementing or replacing TTY-based text. We consider photos and video as secondary media that may be used to augment a voice or text call. We recognize that this to some degree oversimplifies the potential media combinations that NG911 will ultimately support, ranging from single-medium communications (i.e., voice-only or text-only) to multi-media “calls” that may encompass combinations of interactive and stored media, including interactive voice, message-based and real-time text, photos, and both stored (previously recorded) and live video. However, for purposes of this Notice, we focus on text as a primary media type and photos and video as secondary media types because in early NG911 deployments, primary communication between a caller and a PSAP is most likely to be voice-only or text-only and the availability of secondary media may differ based on caller device capabilities, PSAP and ESInet capabilities, and PSAP operational choices.

25. Based on the comments we received in response to the Notice of Inquiry, we can distinguish between a number of technical options for providing text-based and, in some cases, visual information (photos, video) to the PSAP. We briefly summarize these approaches below. We note that these options are not exclusive (i.e., a mobile device may support more than one option, either as an interim measure, or over the longer term). For purposes of this Notice, we use the term “caller” to refer to the originator of the 911 communication, whether based on a traditional voice call, TTY call, or text

33 See id.
message. We also discuss (1) mechanisms for providing caller location, both for routing and dispatch; (2) the ability of a caller to know whether his or her text message has been received by the PSAP; and (3) the possibility of establishing a session that permits the caller to conduct a conversation with the call taker.

26. **TTY**. With a TTY, a person with a hearing or speech disability can use a special text telephone to directly contact the PSAP, where the call taker uses a similar device to receive and transmit text. TTYs have a keyboard and allow people to type their telephone conversations. This two-way typing communication can occur with the person with the disability and the PSAP call taker reading each other's responses on a small LED or backlit LCD screen. The disabilities community considers TTY an antiquated technology with technical and functional limitations, including its slow speed and half duplex mode; the inability of TTY tones to travel well using IP audio compression, transmission, and packet loss repair techniques without introducing text errors; and its Baudot text encoding standard used in the United States that does not include all of the characters used in modern text communication. Consequently, it is difficult for users to communicate URLs or email addresses, for example.

27. **Text-to-Voice TTY-based telecommunications relay service (TRS)**. A TRS system is a telephone service that allows persons with hearing or speech disabilities, or who are deaf-blind, to place and receive telephone calls. With traditional TRS, a person with a communications disability uses a TTY to make a call through a communications assistant (CA), who is located at a relay center. To make a relay call, a TTY user calls a TRS relay center and types the number of the person he or she wishes to call, including 911. The CA then makes the call to the receiving party and relays the call back and forth between the parties by speaking what a text user types and typing what a voice telephone user speaks.

34 See *supra* note 23; see also 47 C.F.R. § 64.601(22). TTY is sometimes called a “TDD” or “telecommunications device for the deaf,” even though TTY has superseded the term “TDD.” For CMRS providers subject to the E911 requirements of section 20.18, see 47 C.F.R. § 20.18(c) (concerning “TTY Access to 911 Services.”).

35 There are also more complex communication methods using TTYs, such as Voice Carry Over and Hearing Carry Over. Computer software technology, involving the use of an external or internal modem, is available to allow personal computers to have TTY characteristics. See Massachusetts Office of Health and Human Services, “TTY Overview,” available at http://www.mass.gov/?pageID=eoehhs2terminal&L=6&L0=Home&L1=Consumer&L2=Disability+Services&L3=Services+by+Type+of+Disability&L4=Deaf%2c+Deafened%2c+Hard+of+Hearing+&L5=Assistive+Technology+and+Hearing+Ear+Dogs&sid=Eoehhs2&b=terminalcontent&f=mcdbh_e_at_tty&csid=Eoehhs2, (noting that “some manufacturers have designed modems with TTY, FAX, and other data capabilities” while other “manufacturers have developed specific computer software or keyboards with built-in TTY capability.”) (last visited Aug. 16, 2011).

37 Title IV of the Americans with Disabilities Act of 1990 (ADA) directed the Commission to create a nationwide TRS program, to ensure that people who are “deaf, hard of hearing, deaf-blind, or who ha[ve] a speech disability [would be] able to engage in communication by wire or radio with one or more individuals, in a manner that is functionally equivalent to the ability of a hearing individual who does not have a speech disability to communicate using voice communication services by wire or radio.” 47 U.S.C. § 225(a)(3), as amended by the CVAA, Pub. L. 111-260, Sec. 103(a).

38 See Telecommunications Relay Services and Speech-to-Speech Services for Individuals with Hearing and Speech Disabilities, Report and Order, Order on Reconsideration, and Further Notice of Proposed Rulemaking, 19 FCC Rcd 12475, 12479, ¶ 3 n.18 (2004) (describing how a traditional TRS call works). Although when first enacted, the ADA only permitted TRS calls between TTY users and voice telephone callers, the introduction of multiple forms (continued….)
28. **SMS-based.** In SMS-based systems, the caller uses a mobile phone to send a short text message to the destination, which is typically another mobile phone or an Internet-connected receiver. SMS messages are usually limited to 160 characters, although many modern handsets support concatenated messages that exceed this limit. Almost all existing mobile phones support SMS, except that non-service initialized (NSI) devices currently do not permit a caller to send an SMS message. SMS messages do not contain any information about the caller’s location and do not identify the cell tower that received the SMS message from the caller’s handset. SMS messages are delivered through an SMS gateway that relays the messages when capacity is available. Thus, SMS messages could in some circumstances be delayed, or even occasionally lost, when there is network congestion. Senders of SMS messages also may not receive confirmation that their message was delivered. More importantly, the sender may not receive an error message if the message was not delivered. SMS also does not support two-way real-time conversation, although SMS messages have identifiers that can allow users to exchange messages in a conversation-like manner.

39 While delivery of SMS messages can be affected by network congestion, as explained in further detail below, SMS messages consume far less bandwidth than voice calls and therefore are typically more likely to be delivered in times of heavy congestion than voice calls. See infra paras. 40 and 62.

39

40 See, e.g., TIA/EIA-637-A (MESSAGE_ID).

41 SIP is “an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences.” See IETF RFC 3261, **SIP: Session Initiation Protocol.** IMS allows wireless operators to offer multimedia services on SIP-based platforms. See 3GPP, Technical Specification 23.228, **IP Multimedia Subsystem (IMS): Stage 2,** version 10.2.0, September 2010, Section 4.0 “IP multimedia subsystem concepts - General.”

sender and the receiver that allows the exchange of a series of related instant messages.\footnote{See Internet Engineering Task Force (IETF), \textit{The Message Session Relay Protocol}, (September 2007) available at \url{http://tools.ietf.org/pdf/rfc4975.pdf} (last visited Aug. 12, 2011).} Typically, MSRP sessions are set up via SIP, similar to an audio or video session. As with SIP pager-mode, MSRP exchanges complete instant messages; however, MSRP imposes less of a burden on the signaling infrastructure.

- \textit{Other IP-based message-based protocols.} We note that there are other proprietary and standards-based Internet text messaging protocols, such as Extensible Messaging and Presence Protocol (XMPP).\footnote{XMPP is an open technology for real-time communication, which powers a wide range of applications including instant messaging, presence, multi-party chat, voice and video calls, collaboration, lightweight middleware, content syndication, and generalized routing of XML data. \cite{XMPP} available at \url{http://xmpp.org/about-xmpp} (last visited Aug. 16, 2011).} However, it appears unlikely that a PSAP would be able to support all Internet text messaging protocols; thus, we believe that proprietary protocols are likely to be converted to one of the options above or to XMPP.

30. \textit{Real-Time Text (RTT).} In RTT, individually-typed characters or groups of characters are transmitted as separate media packets, using the same basic protocol as audio and video sessions.\footnote{See IETF, \textit{RTP Payload for Real-Time Text Conversation}, (June 2005), available at \url{http://tools.ietf.org/pdf/rfc4103.pdf} (last visited Aug. 12, 2011).} This means that with RTT, unlike SMS or IP-based messaging, the recipient sees each character or word in the message almost immediately after the sender types it. RTT sessions can be established along with audio and video sessions and typically use SIP for session signaling.

<table>
<thead>
<tr>
<th></th>
<th>TTY</th>
<th>SMS-based</th>
<th>IP-based messaging</th>
<th>Real-time text (RTT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery to PSAP</td>
<td>Voiceband modem</td>
<td>SIP MESSAGE</td>
<td>SIP MESSAGE or MSRP</td>
<td>RTP payload</td>
</tr>
<tr>
<td>Text</td>
<td>Only upper case letters, numbers, limited punctuation</td>
<td>160 characters of plain text (some may allow longer text)</td>
<td>Any amount of text</td>
<td>Any amount of text</td>
</tr>
<tr>
<td>Photos, videos in same message?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Real-time audio and video in same session?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Real-time text</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Full-duplex conversation (both)</td>
<td>No</td>
<td>Limited</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

sides can send messages at the same time)

<table>
<thead>
<tr>
<th></th>
<th>Yes, like voice call</th>
<th>Maybe (cell tower; may require cellular system changes)</th>
<th>Yes</th>
<th>Yes, via SIP signaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End-to-end message reliability and delivery confirmation</td>
<td>No</td>
<td>No (may provide some confirmation for delivery to SMSC)</td>
<td>Yes</td>
<td>Loss detection and redundancy</td>
</tr>
<tr>
<td>Message delay</td>
<td>Minimal</td>
<td>Variable – seconds to minutes</td>
<td>Almost always < 500 ms</td>
<td>Almost always < 100 ms</td>
</tr>
<tr>
<td>Authentication and message integrity</td>
<td>None</td>
<td>Limited (relies on caller ID)</td>
<td>Messages can be cryptographically signed</td>
<td>SRTP</td>
</tr>
<tr>
<td>Conversation (session)</td>
<td>Like voice call</td>
<td>Only based on caller ID</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

32. We seek comment on whether our description of texting methods and their capabilities in the above discussion is accurate and complete. Are there additional technical options that are likely to be available in the next few years? Are there additional key characteristics that the Commission should consider in evaluating these alternative technologies?

III. DISCUSSION

33. Based on our analysis of information submitted in response to the Notice of Inquiry, we find that additional information is needed on the following issues related to text-to-911 and multimedia NG911 applications, and we therefore seek comment on these issues. First, what role, if any, should the Commission play in facilitating the short-term deployment of text-to-911 using existing infrastructure? Second, what role, if any, should the Commission play in facilitating the long-term deployment of non-voice emergency messaging services, including IP-based messaging and RTT, as well as multimedia applications that support delivery of voice, text, photos, video, and other data? Third, as the transition to NG911 occurs, what efforts are needed to educate the public and minimize consumer confusion, and what role, if any, should the Commission play in such efforts? Underlying all three of these issues is the question of whether the benefits of any potential Commission action to consumers and to public safety will substantially outweigh the associated costs. While acknowledging the potential difficulty of quantifying benefits and burdens, we need to determine whether those benefits outweigh the costs that enabling text-to-911 and other NG911 services impose on providers and PSAPs. Fourth, we seek comment on how best to coordinate this proceeding with our implementation of the CVAA and the recommendations of the EAAC. Fifth and finally, we consider the Commission’s legal authority to take the regulatory and non-regulatory actions discussed in this Notice based on the record that develops on the issues described herein.

A. Facilitating the Short-Term Deployment of Text-to-911

34. In the Notice of Inquiry, the Commission highlighted the popularity and ubiquity of text messaging and the increasing likelihood that consumers will expect to be able to text to 911 during an emergency. Indeed, consumers send billions of SMS messages per day and more than two-thirds of

47 Notice of Inquiry at ¶ 41.
mobile phone users have used text messaging. At the same time, many consumers are acquiring more advanced mobile devices (e.g., 3G and 4G handsets) that enable them to send texts using “over the top” software applications that they install on their phones and computers. Hence, any discussion about possible short-term deployment of text-to-911 must consider the feasibility of both SMS and currently available software applications (or software applications that could be developed relatively quickly) as interim platforms for text-to-911 until providers deploy more advanced NG911 technologies based on SIP and RTT. In deciding what role, if any, the Commission should play in such an interim deployment, we seek to maximize the benefits to consumers while also considering the burden on providers. We therefore seek comment on the expected benefits of facilitating NG911 deployment, the results of any ongoing trials and standards activities involving SMS and software applications, and the relative merits of using various approaches to achieve those benefits. When evaluating submitted comments, we intend to place more weight on the estimated impacts that are supported by hard data or are otherwise well-documented.

1. Expected Benefits of Text-to-911 Availability

35. Although quantifying the benefits of short-term deployment of text-to-911 may be difficult, we need to determine whether such a deployment will significantly benefit consumers and public safety. On this issue, responses to the Notice of Inquiry were divided. Several commenters argue that PSAPs and service providers should support SMS-based text-to-911 on an interim basis. Conversely, a number of commenters highlight the disadvantages of using SMS for emergency communications and argue that supporting SMS as an interim approach would undermine and divert resources from efforts to develop more comprehensive long-term solutions. These commenters urge the Commission to support standards-setting bodies that are working to develop a uniform approach for the delivery of NOVES. No comments were received on application-based approaches to text-to-911. Accordingly, we seek further comment on the benefits of using SMS and software applications for emergency communications, particularly with respect to improving 911 accessibility for people with disabilities, meeting consumer expectations, providing PSAPS with valuable additional information that they can in turn share with first responders on the ground, and increasing reliability and resiliency of 911 networks.

36. Accessibility of 911. The ability to text to 911 in the short term could substantially improve accessibility to 911 services for people with disabilities. In recent years, people with hearing and speech disabilities have increasingly migrated away from specialized legacy devices such as TTYs and towards more widely available forms of text communications because of the ease of access, availability,

(Continued from previous page)
and practicability of text-capable communications devices. This migration is most apparent in the declining use of telecommunications relay service (TRS) over the PSTN, where the average monthly usage for TTY-voice based relay service dropped 87% between 2000 and 2010. Moreover, as noted in the NOI, the ICO Plan found that “[t]he biggest gap between the technologies used for daily communication and those that can access 9-1-1 services is that for the deaf and people with hearing or speech impairments.” In the EAAC’s survey, in which respondents were primarily drawn from people with disabilities, 48.1% of respondents stated that they would prefer to use text messaging to contact 911.

37. Developing text-to-911 capability in the short term could also provide benefits by making 911 accessible to consumers in the so-called “silent call” scenario (i.e., in situations where the caller needs to contact the PSAP silently or surreptitiously because placing a voice call could put the caller in danger). Commonly cited examples of the silent call scenario include burglaries, home invasions, kidnappings, and hostage situations where a crime is in progress and the caller does not want to attract the perpetrator’s attention.

38. Toward that end, we seek more information on the benefits and associated costs of facilitating short-term text-to-911 solutions that can quickly improve the accessibility of the 911 system. To what extent can such short-term solutions assist individuals with hearing or speech disabilities? How frequently do people in emergencies encounter a silent call scenario where inability to send a text message to 911 could compromise the caller’s safety? Can SMS provide significant accessibility benefits in these situations even if it does not offer real-time connectivity or enable the caller to send photos or videos, unlike some longer-term solutions under development? How, if at all, will receipt of texts allow PSAPs to better communicate information about an emergency situation to first responders on the ground? What, if any, costs will PSAPs incur to implement short-term text-to-911 solutions? Are there capacity limits on PSAPs’ ability to accept texts to 911? With respect to interim text-to-911 solutions based on software applications, these may only be available on some mobile devices and may require additional steps by the user, both to install the application and to send the 911 text message. Is this a worthwhile trade-off to allow for earlier access to such capabilities than might otherwise be available if we were to wait for device replacement and fully-integrated NG911 services?

52 TRS is a “telephone transmission service[] that provide[s] the ability for an individual who is deaf, hard of hearing, deaf-blind, or who has a speech disability to engage in communication by wire or radio with one or more individuals, in a manner that is functionally equivalent to the ability of a hearing individual who does not have a speech disability to communicate using voice communication services by wire or radio.” 47 U.S.C. § 225(a)(3). For traditional TRS over the PSTN, an individual uses a TTY to communicate with a third party over the PSTN through a communications assistant.

53 The TRS Fund administrator, National Exchange Carrier Association, reported in its TRS Monthly Fund Reports that an average monthly usage of approximately 4 million minutes per month in 2000 dropped to an average of approximately 500,000 minutes per month in 2010. See http://www.r-l-s-a.com/TRS/Reports.htm (last visited Sept. 1, 2011).

54 ICO Plan at 6-6.

55 See EAAC Report, at 22-23, available at http://transition.fcc.gov/egb/dro/EAAC/EAAC-REPORT.pdf. Specifically, the EAAC survey showed that, of the 3,149 survey takers, 2,682 or 85% responded as follows: 45.7% of the respondents would like to be able to use RTT; 45.1% would like to be able to use SMS; 43.7% would like to be able to use email; 31.1% would like to be able to use Instant Messaging (IM) (a sentence at a time); 30.2% would like to be able to use a web page that lets people communicate in text directly to 9-1-1; 10.8% would like to be able to use TTY. See id. at 23 and Graph (depicting survey results). The participants in the survey were primarily people with hearing, vision, cognitive, and/or developmental disabilities.
39. **Consumer expectations.** Another potential benefit of implementing text-to-911 in the short term is that it could help meet rapidly changing consumer expectations regarding the desired capabilities of the 911 system. According to the Pew Center, more than 7 out of 10 cell phone users send or receive text messages.\(^{56}\) With the increased use of text messaging, consumers could expect that their use of SMS extends to 911. We seek comment on whether promoting or requiring short-term text-to-911 solutions accurately reflects current and evolving consumer expectations and the needs of PSAPs and first responders. Does the rapid growth in the popularity of SMS messaging generate consumer expectations that SMS will support 911 texting? We seek information regarding how many people have attempted to text to 911 during emergencies but failed. Have there been instances where the ability to send a text message to 911 could have made a significant difference in the ability of first responders to assist the caller or the speed of the response? We also seek information that quantifies the impact that incorrect consumer expectations about the ability to text to 911 may have on the health and safety of the public.

40. **Improved information for PSAPs.** As we have noted above, in addition to improving communications between consumers and PSAPs, NG911 has the potential to enhance the ability of PSAPs and first responders to assess and respond to emergencies in real-time based on the texts, photos, and videos that consumers send to them, combined with information gathered and correlated from other sources.\(^{57}\) In this regard, what benefits, if any, could the short-term deployment of text-to-911 (which would not include the capability to transmit photos or video) provide PSAPs and first responders? For example, could texts to 911 provide additional information to assess the nature and severity of an emergency, help apprehend criminal suspects, speed emergency response, reduce the need to dispatch multiple types of emergency response (e.g., sending police, fire, and emergency medical personnel to a scene because the nature of the emergency is undetermined), or make it easier to screen potentially fraudulent or malicious calls? How do such benefits compare to the cost of short-term deployment of text-to-911? Would short-term implementation of text-to-911 increase the volume of 911 traffic or the time and resources required for PSAPs to process information as compared to handling voice calls? If so, are PSAPs equipped to handle such increases? If not, what do PSAPs need to do to prepare and what resources do they require?

41. **Improved reliability and resiliency.** In large-scale disasters, circuit-switched landline and mobile networks may become overloaded, making it more difficult to place a 911 voice call. As landline and mobile networks migrate from circuit-switched to IP-based packet-switched technology, the risk of overload or congestion may dissipate, but in the interim, enabling SMS and IP-based text messages to 911 could be beneficial because text consumes far less bandwidth than voice and may use different spectrum resources or traffic channels. Thus, people in disaster areas may still be able to send text messages to 911 even if they cannot place a voice call.\(^{58}\) Similarly, with improved technology, PSAPs may be able to filter text messages by incident, so that they spend less time with voice callers who report the same incident. We seek comment on the prospective impact of text messaging on PSAP operations and emergency response during large-scale disasters, with particular emphasis on experiences of overload-induced 911

\(^{57}\) See para. 24, infra.

failures. For example, there have been news reports that cell phone service, including the ability to reach 911, was impaired immediately after the August 23, 2011 East Coast earthquake, while SMS and email did not experience service disruptions.

2. Ongoing Text-to-911 Trials

42. To date, there have been only a small number of SMS-to-911 trials in the United States, although a number of jurisdictions are reportedly considering trials or near-term implementations. In 2009, Intrado and i wireless, a T-Mobile affiliate, initiated an SMS-to-911 trial in Black Hawk County, Iowa. In this trial, only Black Hawk County residents who subscribed to i wireless were able to make use of the text-to-911 service. Text messages sent in the trial did not carry location information, so users were prompted to enter their zip codes before the text message was forwarded to the PSAP. Despite the limited nature of the trial, county representatives have credited text-to-911 with positive outcomes in several emergency situations. On the other hand, AT&T contends that publicity about the Black Hawk County trial resulted in confusion that “spread throughout the country” regarding where text-to-911 was available.

43. In August 2010, the Marion County, Florida, Sheriff’s Office developed an in-house text message to 911 system. Named “ADD IT NOW,” the program enables the Sheriff’s Office Communications Center to receive urgent text messages on a dedicated screen that uses a yellow indicator light to signal incoming texts. The Sheriff’s Office has advertised the availability of the number and has encouraged local citizens to add the number to their phone directories. The Sheriff’s Office reports that

59 In Section III.B, infra, we also seek comment on whether 911 calls should be given priority in major emergencies that may generate network congestion.

63 AT&T Comments at 16.

the system cost $1,000 to develop and costs approximately $50 per month to maintain. The system does not convey location information.

44. On August 3, 2011, the City of Durham, North Carolina, announced an SMS-to-911 trial in partnership with Intrado and Verizon Wireless. According to Durham, the trial is specifically designed for two types of emergency scenarios: emergency help requests from people with disabilities and from people not wanting someone to hear them make a 911 call. When receiving a text, the Durham PSAP will not be able to automatically determine the caller’s location. To ensure that consumers are aware of this limitation, the city is making efforts to educate the public that they must include location information when sending an SMS-to-911. Durham has scheduled the trial to conclude on January 31, 2012, and will restrict the trial to Verizon Wireless customers in areas served by the Durham PSAP.

45. In June 2011, Cassidian Communications announced the successful completion of a “simulation” SMS-to-911 trial in Harris County, Texas, involving the Greater Harris County backup PSAP. According to Cassidian, “[t]he testing during the trial utilized automatic location identification (ALI) capabilities allowing for the call takers to identify the location of the caller… Many operational implementation and procedure related elements remain to be discussed and ultimately implemented… It is anticipated that the technology will be available to the deaf and hard of hearing population in the GHC 9-1-1 territory within a year [after June 20, 2011] and subsequently will be offered to the rest of the population.” Unlike the Black Hawk County and Durham trials, this trial did not involve members of the public.

46. Several European countries, including Estonia, Iceland, Luxembourg, Sweden, and the United Kingdom offer emergency SMS services or are planning to offer such services in the near future. In all of these countries, the SMS message does not automatically include location information, which the sender of the SMS message is expected to provide manually. The Swedish SMS system, however, is

66 Id.

69 Id.

70 Id.

73 Many of these countries offer unique emergency SMS services. For example, Iceland has only one PSAP due to its small size, Finland routes SMS messages to a single PSAP, and Sweden routes SMS messages to two of its eighteen PSAPs for redundancy.
capable of determining cell-tower location.\(^{74}\) In all of these countries, the SMS service is primarily directed towards people with disabilities and requires users to register in advance of using the service.\(^{75}\) Additionally, after the SMS PSAP receives and processes a text message, it forwards the necessary information to the appropriate voice PSAP. We seek comment on the above-described text-to-911 trials and on text-to-911 services offered in these countries. What are the advantages and disadvantages of the various approaches to text-to-911? What lessons could the United States draw from the international examples?

47. **Standards.** We seek comment on any standards-development activities by industry or standards-setting bodies that may play a role in the short-term deployment of text-to-911 services based on SMS or software applications. We also seek comment on whether there are any additional text-to-911 trials or standards efforts that have been conducted thus far or that are contemplated in the near future. We request that commenters provide the Commission with any relevant data that has been gathered from these trials and standards-setting efforts, including the number of individuals who sent text messages to 911 during the trials, whether PSAPs could locate those callers, and the effectiveness of texting as a means of communicating with PSAPs.

3. **Approaches Based on SMS and Existing Infrastructure**

48. In the Notice of Inquiry, the Commission sought comment on a number of issues related to SMS-to-911. The Notice of Inquiry recognized that SMS is not a synchronous messaging service and therefore does not provide a means for the sender to know whether and when his or her message has reached its destination.\(^{76}\) It also noted that because each SMS message is independent of its predecessors and successors, messages within the same logical conversation may not be routed to the same destination or in the proper sequence.\(^{77}\) Further, the Notice of Inquiry referenced concerns about whether the recipient of an SMS message could reliably and accurately determine the sender’s geographic location.\(^{78}\)

49. **Comments.** Wireless providers and some industry standards bodies are generally opposed to adopting or requiring SMS-to-911 as an interim solution. Many wireless providers argue that SMS is unreliable and should not be used for emergency communications. AT&T contends that “SMS suffers from significant limitations that make it both dangerous and infeasible to rely on for emergency communications,” because there is no guarantee of delivery for SMS messages and no acknowledgment provided to the sender.\(^{79}\) AT&T characterizes SMS as “a best-effort, store-and-forward service [making] it unreliable and prone to unacceptable delays for purposes of emergency communications.”\(^{80}\) T-Mobile and Verizon similarly argue that SMS lacks important functionalities and reliability that are needed for a viable emergency communications service.\(^{81}\) Verizon argues that the interests of PSAPs, consumers, and service providers “would be better served by focusing on incorporating RTT and more advanced

\(^{75}\) *Sweden Report*.

\(^{76}\) See Notice of Inquiry at 25 FCC Red 17883-84 ¶ 41.

\(^{77}\) *Id.*

\(^{78}\) *Id.* at ¶ 42.

\(^{79}\) AT&T Comments at 11-12.

\(^{80}\) AT&T Comments at 12.

\(^{81}\) T-Mobile Reply Comments at 3; Verizon Reply Comments at 5.
messaging technologies into IP-based platforms and into the wireless industry's deployment of 4G LTE technology." ATIS notes that current SMS standards do not support automated routing to the PSAP or automated location information, which are critical to emergency communications. Further, ATIS argues that because of "the higher probability of SMS-to-911 message failure, liability protection for SMS-to-911 services must be far stronger than that currently provided for voice calls."

50. Public safety commenters express similar concerns about SMS-to-911. NENA states that "[t]oday, SMS lacks many of the characteristics needed to support quality emergency communications." NENA therefore "does not advocate the use of SMS as a means to access 9-1-1 systems." APCO notes that "there are a number of Quality of Service concerns with the use of SMS to 911." Wichita-Wilbarger states that "SMS messaging is distinctly unsuitable for communications with emergency services [because] SMS messaging does not allow for real-time communication [which] raises the possibility of miscommunication with the PSAP."

51. However, some 911 technology and software providers support the use of SMS as an interim solution for emergency communications and contend that there are ways to overcome some of its technical limitations. TCS states that "based on existing public expectations both from current SMS users and members of specialized communities, it is generally accepted that the introduction of SMS to 911 is inevitable." TCS also notes that "SMS to 9-1-1 communication can be controlled so that a Dispatcher receives information that is timely, dependable, and adequate enough to make a professional dispatch decision." Moreover, TCS states that it has "demonstrated in its laboratory and in limited field experiments that SMS emergency service can be provided reliably and in the near term." TSAG maintains that "under certain emergency settings, SMS messaging represents an important (at times only) alternative to voice communications [and] public expectations suggest NG911 systems be configured to accept and manage SMS based emergency communications, notwithstanding the technical and operational 'challenges'." Intrado maintains that "SMS is a viable, reliable, interim solution for situations in which those who are in emergencies are not in a position to place a voice call to 9-1-1."
The ATIS INES Incubator is considering several interim solutions for text-to-911 and divides these solutions into two groups, "consumer to PSAP" and "consumer to relay services to PSAP." Among the "consumer to PSAP" solutions that the ATIS INES Incubator is considering are: emergency voice call

82 Verizon Reply Comments at 5.
83 ATIS Comments at 5.
84 Id. at 9.
85 NENA Comments at 14.
86 Id.
87 APCO Comments at 2.
88 Wichita-Wilbarger Comments at 4.
89 TCS Comments at 5.
90 TCS Reply Comments at 3-4.
91 TCS Comments at 6.
92 TSAG Comments at 1.
93 Intrado Comments 13.
94 ATIS Sept. 8, 2011 Ex Parte at 10.
then SMS, emergency voice then web chat, instant messaging, RTT direct to PSAP, RTT converted to TTY, TTY emulation, video ASL, and SMS direct to PSAP. Among the “consumer to relay services to PSAP” solutions that the ATIS INES Incubator is considering are: IP relay service, video relay service, national SMS relay, national RTT relay, and home PSAP relay.

52. L.R. Kimball (Kimball) “supports the development of a SMS to 911 solution” and believes that many of the limitations cited by other parties can be resolved by “[s]electing a different point of interconnection between the SMS system and 911.” According to Kimball, such limitations are the “consequence of the selected point-of-interconnection (POI) between the SMS system and 911, namely, at the store-and-forward service,” however, selecting a different POI “may permit many of these problems to be resolved and, if implemented properly, should not seriously or significantly impact the operation of the existing SMS system.” Specifically, Kimball argues that “a store-and-forward function need not exist between the SMS originator and [a] PSAP, provided a suitable POI can be found ahead of the store-and-forward function.” Further, according to Kimball, specific elements of the telephone industry standard Signaling System 7 (SS7) network can provide “an effective and convenient POI for interconnecting SMS systems with a new 911-specific SMS service” and many mobile telephone switches allow for the design of “several possible mechanisms that can be used to separate SMS to 911 messages from normal SMS processing.” Consequently, Kimball contends that “with SMS to 911 messages separated from the SMS system, it becomes possible to implement a dedicated SMS to 911 [Signaling Control Point (SCP)] [that] can address most, or even all, of the technical objections to a SMS to 911 service and can do so without impacting the SMS store-and-forward functions that are in widespread use today.” An SMS to 911 SCP can perform functions such as “gateway and protocol conversion functions from SS7 to NG911, including signaling and media conversion”; “assigning a ‘session identifier,’ so that successive SMS messages (from the same phone) reach the same dispatcher via the NG911 network”; “providing acknowledgement or negative delivery text messages back to the originator of the emergency text message”; and “querying the wireless carrier’s position determining system in an attempt to locate the originator’s location.”

53. Discussion. The record indicates that SMS-to-911 has a number of technical limitations that affect its ability to support reliable emergency communications. SMS is essentially a store-and-forward messaging service that is not designed to provide immediate or reliable message delivery; does not support two-way real-time communication; does not provide the sender’s location information; and does not support the delivery of other media such as photos, video, and data. All of these factors appear to make SMS inappropriate as a long-term text-to-911 solution and warrant caution in encouraging it as a short-term solution. At the same time, SMS-to-911 offers certain significant potential benefits as an interim solution. It can be deployed relatively quickly, consumers have already embraced the technology,

95 Id.
96 Id.
97 L.R. Kimball Comments at 4.
98 Id.
99 Id. at 5. According to L.R. Kimball, “if the mobile switch itself is not able to perform this 911 SMS routing function, at least one commercial vendor of STP products claims to be able to route SMS to 911 messages differently than non-911 messages in one of its [Signaling Transport Point of the SS7 network] products,” enabling them “to direct SMS to 911 messages to the SMS to 911 [Signaling Control Point of the SS7 network], while forwarding non-911 messages through the standard SMS processes.” Id. at 5-6.
100 Id. at 5-6.
101 Id. at 6.
and the vast majority of wireless providers and mobile devices support SMS. Moreover, the trials in other countries that we described above indicate that SMS can supplement voice-based 911 services. In addition, some commenters have suggested that it is possible to overcome or mitigate some of the technical limitations of SMS at a reasonable cost to providers, PSAPs, and consumers.

54. Balancing these considerations, we believe that PSAPs, providers, and vendors should have the option to implement SMS-to-911 as a short-term alternative. We seek comment on this view and on whether the benefits of leveraging SMS-to-911 on an interim basis outweigh the limitations of SMS. We also encourage SMS-to-911 trials by interested parties to develop improved information about the strengths and limitations of this approach, and we request that participants in ongoing and future trials (existing and future) submit their trial data and findings in this proceeding.

55. We also seek comment on the feasibility of overcoming or mitigating SMS technical limitations at a reasonable cost to providers, PSAPs, and consumers. Specifically, we seek comment on Kimball’s proposal regarding selecting a different point of interconnection between the SMS system and 911. How technically feasible is this solution, and on what percentage of mobile switching infrastructure could it work? Kimball notes that “there is no business or regulatory driver to implement a SMS to 911 interconnection [and] implementation and maintenance would be an additional cost to providers and there is no process in place to recoup those expenditures.”\(^\text{102}\) We seek comment on the costs of implementation of this proposal, including ongoing maintenance and operation costs. We also seek comment on any activities by standards-setting bodies that may play a role in the short-term deployment of SMS-based text-to-911 services. Intrado argues that any text-to-911 “solution should use the digits 9-1-1.”\(^\text{103}\) We seek comment on whether a national short code for SMS-to-911 should be designated by the Commission, a standards-setting body, or some other entity. If so, how should this short code be designated and implemented?

56. Further, one limitation that most commenters recognized is the inability of SMS to provide accurate location information for routing or PSAP dispatch purposes. To overcome this limitation, would it be technologically feasible for the recipient of an emergency SMS, such as the ALI database provider, to query for the location using the phone number provided, assuming that it can identify the originating provider? Have such techniques been tested experimentally? If this is feasible, could such a query work for all SMS messages or would it only be available for certain classes of messages (e.g., only for messages sent while the user is not roaming or for domestic customers)? Are there other limitations? If there are such limitations, is there data to quantify the fraction of SMS messages or users likely to be affected, extrapolating from non-emergency use of SMS? What costs would be associated with such a solution? How much time would separately checking the ALI database to determine the location of an individual texting to 911 add to response time?

4. Approaches Based on Software Applications

57. As noted above, many consumers are acquiring more advanced mobile devices (e.g., 3G and 4G handsets) that enable them to install applications on their phones, including applications to send text messages without using SMS or MMS, sometimes referred to as “over the top.” We seek comment on the feasibility of using general texting or 911-specific applications to support a transitional non-voice NG911 system that would allow consumers to send text and other non-voice media to PSAPs. Such a system would consist of two components: (1) one or more databases that describe where text-to-911 capabilities are available and how to reach the appropriate PSAP; and (2) one or more software applications for smartphone operating systems. Providers and third parties, including but not limited to

\(^\text{102}\)(size=8)\(\text{Id. at } 6-7.\)
\(^\text{103}\)See Intrado Sept. 12, 2011 Ex Parte at 17.
systems vendors that currently provide services and equipment to PSAPs, could develop such applications. The application would obtain location information, including cell tower identity, from smartphone operating systems and would rely on standard IP connectivity to deliver a message to the right destination based on a location database. The database would map approximate location data to a PSAP or ESInet IP address or indicate that text service is not available for that location.

58. This system architecture has several potential benefits, including the fact that it could be rolled out in a relatively short period of time and that it would not require any major provider network or mobile handset upgrades. We seek comment on the costs and timeframe for deploying such a system. How would such a system be structured to reduce the time to deployment, minimize the effort required by providers, and maximize the operational reliability of the system? We also seek comment on whether it would be possible for this system to support other media besides text, including voice, video, images, and data. Could the system be made compliant to existing and emerging standards? Would PSAPs need to have access to broadband IP connectivity or should the system allow for translation of text messages (e.g., to TTY-based messaging)? Would PSAPs need to install any additional software or hardware? If so, what specific costs would be associated with such installation? Is it possible for an application to automatically detect whether a PSAP is capable of receiving only text or also other advanced media types, such as images? How would an entity or entities be selected to build and maintain the national database(s) of where text-to-911 applications work and what costs are associated with creating and maintaining a database? Who should bear those costs? What entities would provide the smartphone application? Should there be a process whereby applications are certified in some way? If so, what entity should perform this certification?

59. Under this system, only users of smartphones would be able to install the applications that would enable them to send text messages to 911. How, if at all, should the Commission address this issue? Could the system outlined above be adapted to handle SMS messages after translation to a SIP-based message format? Are there prototypes or alternatives of application-based NG911 systems that the Commission should consider as models? Are there any activities by standards-setting bodies that may play a role in the short-term deployment of text-to-911 services based on software applications?

B. 911 Prioritization in Major Emergencies

60. A critical feature of public safety is the ability of persons in need of assistance to have reliable access to emergency services, especially during times of major disasters such as large-scale natural and man-made disasters. The August 23, 2011 East Coast earthquake and Hurricane Irene demonstrated that concentrated demands on the capacity of commercial communications networks during and immediately after emergencies can hinder the ability of consumers to make voice calls. This, in turn, could jeopardize consumers’ ability to contact 911, potentially leaving 911 callers without the assistance they need.104 We seek comment on how best to address this concern in both legacy networks and the emerging broadband networks that will support NG911.

61. One way to enhance consumers’ ability to contact 911 in the wake of a disaster is to prioritize 911 traffic over non-911 traffic.105 Accordingly, we seek comment on whether GSM and

104 See Section III.A.1, para 34, \textit{supra}.

105 Since initially requiring 911 capabilities for wireless service, the Commission has previously considered but has not adopted requirements for 911 call prioritization. \textit{See generally} Service Rules for the 698-746, 747-762 and 777-792 MHz Bands, \textit{Second Report and Order}, WT Docket No. 06-150; CC Docket No. 94-102, WT Docket No. 01-309, WT Docket No. 03-264, WT Docket No. 06-169; PS Docket No. 06-229; WT Docket No. 96-86; WT Docket No. 07-166, 22 FCC Rcd 15289, 15442 ¶ 428 (2007) (stating that a Network Sharing Agreement must “recognize that emergency 911 calls from commercial users … play a critical role in safeguarding public safety and should be accorded some level of priority”); Development of Operational, Technical and Spectrum Requirements for Meeting (continued…)}
CDMA networks are able to support prioritization of 911 calls. If so, are wireless providers currently prioritizing 911 calls to their respective radio access networks (both for GSM and CDMA networks)? What are the costs of incorporating 911 prioritization technology, to the extent it exists, into these networks? What are the qualitative and quantitative benefits of doing so? Are 911 prioritization technologies for GSM or CDMA networks used outside of the United States today, and if so, where and what has been the experience with these technologies, including with respect to their reliability? If not, can anything be done to improve them to support 911 use? Are there similar concerns about network congestion inhibiting 911 calls on wireline networks? If so, do providers prioritize wireline 911 calls, or should they? What are the advantages and disadvantages of doing so? Would prioritizing 911 calls during and after a major emergency limit the ability of consumers to complete non-911 calls that serve a socially important purpose, such as calls to confirm the safety or whereabouts of family members?

62. Another way to improve consumers’ ability to reach 911 in the wake of a disaster is to encourage users to limit their use of the network so that calls to 911 are more likely to go through. Could legacy service providers take preparatory or preventive measures to mitigate congestion and thereby increase the likelihood that consumers are able to contact 911 during major disasters? Are there best practices that providers or others could encourage consumers to follow to mitigate congestion after major disasters? Would the network protocols and systems used for Wireless Priority Services (WPS) be suitable for prioritizing 911 calls, and if so, would any adjustments be needed?

63. As discussed above, after the East Coast earthquake on August 23, 2011, many consumers were unable to make voice calls, but they could send text messages. To what degree would the deployment of text-to-911 capability improve the ability of consumers to reach 911 during a major disaster by reducing network congestion? What are the relative costs and benefits of short-term deployment of this capability through retrofitting of legacy networks versus developing text-to-911, as well as the priority mechanisms discussed above, as basic components of emerging and future broadband networks? We seek comment on these issues and ask commenters to address any other significant considerations with respect to industry standards and practices, including any evolving trends and industry initiatives addressing the avoidance or mitigation of 911 service disruptions during major disasters.

64. We also seek comment on the potential for prioritization of 911 traffic in existing and future mobile broadband networks. For example, Long Term Evolution (LTE) provides mechanisms for prioritizing traffic through capabilities such as Allocation Retention Priority (ARP), which assigns fifteen levels of priority. We seek comment on whether these capabilities and/or other LTE and IMS capabilities can support prioritization for 911 calls. We seek comment on the technical feasibility, potential benefits, and costs of doing so. Do wireless providers intend to prioritize 911 calls on LTE or IMS networks? Are they incorporating this technology into their commercial networks today? What costs are associated with incorporating such technology into LTE or IMS networks, and what are the qualitative and quantitative (Continued from previous page)
benefits of doing so? Would PSAPs need to make any changes to their facilities to ensure appropriate prioritization of 911 calls delivered over LTE or IMS? If so, what costs would be associated with such changes? What NG911 standards are being developed for LTE or IMS technologies and networks, if any, that would reduce the risk of network congestion? Should standards-setting bodies consider additional standards to address this matter? Should broadband networks be configured to support prioritization of 911 calls? If so, how can that be done cost effectively?

65. We note that in the Open Internet Order, the Commission specifically stated that nothing in our Open Internet rules “supersedes any obligation or authorization a provider of broadband Internet access service may have to address the needs of emergency communications or law enforcement, public safety, or national security authorities, consistent with or as permitted by applicable law, or limits the provider’s ability to do so.”\(^{107}\) We believe that to the extent the 911 prioritization alternatives considered here would apply to broadband Internet access service providers, they fall within this provision.\(^{108}\) We seek comment on this view. In addition, in the Open Internet Order, we declined to adopt a requirement that network managers provide public safety users with advance changes in network management practices that could affect emergency services, but we “encourage[d] broadband providers to be mindful of the potential impact on emergency services when implementing network management practices, and to coordinate major changes with providers of emergency services when appropriate.”\(^{109}\) Would the same approach be appropriate in the context of 911 prioritization?

66. Are there any other legal issues involved in prioritizing 911 traffic? For example, to the extent a 911 call is carried by a provider subject to section 202(a), would prioritization of a 911 call be considered “discrimination,” and if so, would it be considered a reasonable form of discrimination?\(^{110}\) What other legal issues, if any, would need to be considered and addressed?

67. Further, with respect to legacy networks and emerging broadband networks, we seek comment on how service providers and public safety officials would manage and coordinate prioritization of 911 traffic in emergency situations. What role should service providers and public safety officials play in determining the need for and scope of prioritization in mobile wireless networks? Should 911 prioritization be implemented temporarily based on the specific conditions of the emergency, or should it be implemented on a permanent basis? If prioritization were temporary, who should determine when to initiate it and when to terminate it?

C. Facilitating the Long-Term Deployment of NG911 Text and Multimedia Applications

68. In deciding what role, if any, the Commission should play in the long-term deployment of NG911 text and multimedia alternatives, we seek to maximize the benefits to consumers from any action

\(^{107}\) Preserving the Open Internet, GN Docket No. 09-191, Report and Order, 25 FCC Rcd 17905, 17962-64, ¶¶ 107-110 (adopted Dec. 21, 2010, approved by OMB Sept. 9, 2011, to be codified at 47 C.F.R. Pt. 8) (Open Internet Order). We also said that the safety and security rule should be tailored to avoid the possibility of broadband providers using their discretion to mask improper practices.

\(^{108}\) With respect to wireless broadband providers, the Open Internet rules do not prohibit prioritization. See id. at 17958-61. For wireless broadband providers, therefore, the prioritization alternatives considered here are consistent with the Open Internet rules.

\(^{109}\) Id., ¶ 110 n.335.

\(^{110}\) 47 U.S.C. § 202(a) (“It shall be unlawful for any common carrier to make any unjust or unreasonable discrimination in charges, practices, classifications, regulations, facilities, or services for or in connection with like communication service, directly or indirectly, by any means or device, or to make or give any undue or unreasonable preference or advantage to any particular person, class of persons, or locality . . . “).
we would take while taking into consideration the costs of compliance for providers and PSAPs. We therefore seek comment on the expected benefits of facilitating that deployment, the results of any ongoing trials and on the activities of standards-setting bodies involving texting services and multimedia applications (including data, photos, and video), and the relative merits of using various technical approaches to achieve those benefits. As in our prior evaluation of short-term alternatives, when evaluating the record with respect to long-term alternatives, we intend to place significantly more weight on the estimated impacts that are supported by hard data or are otherwise well-documented.

1. Expected Benefits of Availability of NG911 Text and Multimedia Applications

69. Although quantifying the benefits of a long-term deployment of texting and multimedia applications for emergency communications may be difficult, we need to determine whether such deployment will significantly benefit consumers. Therefore, as in the case of short-term alternatives, we seek more information on the benefits of long-term NG911 applications, particularly with respect to improving 911 accessibility for people with disabilities, meeting consumer expectations, providing PSAPs with valuable additional information, and increasing reliability and resiliency.

70. Accessibility of 911. Long-term NG911 applications based on SIP and RTT also have the potential to provide substantially improved accessibility to 911 services for people with disabilities, as well as to provide an alternative means for non-disabled people to access 911 when voice access is unavailable or could pose risks to the caller, for example in a silent call scenario. This finding is supported by EAAC survey data showing that 48.1% of respondents drawn primarily from the disabilities community would prefer to use text messaging to contact 911. Further, as noted in the Notice of Inquiry, the ICO Plan found that “[t]he biggest gap between the technologies used for daily communication and those that can access 9-1-1 services is that for the deaf and people with hearing or speech impairments.” In addition, to the extent that long-term alternatives support not only text, but also video and multimedia applications, they could enhance accessibility for people with disabilities who rely on media other than text to communicate.

71. We therefore seek more information on the benefits and associated costs of facilitating advanced text-to-911 and multimedia services, such as those based on SIP and RTT, to improve the accessibility of the 911 system. How do these benefits and costs compare to the benefits and costs of the short-term solutions discussed earlier? To what extent can advanced text and multimedia services assist individuals with hearing or speech disabilities or those who are deaf-blind? What benefits are created by the ability of these services to offer real-time connectivity or to enable the caller to send photos, videos, or data? To what degree will improvements in accessibility associated with text and multimedia services be limited to people with advanced mobile devices? If so limited, what are the likely consequences for people with disabilities who may not be able to afford smartphones that provide such capabilities?

72. Consumer expectations. SIP-based text-to-911 capable of supporting RTT could help ensure that the 911 system meets consumer expectations regarding the ability to make multimedia transmissions to PSAPs in a next-generation environment. We therefore seek comment on whether promoting or requiring delivery of text and multimedia communications accurately reflects current and evolving consumer expectations and the needs of PSAPs and first responders. We seek information regarding how many people have attempted to send multimedia applications (including data, photos, or video) to 911 during emergencies but failed. Have there been instances where the ability to send multimedia applications to 911 could have made a significant difference in the ability of first responders

111 EAAC Report at 22.

112 ICO Plan at 6-6.
to assist the caller or the speed of the response? We also seek information that quantifies the impact that incorrect consumer expectations about the ability to send multimedia applications to 911 may have on the health and safety of the public.

73. **Improved information for PSAPs.** Long-term NG911 alternatives founded on SIP-based standards will not only support text-to-911, but also will support multimedia sessions that combine voice, text, photo, and video capability. Such multimedia applications will provide PSAPs and first responders with valuable additional information to assess the nature and severity of an emergency and determine the appropriate response. PSAPs and first responders may use such additional information to speed their response or determine the type of response required (e.g., whether to dispatch police, fire, or EMT units). For example, as noted above, in a traffic accident, NG911 would not only enable the PSAP to receive the 911 call for help from the caller seeking assistance, but also would enable it to correlate the call with 911 calls from others at or near the scene and combine the information with video from nearby traffic cameras to assess the impact on traffic and identify the first responders that could reach the scene the fastest. In addition, if any vehicles in the accident had automatic collision notification systems, the PSAP would receive additional information regarding the severity of the crash that could help determine the likely medical needs of accident victims and the appropriate emergency medical response. In some cases, enhanced information could lead to quicker apprehension of criminal suspects or could facilitate screening of potentially fraudulent or malicious 911 calls. For example, the PSAP could ask a caller to take a picture or video of the scene of an alleged incident to verify that the caller is indeed close to the scene.

In the Technical Background section, we explained that NG911 technologies also include a number of multimedia applications, which are broader than just person-to-person text and messaging services. Are there any steps the FCC should take now to encourage further development of those technologies?

74. We seek comment on the benefits of providing additional information to PSAPs, particularly if supported by data, for example on the incidence of fraudulent calls, or descriptions of emergency incidents where multimedia information could have been helpful. We also seek comment on the benefits of supporting video communications for people with disabilities who have come to rely on this mode of communication on a daily basis, such as persons who use American Sign Language. Finally, we seek comment on whether PSAPs are equipped to handle an increased volume of data from multimedia applications. How will PSAPs process and sort through such information? What additional resources, if any, will they need to be able to do so?

75. **Improved reliability and resiliency.** IP-based messaging services could contribute to improved reliability and resiliency of emergency response networks because they generally consume less bandwidth than voice calls and may use different spectrum resources or traffic channels. This may enable people in disaster areas to send text messages to 911 even if they cannot place a voice call. Similarly, as 911 network technology migrates from circuit-switched to packet-switched networks with improved technology, PSAPs will have more tools to filter text messages by incident, so that they can spend less

113 *See supra sec II.B., para. 23.*

114 Recently, there have been a number of incidents of a practice called “swatting,” where malicious callers have falsely reported an armed hostage taking. *See, e.g.,* Shawn Boburg, 'Swatting' a high-tech trend in 911 hoaxes, Northjersey.com, *available at* http://www.northjersey.com/news/126473378__Swatting__a_high-tech_trend_in_911_hoaxes.html *(last visited Aug. 12, 2011).*

115 *See supra sec. II.B., para. 24.*

time with multiple callers reporting the same incident. For example, IP-based text and multimedia could be combined with other technologies such as device-to-device communication (e.g., automatic crash detection) to process information more efficiently. We seek comment on the impact of IP-based messaging solutions on PSAP operations and emergency response during large-scale disasters. How do the benefits and costs compare to the benefits and costs of short-term text-to-911 solutions discussed earlier?

2. Standards Development for NG911 Applications

76. Standards. We also seek comment on ongoing activities of standards-setting bodies regarding deployment of IP-based text and multimedia emergency services for next generation networks. In the Notice of Inquiry, the Commission noted that “[w]hile the basic components of identification, location lookup, and call routing are present in all NG911 proposals, there have been at least three different proposed approaches for how to implement these elements in specific networks.”117 The three proposals noted by the Commission were the ATIS ‘Considerations for an Emergency Services Next Generation Network (ES-NGN)’; the NENA architecture based on Internet Engineering Task Force (IETF) protocols; ‘NENA Functional and Interface Standards for Next Generation 9-1-1 Version 1.0 (i3)’; and the 3rd Generation Partnership Project architecture; ‘IP Multimedia Subsystem (IMS) Emergency Sessions.’118

77. NENA has noted that NENA and 3GPP119 requirements must be aligned to make NG911 available.120 We seek comment on whether such alignment is necessary and, if so, how much time is needed to effectuate an alignment. What benefits would such alignment provide? The 3GPP architecture is compatible with NENA’s i2 architecture.121 While NENA’s i2 permits VoIP providers to send 911 voice calls and location information to PSAPs, 3GPP extends the i2 solution to include text and video. We seek comment on whether aligning 3GPP with NENA’s i3 requirements would result in substantive changes to NENA specifications, 3GPP specifications, or both. What costs, if any, are associated with aligning NENA and 3GPP requirements? We also seek comment on whether it would be necessary to align these requirements and specifications with ATIS’ proposals. Can protocol gateways be used to connect i3 systems to, for example, 3GPP IMS systems? What functionality would these gateways need to support? Do these gateways pose potential scaling or reliability problems? Are there any technical specifications or requirements needed to further the development of the more advanced devices and functionalities that are broader than just person-to-person text and messaging services?122

117 Notice of Inquiry, 25 FCC Rcd 17878 n. 54.
118 Id.
120 NENA i3 Solution at § 2.5.
121 See NENA Interim VoIP Architecture for Enhanced 9-1-1 Services (i2), Technical Standard 08-001, August 2010, available at http://www.nena.org/sites/default/files/20100811_08-001v2.pdf (visited September 1, 2011). According to the Executive Summary, “Voice over Internet Protocol (VoIP) is poised to become the predominant technology used in the telecommunications industry. As the public adopts VoIP, E9-1-1 calls will increasingly originate from VoIP users. Some VoIP telecommunications service provider networks, however, are not natively compatible with the existing E9-1-1 infrastructure. This document outlines an architecture to connect emergency callers in the IP domain with Public Safety Answering Points (PSAPs) supported by the existing E9-1-1 network infrastructure. This interim step in the migration towards end-to-end IP networks is referred to as i2.”
122 See supra sec. II.B., para. 23.
78. NENA has also indicated that more recent versions of its NG911 technical specifications and its NG911 transition plan will be needed for the 3GPP/NENA alignment. As noted above, 3GPP has published a report on the use of NOVES that provides a general description of perceived needs. In addition, ATIS has created its INES Incubator. We seek comment on when these interim and final specifications for handling NOVES are likely to be published. Will there be alignment issues involving NOVES and INES? Are there additional specifications or requirements needed to implement long-term NG911 solutions for text and multimedia? Have any additional efforts to develop NG911 standards been conducted to implement these specifications, requirements, or solutions? We request that commenters provide the Commission with any relevant data that has been gathered from these efforts to develop NG911 standards.

3. Approaches Based On IP-based Messaging or Real-Time Text

79. As noted above, there are at least three IP-based messaging mechanisms, including SIP-based pager-mode, MSRP, and XMPP. We also provided a description of RTT, which permits characters to be sent when typed. Further, we described ATIS’ INES Incubator program and other next generation text-to-911 standards-setting initiatives.

80. Comments. Wireless providers generally argue that SMS-to-911 should not be part of the NG911 framework. Instead, providers maintain that industry should be given additional time to develop standards for IP-based emergency services, such as NOVES. According to T-Mobile “rather than expend resources trying to make SMS work for 911, stakeholders should instead focus on next-generation communications services that will provide better 911 access to all consumers.” CTIA argues that “[a] new messaging suite will provide functionality similar to and exceeding current messaging services and is expected to be incorporated into a future release of the LTE standard.” According to CTIA, NOVES is anticipated to be finalized by September 2012 as part of 3GPP Release 11. CTIA argues that “industry and the Commission need to weigh the benefits of proposed interim solutions against the risk of delay to such long term solutions for which development efforts are entering the advanced stages.” AT&T recommends that the Commission “encourage work by industry groups such as NENA, ATIS, and 3GPP to develop standards for NOVES for next generation networks that include non-SMS text based messaging options.” Verizon states that “significant activities are under way to develop a uniform

123 See NENA i3 Solution.
126 See 3GPP NOVES Study.
127 See ATIS INES Incubator.
128 By “final” specifications, we refer to specifications that are sufficiently complete and stable to permit implementation by service providers and PSAPs.
129 T-Mobile Reply Comments at 6.
130 CTIA Comments at 5.
131 Id.
132 Id.
133 AT&T Comments at 11.
approach for the delivery of NOVES...including the use of messaging for emergency services. RTT, which will be feasible for NG911 networks and consumer equipment, is still undergoing assessment but has been standardized by 3GPP as the optimal replacement for legacy TTY/TDD devices in 4G wireless communications networks [and] the Commission should support and monitor these efforts, and not be distracted by less effective interim measures.134

81. CSRIC 4B notes that “a long term solution may be provided by NOVES...a new service for which requirements are being developed in the NENA Next Generation Messaging Group and in the 3GPP SA1 group.”135 According to CSRIC 4B, “The NENA Next Generation Messaging Working Group is currently developing use cases and requirements for NOVES, and those requirements are expected to be aligned with those in the ATIS Wireless Technology and Systems Committee (WTSC) and 3GPP SA1, which will be, at some future point, standardizing NOVES.”136 Further, according to CSRIC, “When 3GPP SA1 completes the requirements for NOVES, other 3GPP groups will determine whether network architecture changes are needed and whether any new protocols (or changes to existing protocols) are needed to support NOVES.”137 CSRIC 4B estimates that work on NOVES industry standards may be completed by March 2012.138

82. Public safety commenters also have concerns about SMS-to-911 and generally support RTT as a text-to-911 solution. APCO notes that “there are a number of Quality of Service concerns with the use of SMS to 911” and that “RTT has the potential benefit of allowing hearing-impaired or speech-impaired individuals to communicate directly, in real time, with an NG911 capable PSAP, rather than having to be routed through an intermediary service.”139 NENA states that “[d]ue to its more conversational flow, Real-Time Text...is a preferred method of communication for many text users, and particularly for individuals with disabilities.”140 NENA also notes that “standards-compliant RTT should be supported in all NG9-1-1 deployments.”141

83. \textit{Discussion}. We seek comment on the timeframe in which standards are likely to be completed for RTT or other IP-based messaging solutions, and how much additional time will be required for providers to implement these solutions in their networks. What are the advantages and disadvantages of RTT and other IP-based messaging solutions, and which solutions show the most potential for allowing individuals to communicate with 911? Should the Commission play a more active role in monitoring or facilitating the standards-setting process, or should it not act until next generation non-voice emergency messaging standards are closer to being finalized? Should the Commission coordinate a voluntary industry-wide timetable or establish a mandatory timetable for standardization, implementation, and rollout to facilitate planning by manufacturers, software vendors, and PSAPs?

4. Approaches Based On Software Applications

84. In our discussion of short-term alternatives, we sought comment on developing “over the

134 Verizon and Verizon Wireless Reply Comments at 5.
135 CSRIC 4B Report at 9.
136 \textit{Id.} at 110.
137 \textit{Id.}
138 \textit{Id.}
139 APCO Comments at 4.
140 NENA Comments at 8.
141 \textit{Id.}
top” software applications that would enable consumers to send text messages and other non-voice media to PSAPs using IP networks. We specifically sought comment on the feasibility of developing a non-voice NG911 system in the short term that would consist of two components: (1) a database or databases that would identify where text-to-911 capabilities are available and how to reach the appropriate PSAP and/or text answering center; and (2) one or more software applications for smartphone operating systems. We noted that this system could be rolled out quickly and would not require any major provider network or mobile handset upgrades.

85. We seek comment on whether “over the top” software applications such as the one described above have long-term as well as short-term potential to support delivery of text and other media to 911. Are there additional software-based applications that we should consider as long-term options even if they are not viable in the short term? We seek comment on the costs and timeframes for deploying such applications. Could we use software-based applications to reduce the time to deployment, minimize the effort required by and costs for providers, and maximize the operational reliability of NG911?

86. We also seek comment on the potential for long-term software applications to support voice, text, video, and images, both separately and in combination. Could such applications be made compliant to existing and emerging standards? What level of broadband IP connectivity would PSAPs need to support multimedia applications, particularly bandwidth-intensive applications such as video? Would PSAPs need to install any additional software or hardware? If so, how much would such additional software or hardware cost? Would applications be capable of automatically detecting the capability of individual PSAPs to receive particular media? To what degree would PSAPs using software-based applications require access to regional or national databases? Who would build and maintain such databases? How much would such databases cost and who would bear that cost? What entities would provide the smartphone applications? Should such applications be certified, and if so, who should perform the certification?

D. The Commission’s Role in Expediting Deployment of Text-to-911 and Other NG911 Applications

87. In this section, we seek comment on the role the Commission should play to expedite the development and widespread deployment of the short-term text-to-911 and long-term text and multimedia solutions discussed above.

1. Incentive-Based vs. Regulatory Approaches

88. In response to the Notice of Inquiry, wireless providers generally argue that the Commission should not adopt any text-related requirements at this time. Instead, providers maintain that the Commission should wait until standards, such as IMS and NOVES, are more fully adopted. For example, AT&T states “the Commission should not specify which technologies should be used in the NG911 environment, but should allow standards to define these technologies.”143 Sprint Nextel highlights that it “supports efforts to deploy an NG911 service that will include both voice and text capabilities” but that “there are many technical considerations that must be resolved…through standards-setting organizations before NG911 implementation can move forward.”144 On the other hand, NENA argues that “waiting until all or most PSAPs have NG9-1-1 capabilities and all access network providers support NG9-1-1 standards and then simultaneously enabling text support is an untenable model.

142 See supra secs. III.A., paras. 57-59.
143 AT&T Comments at 6.
144 Sprint Nextel Comments at 9.
Consumers expect to access 9-1-1 by text now, not many years from now...It would be best, in our opinion, for text to be enabled soon, nationwide, over a short deployment period. We believe that can be accomplished.”

89. We seek comment on whether there are any incentive-based approaches that the Commission could or should adopt to encourage the rapid development of text-to-911 solutions. Should the Commission develop best practices for deploying text-to-911 and other multimedia applications, for example through CSRIC? Alternatively, should the Commission adopt deadlines, timetables, or uniform network interface standard requirements? Do providers have an incentive to rapidly develop NG911 solutions if the Commission does not impose such measures? If so, what are those incentives? Are there any actions that the Commission could take to act as a catalyst or facilitator for early operational prototypes? Should the Commission develop best practices for deploying text-to-911 and other multimedia applications, for example through CSRIC? Alternatively, should the Commission adopt deadlines, timetables, or uniform network interface standard requirements? Do providers have an incentive to rapidly develop NG911 solutions if the Commission does not impose such measures? If so, what are those incentives? Are there any actions that the Commission could take to act as a catalyst or facilitator for early operational prototypes?

90. In the NG911 environment, PSAPs will need certain equipment and operational procedures in place to receive text and other media types from wireless providers. In response to the Notice of Inquiry, many commenters argued that the Commission should not require wireless providers to make investments in their networks to provide NG911 solutions until PSAPs are able to receive text and other media. We seek comment on the degree to which PSAP readiness should be factored into Commission action relating to NG911 implementation. What are the advantages and disadvantages of waiting until PSAPs can receive text and other media?

91. The Commission’s existing E911 rules require CMRS providers to make Phase I and Phase II service available “only if the administrator of the designated Public Safety Answering Point has requested the services required...and is capable of receiving and utilizing the data elements associated with the service.” We seek comment on whether a similar process would be appropriate in the NG911 context, such that PSAPs would have to request delivery of text or other media to 911 and demonstrate the capability to receive such traffic. If so, what specific showing should a PSAP be required to make to establish its ability to receive text and other media types? For example, NENA states that “[a] transition

145 NENA Reply Comments at 6.
146 See T-Mobile Comments at 4; see also Verizon and Verizon Wireless Reply Comments at 12 (“NG911 deployment will be dependent on the capabilities and resources of local or regional PSAPs. Requiring that NG911 support all of the various media formats and consumer devices described in the NOI will only impose costs on consumers and service providers, with no countervailing benefits, if PSAPs cannot handle the underlying data or message.”).
147 See Sprint Nextel Comments at 6-7 (submitting that PSAPs “are currently in the process of developing their networks and transition strategies prior to standards being available” and that “carriers may be faced with expending time and financial resources on transition enhancements that are not part of the final NG911 plan”); T-Mobile Comments at 2 (asserting that “the Commission should not mandate that carriers make infrastructure or reporting changes unless and until PSAPs are ready to integrate and use such upgrades and information”); Verizon and Verizon Wireless Reply Comments at 12.
148 47 C.F.R. § 20.18(j).
to NG9-1-1 starts when an ESInet is deployed and one PSAP is ready to utilize NG9-1-1.”

Should ESINet deployment be a required element of the PSAP showing? Should the PSAP demonstrate that it supports IP-based message routing (e.g., by advertising its geographic coverage region via a national, state-wide or regional LoST server)?

a. State or Regional Approaches

92. With over 6,800 PSAPs in the United States, spanning a wide range of sizes and resources, individual PSAPs are likely to have highly varying timetables for developing the technical and operational capability to handle text as well as other media. Therefore, while there is significant benefit to having providers provide text-to-911 to individual PSAPs that are capable of receiving it, implementing this approach at the individual PSAP level could impose inefficiencies and burdensome costs on providers. Our experience with deployment of E911 on a PSAP-by-PSAP basis is instructive in this regard, as it resulted in providers frequently implementing E911 capability in areas where PSAPs were not yet E911-capable. For this reason, we seek comment on whether we should assess PSAP NG911 readiness at the state or regional level rather than the individual PSAP level. What are the advantages and disadvantages of such an approach?

93. We envision that state and regional entities will play a significant role in the deployment of NG911. The ICO Plan states that a successful transition will depend on a high level of coordination, cooperation, and planning among the state, regional, and local 911 authorities. NENA notes that “state and local public safety agencies and 9-1-1 authorities must begin to take a hard look at the cost savings that could be realized through regionalization of non-PSAP NG911 components such as ESInets.”

NENA also highlights that “each state will need to coordinate the deployment of ESInets statewide” and “explicitly include appropriate tools and mechanisms to ensure that future upgrades can be deployed state-wide in a small number of years.” NENA envisions that state transition plans would “provide for seamless interoperability between legacy networks and NG9-1-1 networks.”

94. Sprint Nextel contends that “[c]oordinated implementation…will be even more essential to NG911 deployment, since the NG911 system will be based on a system of [ESInets] deployed at the local state level.” T-Mobile argues that “the Commission should ensure that there is at least a substantial level of regional coordination with respect to the conversion to, and implementation of,

149 NENA Comments at 25.

150 LoST (Location-to-Service Translation) protocol is used for an end system, such as an IP-enabled phone, to contact a local directory server. The server maps the caller’s civic or geospatial coordinates and the emergency service identifier to the SIP URL of a PSAP or emergency services routing proxy (ESRP), using an internal database that contains the service regions of each ESRP or PSAP. The database may be derived from a geographic information system (GIS). The call is routed to the ESRP thus identified, which may in turn use the location information, again using LoST, to find another proxy closer to the PSAP serving the caller’s location. This process repeats until the caller signaling request reaches the correct PSAP. LoST also provides the end system with information on the emergency services and dial strings, such as 911, available at its current location. See T. Hardie et al., Internet Engineering Task Force, LoST: A Location-to-Service Translation Protocol, RFC 5222 (Aug. 2008) (describing the LoST protocol). See Notice of Inquiry, 25 FCC Rcd at 17878 n.51.

151 ICO Plan at Section 3-1.

152 NENA Comments at 27.

153 Id. at 24.

154 Id. at 24-25.

155 Sprint Nextel Comments at 7.
NG911 systems.” Absent such coordination, T-Mobile contends, interoperability benefits will be lost, and NG911 implementation costs for providers may be substantially higher if providers have to simultaneously support legacy 911 systems and upgraded NG911 systems in the same region.\footnote{156}{T-Mobile Comments at 6.}

95. We seek comment on steps the Commission could take to facilitate such a coordinated approach. Specifically, we seek comment on whether the Commission should require PSAPs to demonstrate a specified level of technical NG911 capability at the statewide or regional level as a precondition to providers being subject to any Commission requirement to deliver text or other media to PSAPs in the state or region. What are the advantages and disadvantages of such an approach? For example, should the Commission refrain from requiring wireless providers to support delivery of text or other media to 911 in a given state or region until the state or region meets certain conditions, such as the deployment of an ESInet? If we adopted a state or regional approach and the deployment of an ESInet served as the trigger, what would happen if not all PSAPs in the state or region were upgraded to link to the ESInet? Should the state or region be required to meet other technical conditions?

96. We also seek comment on any legal or regulatory barriers that may exist at the state or local level that could hinder the deployment of NG911. A number of commenters contend that outdated state regulations have hampered the deployment of NG911 networks. For example, NENA asserts that “[m]any existing laws, regulations and tariffs make specific reference to older technologies or system capabilities which may inadvertently inhibit the migration to NG9-1-1.”\footnote{157}{Id. at 28.} According to NENA, examples include:

- Provisions that require specific technology components for E911 service delivery that are not necessarily the same for NG911.
- Regulations that “assume the existence of legacy components,” such as the selective router, which may impede the transition to “NG9-1-1 deployments.”\footnote{158}{Id. at 24.} For example, NENA refers to current Commission rules requiring “the delivery of wireless and voice over IP (VoIP) 9-1-1 ‘calls’ over the ‘wireline E9-1-1 network.’”\footnote{159}{See NENA NG9-1-1 Transition Handbook, at 11 (asserting that it could be argued the Commission’s definition of “wireline E9-1-1 network” does not “clearly include the routing of 9-1-1 calls via an IP-based NG9-1-1 system.”). See, e.g., 47 C.F.R. § 9.5.}
- State regulations, laws, or tariffs that currently do not allow 911 authorities or new 911 SSPs to receive relevant routing, location, and other related 911 information in the possession of the incumbent SSPs at reasonable rates and terms.
- Existing 911 service arrangements and tariffs that inhibit new entrants from making similar competitive services available on a component-by-component basis, where technically and operationally feasible.\footnote{160}{See NENA NG9-1-1 Transition Handbook, at 12; see also NENA Reply Comments at 13-14 (concerning “[r]equirements that states are imposing for the regulatory status of 9-1-1 service providers.”).}
- In some states, liability protection for 911 service providers may be provided only through the tariff of a Local Exchange Carrier (LEC) rather than via statute. In such cases, if a LEC withdraws its tariff or NG911 services fall outside the scope of the tariff, providers of NG911

\footnote{156}{T-Mobile Comments at 6.}
\footnote{157}{Id. at 28.}
\footnote{158}{Id. at 24.}
\footnote{159}{See NENA NG9-1-1 Transition Handbook, at 11 (asserting that it could be argued the Commission’s definition of “wireline E9-1-1 network” does not “clearly include the routing of 9-1-1 calls via an IP-based NG9-1-1 system.”). See, e.g., 47 C.F.R. § 9.5.}
\footnote{160}{See NENA NG9-1-1 Transition Handbook, at 12; see also NENA Reply Comments at 13-14 (concerning “[r]equirements that states are imposing for the regulatory status of 9-1-1 service providers.”).}
services, and possibly PSAPs as well, will not receive liability protection.161

97. States are also concerned about outdated regulations that may hinder the deployment of NG911 networks. The Public Safety Communications Office (PSCO) of the California Technology Agency notes that it is “currently exploring state and local barriers and will seek to remove them” and “recommend[s] that the FCC do the same at the federal level.”162 The Texas 9-1-1 Agencies request that the Commission address interconnection disputes and the registration and certification of NG911 SSPs.163 The Ohio PUC supports “a dual state-federal regulatory framework for NG911 in which the FCC establishes broad, national objectives, standards and benchmarks, but leaves coordinating the implementation and transition to the states.”164

98. Providers and 911 SSPs are similarly concerned about regulatory obstacles that may hinder NG911 development. Dash asserts that “requirements for CLECs to purchase 9-1-1 or CAMA trunks any time the CLEC seeks to deploy interconnection facilities…. imposes burdens on the PSAPs because [PSAPs] have to conduct interoperability testing on each trunk and otherwise be prepared to receive 9-1-1 calls from those trunks regardless of whether the CLEC is actually using them.”165 In Dash’s view, “this discriminatory behavior” results in CLECs being “bound to the ILEC’s outdated model.”166 Dash argues that “CLECs, VoIP providers and other competitive service providers should be permitted to use…new 9-1-1 solutions and not be required to purchase services that they would not absent regulatory or monopoly mandates.”167 AT&T contends that “[s]tate laws and regulations governing the types of devices and ‘calls’ allowed to access the NG911 network will also require modifications” in the following areas: (1) determining “the eligible use of NG911 funds”; (2) ensuring that requirements do not mandate “technology components for E911 service delivery that are incompatible with NG911 service”; and (3) ensuring that laws and regulations are “functional, standards-based, and performance-based without reference to any specific proprietary technology, manufacturer, or service provider.”168 Further, L.R. Kimball maintains that “[r]evisions to or the elimination of older laws and tariffs would be necessary in order to require interconnections.”169 Moreover, L.R. Kimball argues for “overhaul” of “the 911 regulatory environments at both the federal and state level … to promote competition.”170 L.R. Kimball also observes that “[t]here are currently no regulations in place to drive carriers to implement a SMS to

161 See NENA NG9-1-1 Transition Handbook, at 21-22.

162 PSCO – California Technology Agency Comments at 16.

163 See Texas 9-1-1 Agencies Comments at 2 & nn. 2, 4 (referring to the necessity of interim steps and recent “time-consuming state and federal arbitration and court proceedings involving Intrado, AT&T, Verizon, and others on the potential use of IP selective routers”) See id. at n. 4 (citing Commission and federal court proceedings); see also id. at 17.

164 Ohio PUC Comments at 13.

165 Dash Comments at 5-6.

166 Id. at 6.

167 Id.; see also Level 3 Comments at 3 & n.1 (similarly addressing the negative impact of “non-public ‘commercial’ agreements” and “unilateral tariffs,” e.g, regarding interconnection issues).

168 AT&T Comments at 10.

169 L.R. Kimball Comments at 19-20 (also arguing for the need to incentivize “negotiations between incumbent 911 SSPs and competitive 911 SSPs”).

170 Id.
911 interconnection.”

99. In light of these concerns, we seek comment on whether as a precondition to Commission action, states should be required to demonstrate that they have adopted appropriate or removed outmoded legal or regulatory measures to facilitate NG911 deployment, such as deregulation of legacy 911 interconnection arrangements and enactment of liability protection for NG911 providers and service providers. Would this approach incentivize states to eliminate outdated laws and regulations? Are there other steps that we should take to encourage the elimination or mitigation of state and local regulatory barriers to NG911?

100. We also seek comment on what statutory or regulatory changes, if any, would be necessary for the Commission, other federal agencies, states, tribes, or localities to facilitate and oversee the deployment of NG911 networks. Are there specific FCC regulations that the Commission should eliminate or modify to facilitate the deployment of NG911 networks? What specific actions can the Commission take that would incentivize states and localities to eliminate outdated regulations that hinder the deployment of NG911 networks?

b. Advanced Regional 911 Centers

101. AT&T contends that consumer confusion occurred during previous deployment of basic 911 and E911 service and is equally likely with respect to the deployment of NG911. AT&T describes the launch of basic 911 service as having been “accompanied with significant consumer confusion regarding whether or not there was access to a particular service in a particular area.” AT&T also contends that widespread publicity concerning the Black Hawk County, Iowa, text-to-911 trial caused confusion elsewhere in the country regarding the availability of text-to-911. AT&T warns that if “the Commission fails to establish clear direction for a standardized design for non-voice emergency communications, the result will be a patchwork implementation of non-voice emergency capabilities and additional consumer confusion.”

102. NENA has noted the need for additional technical requirements to address this issue, stating that “while all [NG911] PSAPs must handle all media, a legacy PSAP behind [an ESInet-to-legacy PSAP gateway] would only handle voice media and TTY. There is no mechanism by which a caller could discover what media the PSAP supports. This will be covered in a future edition of [the NENA i3 Solution].” We invite comment on the amount of time that will be required for the issuance of such requirements, as well as their adequacy for avoiding caller confusion.

103. AT&T states that use of the aforementioned “gateways to interwork [ESInets] with legacy PSAPs will only further complicate implementation of NG911.” Instead, AT&T proposes building “regional entities to handle non-voice emergency services media types when the local PSAP cannot.” The regional centers would “support NG911 capabilities so that every PSAP need not be

171 Id. at 7.
172 AT&T Comments at 27.
173 Id. at 15-16.
174 Id. at 15.
175 NENA i3 Solution at Sections 2.5 and 5.6.1 (same quote in both sections).
176 AT&T Comments at 29.
177 Id. at 29.
updated before certain advanced services can be supported.” According to AT&T, “[n]ot only will this [approach] ensure interoperability, but it will also limit the capital outlay required to deliver NG911 services, thereby accelerating deployment.” We seek comment on AT&T’s proposal. In particular, we seek comment on the costs and practicability of AT&T’s proposed regional PSAP approach relative to the upgrading of individual PSAPs. Would the AT&T approach reduce the amount of capital outlay required as compared to upgrading individual PSAPs? Would it enable more rapid deployment of NG911? How long would it take to implement AT&T’s approach? Are there benefits to co-locating a regional center with a PSAP that is already being upgraded to NG911? Are there benefits to co-locating a regional center with another location that already supports some NG911 capabilities, such as a TRS or VRS center? We also seek comment on the specific protocol interfaces and functionality that should be in place at the advanced 911 centers before providers are required to provide text and other media types to these call centers. AT&T also states that the Commission should limit “advanced functionality in NG911 systems until a baseline network” of the regional centers exists. Should the Commission go so far as to limit advanced functionality in such circumstances or in any other circumstances?

E. Consumer Education and Disclosure Mechanisms

104. The Notice of Inquiry sought comment on how to educate and prepare consumers for disparate PSAP capabilities in an NG911 environment. Commenters generally agreed that NG911 applications such as text-to-911 will not be deployed uniformly and that a nationwide education effort will therefore be needed during the transition. Motorola warns that while “the transition to NG911 is underway, misinformation and confusion about the deployment details are likely to spread” and maintains that an ongoing “comprehensive and multifaceted public education effort” that is “keyed to the actual deployment of new services” will be key to helping civilians understand the capabilities and limitations of the NG911 system.” NENA urges that “left unchecked, this confusion could lead consumers to waste time texting 9-1-1 or leave unused other means of communications at their disposal, wasting precious seconds in an emergency.”

1. Expected Benefits

105. Even using the most optimistic assumptions about the deployment of NG911, consumers are unlikely to have access to text or other NG911 applications everywhere in the United States at the same time. Access to these applications will vary depending on the consumer’s location, and even in areas where NG911 is deployed, specific applications may vary locally or regionally depending on the PSAP’s policies for accepting text or multimedia messages. In addition, technical factors such as variations in the capabilities of different caller handsets may lead to non-uniform access. At the same time, as NG911 deployment occurs in certain communities or regions, consumers elsewhere are likely to learn through the media, social networking, and other sources that text, photos, and video to 911 are available in some places, which may lead consumers to be uncertain or confused about availability of these capabilities in the consumer’s own community.

178 Id.
179 Id.
180 AT&T Comments at 29.
181 See Notice of Inquiry, 25 FCC Rcd at 17894 ¶ 78.
182 T-Mobile Comments at 7; AT&T Comments at 30, 33; Motorola Solutions Comments at 14.
183 Motorola Solutions Comments at 14.
184 NENA Comments at 15.
106. Given the significant risk of consumer uncertainty and confusion, there are clear benefits to be gained from providing the public with accurate and up-to-date information about the availability or non-availability of NG911 applications in their home communities and in other locations where they may travel. For example, if the public is not adequately informed about the availability or non-availability of text-to-911 in specific areas, consumers could put themselves at risk by attempting to send text messages to the local PSAP and being unaware that the text has not been received. In deciding how the Commission can most effectively minimize consumer confusion throughout the transition to NG911, we seek to maximize the benefits to consumers from any action we would take while taking into consideration the burden of compliance to providers. We therefore seek comment on the expected benefits and costs of implementing various approaches to consumer education and implementing disclosure mechanisms. We also ask whether there are any contractual issues that might deter consumers from texting or sending photos or video to 911. How many subscribers would face additional charges for sending texts, photos, or video to PSAPs from their mobile devices? Could such additional charges in some cases deter them from doing so? If so, should providers, the Commission, or others develop practices to address this situation?

2. Approaches for Education and Disclosure

107. Commenters agree that there is a significant need for a nationwide education effort while text-to-911 is being rolled out.\(^{185}\) We seek comment on the types of educational programs that should be created to abate and prevent consumer confusion as text-to-911 services are deployed in the short term. Are there lessons that we can draw from educational efforts that were conducted during the deployment of basic 911 or E911 service? Have other countries developed text-to-911 education programs? Can current 911 educational programs be adapted to help individuals understand text-to-911?\(^{186}\) Should educational programs differ depending upon the group that is being targeted, such as the disabilities community or non-English speakers? How should educational programs evolve as text-to-911 services become more prevalent? Would any of the educational approaches that the FCC used in the past, such as the campaign to inform purchasers of wireless microphones of the need to clear the 700 MHz band for public safety purposes, be useful here?\(^{187}\)

108. We also seek comment on the appropriate role for the Commission and for other government and private sector entities in any public education effort. Motorola notes that “[c]ompanies at the local, state, and federal levels all need to be thinking about how to disseminate accurate information to the public” and suggests that “beyond formal education efforts, providers of next generation communications services need to clearly communicate to their users any limitations with respect” to 911 service access.\(^{188}\) Qualcomm suggests that federal agencies, including the FCC and DHS, in conjunction with state and local governments, take responsibility for consumer education.\(^{189}\) The State of California

185 T-Mobile Comments at 7; AT&T Comments at 30, 33; Motorola Solutions Comments at 14.

188 Motorola Solutions Comments at 14.

189 Qualcomm Comments at 10-11.
suggests that the Commission should take a role in education akin to its role in the digital television
transition by creating a national public information campaign. More specifically, NENA suggests “the
FCC should collaborate with industry and media partners and public safety to educate consumers about
the current and ongoing limitations of SMS for emergency communications.” TSAG, however,
comments that education “begins with a nationally recognized institution, driving a baseline national
program…supportive of state and local efforts” but leadership “should reside in states and [be] delivered
through regional and local NG911 organizations and institutions.” Wichita-Wilbarger believes the
Commission should not “require states to specifically designate an organization to be responsible for the
statewide organizing, planning or implementing of NG9-1-1.” We seek further comment on what
entities should be involved in educational programs. What role should the Commission play? What role
can other federal agencies, state and local entities, and those in the public and private sectors play?
Where would the Commission or other federal agencies obtain funding for consumer education efforts?
What are the advantages and disadvantages of various approaches to consumer education? How can the
Commission and other federal agencies support local agencies and the media as they work to educate their
communities? What are the best methods of educating consumers about the availability or non-
availability of NG911 applications in their communities? Should we require providers to disclose
limitations on the availability of NG911 applications? If so, should we require such notice at the physical
text-to-911 is available at the caller’s current location? What would the cost be of developing
such resources initially and of updating them as the availability of text-to-911 expands to new areas?
Could information be provided in bills sent to consumers and instructional materials included with new
mobile devices to increase awareness?

Aside from educational programs, could other resources be developed to help individuals
learn about where text-to-911 services are and are not available? For instance, what is the feasibility of
developing a consumer-focused map or website showing such availability, possibly building on the PSAP
database that the Commission maintains or on other sources? Could local availability information be
built into text-to-911 applications themselves, so that the application would automatically indicate
whether text-to-911 is available at the caller’s current location? What would the cost be of developing
such resources initially and of updating them as the availability of text-to-911 expands to new areas?

Finally, despite educational programs and resources, some individuals will likely attempt
to send text messages to 911 in locations where text-to-911 is not supported. AT&T notes that “there is a
chance that a failed non-voice emergency call could result in no immediate feedback.” This could put
consumers at risk if they were unaware that an emergency text did not go through or were uninformed
about alternative means of reaching the PSAP. To mitigate such risk, we believe that in situations where
a consumer attempts to text 911 in a location where text-to-911 is not available, the consumer should
receive an automatic error message or similar disclosure that includes information on how to contact the
PSAP (e.g., a message directing the consumer to dial a 911 voice call). We seek comment on this
approach, including what methods are necessary to ensure that such disclosure is accessible to people
with different types of disabilities. What currently happens when consumers attempt to send SMS or

190 PSCO – California Technology Agency Comments at 17.
191 NENA Comments at 15.
192 TSAG Comments at 4.
193 Wichita-Wilbarger 9-1-1 District Comments at 7.
194 Many instructional booklets for mobile devices already describe the use of 911 on mobile devices, as well as, for
example, limitations on the ability to locate such devices during an emergency call.
195 AT&T Comments at 27.
other text-based messages to 911? Do wireless providers send an error message in response? If so, what information does the error message convey? Is it technically feasible for all providers to provide such error messages to consumers? What would the cost be to implement this capability across all providers and regions? Should error messages contain certain standardized information? What role, if any, should the Commission play in developing best practices, model responses, or requirements for the provision of standardized error messages?

F. Overlap with CVAA and EAAC

111. In October 2010, Congress enacted the CVAA, which amends the Communications Act and imposes a variety of new obligations on service providers, equipment manufacturers, and the Commission that relate to providing access to communications services for people with disabilities.\(^\text{196}\) Section 106 of the CVAA requires the Commission to take certain steps “[f]or the purpose of achieving equal access to emergency services by individuals with disabilities, as a part of the migration to a national Internet protocol-enabled emergency network.”\(^\text{197}\) Specifically, Section 106 requires the Chairman, within 60 days after enactment of the Act, to establish the EAAC.\(^\text{198}\) Within one year of its establishment, the EAAC must: (1) conduct a national survey of individuals with disabilities to determine the most effective and efficient technologies and methods by which to enable emergency access; and (2) submit to the Commission recommendations to implement such technologies and methods.\(^\text{199}\) Section 106 grants the Commission “the authority to promulgate regulations to implement the recommendations proposed by the Advisory Committee, as well as any other regulations, technical standards, protocols, and procedures as are necessary to achieve reliable, interoperable communication that ensures access by individuals with disabilities to an Internet protocol-enabled emergency network, where achievable and technically feasible.”\(^\text{200}\)

112. As required by the CVAA, the Chairman established the EAAC in December 2010, 60 days after enactment of the statute.\(^\text{201}\) The EAAC is composed of state and local government representatives responsible for emergency management and emergency responder representatives, national organizations representing people with disabilities and senior citizens, communications equipment manufacturers, service providers, federal agency representatives responsible for implementation of the NG911 system, and subject matter experts.\(^\text{202}\) Section 106(c) of the CVAA specifically requires the EAAC to provide recommendations to the Commission:

(1) with respect to what actions are necessary as a part of the migration to a national Internet protocol-enabled network to achieve reliable, interoperable communication transmitted over such network that will ensure access to emergency services by individuals with disabilities;

(2) for protocols, technical capabilities, and technical requirements to ensure reliability and interoperability necessary to ensure access to emergency services by people with disabilities;

(3) for the establishment of technical standards for use by public safety answering points,

\(^{196}\) CVAA, see supra note 4.

\(^{197}\) 47 U.S.C. § 615c.

\(^{198}\) Id. § 615c(a).

\(^{199}\) Id. § 615c(c).

\(^{200}\) Id. § 615c(g).

\(^{201}\) See EAAC Members Announcement PN.

\(^{202}\) Id.
designated default answering points, and local emergency authorities;

(4) for relevant technical standards and requirements for communication devices and equipment and technologies to enable the use of reliable emergency access;

(5) for procedures to be followed by IP-enabled network providers to ensure that such providers do not install features, functions, or capabilities that would conflict with technical standards;

(6) for deadlines by which providers of interconnected and non-interconnected VoIP services and manufacturers of equipment used for such services shall achieve the actions required in paragraphs (1) through (5), where achievable, and for the possible phase out of the use of current-generation TTY technology to the extent that this technology is replaced with more effective and efficient technologies and methods to enable access to emergency services by individuals with disabilities; and

(7) for the establishment of rules to update the Commission’s rules with respect to 9-1-1 services and E-911 services (as defined in section 158(e)(4) of the National Telecommunications and Information Administration Organization Act (47 U.S.C. 942(e)(4))), for users of telecommunications relay services as new technologies and methods for providing such relay services are adopted by providers of such relay services;

(8) that take into account what is technically and economically feasible.203

Since its establishment, the EAAC has met on a monthly basis and has conducted the required survey of people with disabilities, which was released in July 2011.204 In December 2011, one year after its establishment, the EAAC will submit its recommendations to the Commission on the NG911 accessibility issues set forth above. The CVAA then empowers the Commission to implement the EAAC’s recommendations by regulation, to the extent such recommendations are achievable and technically and economically feasible.205

113. There is considerable overlap between the NG911 text and multimedia capabilities discussed in this Notice and the NG911 accessibility issues being considered by the EAAC in its implementation of the CVAA. As we have observed in our discussion of potential benefits earlier in this Notice, adding text and multimedia applications to the 911 system can provide significant benefits to both people with disabilities and non-disabled people. Moreover, we believe it is important to encourage to the fullest extent possible the development of common text-to-911 and multimedia-to-911 solutions that serve both the broad goals of NG911 and the NG911 accessibility goals of the CVAA. By focusing on developing common solutions rather than developing specialized technologies solely for use by people with disabilities, we are more likely to be able to spread the cost of such technology across all network users and providers and to generate economies of scale that lower such costs. We seek comment on this approach. Will the development of common text-to-911 and multimedia-to-911 solutions benefit both people with disabilities and non-disabled people and lead to greater cost efficiencies? Are there limitations to this approach, such as instances where people with disabilities may still require development of more specialized technology to meet their emergency accessibility needs?

114. In light of the overlapping issues, we also seek comment on the relationship between this proceeding and our implementation of the CVAA and the work of the EAAC. Should we incorporate the EAAC’s recommendations into the record in this proceeding? Would coordinating or combining the two

203 47 U.S.C. § 615c(c).

204 EAAC Report at 3.

205 47 U.S.C. § 615c(g).
proceedings promote broader and more rapid NG911 deployment?

G. Legal Authority

115. Background. In the Notice of Inquiry, the Commission recognized that “[s]tate, Tribal, and local governments are the primary administrators of the legacy 911 system and are responsible for establishing and designating PSAPs or appropriate default answering points, purchasing customer premises equipment, retaining and training PSAP personnel, and purchasing 911 network services.” Nevertheless, the Commission noted that “[c]ertain communications technologies . . . necessitated the adoption of a uniform national approach” and sought comment on whether there should be some level of federal oversight for the transition to NG911. Further, the Commission sought comment “on the extent of the FCC’s jurisdiction to oversee the transition to NG911, since PSAPs, service providers, consumer device manufacturers, and software developers will all be involved.” The Commission also invited comment on the role that other federal agencies, such as ICO, should play in the transition to NG911.

116. Comments. Several commenters encourage the Commission to implement a uniform national approach. Other commenters, however, assert that the Commission’s authority over certain providers, such as broadband access providers, is still undetermined and will require further clarification or legislation. For instance, CTIA states that “some of these providers of current and future application-based communications services are not FCC licensees and thus fall outside the FCC’s regulatory jurisdiction entirely.” CTIA argues that while the CVAA gives the Commission some regulatory power to enact the recommendations of the EAAC, “it does not give the Commission plenary authority over electronic messaging and video conferencing services” and “the limits of the Commission’s authority under the [CVAA] are unclear.”

117. Discussion. Since 1996, the Commission has exercised authority under Title III of the Communications Act to require CMRS providers, as spectrum licensees, to implement basic 911 and E911 services. This authority includes – as a fundamental and pervasive element of the Commission’s

206 Notice of Inquiry, 25 FCC Rcd at 17895-96 ¶ 83.
207 Id.
208 Id. at 17896 ¶ 85.
209 PSCO – California Technology Agency Comments at 6; PUC of Ohio at 6 (supporting a framework in which the FCC establishes national objectives, standards, and benchmarks but leaves coordinating, implementing, and transitioning to the states); Texas 9-1-1 Agencies at 16 (asserting that “the FCC and regulators will need to fill gaps and promote compliance via regulations as needed,” but “the FCC should not needlessly seek to disturb the coordinated and cooperative public safety structural framework among federal, state, regional, and local governments recognized under federal law and provided for under applicable state laws”); Motorola at 15-16 (“Coordinated governance at the state and Federal levels will help to ensure that NG911 deployments proceed in an interoperable, standards-based manner.”)
210 See AT&T Comments at 35-36; L.R. Kimball Comments at 6-7 (asserting that legislation is required to implement a SMS to 911 interconnection); CTIA Comments at 7-9.
211 CTIA Comments at 8.
212 Id. at 9.
213 See See E911 First Report and Order, 11 FCC Rcd at 18676, 18679 ¶¶ 5, 10 (1996) (relying on sections 301 and 303(r) to impose E911 rules that “[save] lives and property” on wireless providers); Revision of the Commission’s Rules to Ensure Compatibility with Enhanced 911 Emergency Calling Systems, CC Docket No. 94-102, Fourth Memorandum Opinion and Order, 15 FCC Rcd 17442, 17445 ¶ 6 (2000) (relying on sections 301, 303(r), and 151 to promulgate E911 rule revisions). Moreover, Congress, in expanding the Commission’s obligations to implement (continued….)
licensing authority – the power and obligation to condition its licensing actions on compliance with requirements that the Commission deems consistent with the public interest, convenience, and necessity.\(^\text{214}\) Existing E911 requirements for wireless service providers clearly further the public interest in ways directly connected to the Commission’s mandate in Section 151 to “promot[e] safety of life and property through the use of wire and radio communication.”\(^\text{215}\) Similarly, the options we consider in this proceeding to facilitate availability of text-to-911 and other NG911 capabilities to consumers would fall within our broad Title III authority over spectrum licensees as requirements that serve the public interest, convenience, and necessity by, for example “promoting safety of life and property.”\(^\text{216}\) Therefore, we believe that we have well-established legal authority under Sections 151, 301, and 303(r) and other Title III provisions to take the regulatory and non-regulatory measures described herein that would apply to users of spectrum. We seek comment on this analysis.

118. We also believe that the CVAA confers authority with respect to implementation of text-to-911 and other NG911 features to the extent that such implementation serves the statutory goal of “achieving equal access to emergency services for people with disabilities, as a part of the migration to a national Internet protocol-enabled emergency network.”\(^\text{217}\) As noted in the previous section, the CVAA authorizes the Commission to promulgate regulations to “ensure the accessibility, usability, and compatibility of advanced communications services and the equipment used for advanced communications services by individuals with disabilities”\(^\text{218}\) and to do what is necessary to “achieve reliable, interoperable communication that ensures access by individuals with disabilities to an Internet protocol-enabled emergency network, where achievable and technically feasible.”\(^\text{219}\) The CVAA defines “advanced communications services” to include electronic messaging service, defined as a “service that

(Continued from previous page)
provides real-time or near real-time non-voice messages in text form between individuals over communications networks.”

The CVAA also includes in the definition of “advanced communications services” “interconnected VoIP service” and “non-interconnected VoIP service.”

The CVAA’s mandate to ensure “the accessibility, usability, and compatibility” of this broad category of advanced communications services provides generous authority to cover many of the actions we consider in this proceeding, including, for example, requiring 911 capabilities for text-based communications services. We seek comment on this reading of the CVAA and whether there are any limitations to the scope of this authority relevant to our proposals in this proceeding.

Furthermore, we believe that the Commission would also have the ancillary authority to regulate certain entities over which (or over whose actions at issue) we may not have express regulatory authority. Under Section 4(i) of the Communications Act and the judicial precedent recognizing the Commission’s ancillary authority, the Commission is empowered to impose requirements when it lacks specifically enumerated authority, provided its actions fall within the agency’s general grant of jurisdiction over “interstate and foreign communication by wire or radio” and the regulation is reasonably necessary to effectuate the Commission’s responsibilities under the Act and rules promulgated pursuant to the Commission’s express authority. Applying this principle to the NG911 context, it appears that the successful application of text-to-911 and other multimedia NG911 requirements to communications providers pursuant to the direct mandates of Title III or the CVAA may require that we impose certain requirements on broadband access providers, System Service Providers (SSPs), network operators, and other entities involved in the provision of broadband Internet access and other network services. For instance, a CMRS provider may be unable to provide text-to-911 without adjustments to the database management and call routing services currently provided by the SSP. In addition, a non-interconnected VoIP provider may need the cooperation of the operator of the broadband network over which the text to 911 travels to identify the user’s location. In such instances, we would have ancillary authority to impose rules on entities that fall under our subject matter jurisdiction as necessary to ensure that Title III licensees, entities subject to our authority under the CVAA, and other entities subject to direct statutory authority can fulfill their new NG911 obligations. Similarly, we may also decide,

221 47 U.S.C. § 153(1)(A) and (B) respectively. The CVAA further includes “interoperable video conferencing service” in the definition of “advanced communications services.” See id. § 153(1)(D).

222 See, e.g., 47 U.S.C. § 154(i) (authorizing the Commission to “perform any and all acts, make such rules and regulations, and issue such orders, not inconsistent with this Act, as may be necessary in the execution of its functions”); United States v. Southwestern Cable Co., 392 U.S. 157, 178 (1968) (recognizing that the Commission may exercise authority that is “reasonably ancillary to the effective performance of [its] various responsibilities”); United States v. Midwest Video Corp., 406 U.S. 649 (1972) (upholding the Commission’s regulation of cable television under the agency’s ancillary jurisdictional authority, where regulations promoted long-established statutory goals of broadcast regulation); Computer and Commc’ns Indus’ty Ass’n v. FCC, 693 F.2d 198 (D.C. Cir. 1982) (upholding the Commission’s regulation of enhanced services and customer premises equipment pursuant to ancillary authority, where regulations were deemed necessary to assure reasonable rates for wire communications services); American Library Association v. FCC, 406 F.3d 689 (D.C. Cir. 2005) (recognizing the Commission’s ancillary jurisdiction where: (1) the Commission’s general jurisdictional grant under Title I covers the subject of the regulations and (2) the regulations are reasonably ancillary to the Commission’s effective performance of its statutorily mandated responsibilities”).

223 47 U.S.C. § 152(a). Note that while the Commission’s ancillary jurisdiction is bounded by, inter alia, this general jurisdictional grant of authority over providers of “interstate and foreign communication by wire or radio,” the Act defines such communications very broadly to include not only the transmission of signals, sounds and the like, but also “all instrumentalities, facilities, apparatus, and services … incidental to such transmission.” 47 U.S.C. § 153(40), (59) (setting forth the definitions of “Radio communication” and “Wire communication”).
pursuant to our direct, express mandate under the CVAA, that individuals with disabilities must have access to an IP-enabled emergency network that allows them to send text and other multimedia information to the PSAP, without further delay. In this case, we would also have ancillary authority to require action that has broader effects on the non-disabled community, should it be infeasible at this time, for technical or other reasons, for providers to tailor implementation of their CVAA obligations only to individuals with disabilities. We seek comment on this analysis. We also ask commenters to address other potentially relevant sources of authority.

120. A number of commenters note that liability protection will need to be expanded to include all entities that participate in the NG911 environment. The Commission recognizes that existing sources of liability protection will possibly need to be updated to accommodate the range of parties, services, and devices that will be involved in the provisioning of NG911 services. The primary basis for liability protection related to the provisioning of NG911 services stems from section 201 of the New and Emerging Technologies 911 Improvement Act (Net 911 Act). Under this section, a “wireless carrier, IP-enabled voice service provider, or other emergency communications provider … shall have” the same liability protection as a local exchange carrier under federal and state law. We seek comment on whether the NET 911 Act’s extension of liability protection embraces the full range of technologies and service providers that will be involved in the provisioning of NG911 services. We also seek comment on whether the Commission has the authority to extend liability protection to entities involved in the provisioning of NG911 services or whether Congressional action is necessary.

IV. PROCEDURAL MATTERS

A. Ex Parte Presentations

121. The proceeding initiated by this Notice of Proposed Rulemaking shall be treated as a “permit-but-disclose” proceeding in accordance with the Commission’s ex parte rules. Persons making ex parte presentations must file a copy of any written presentation or a memorandum summarizing any oral presentation within two business days after the presentation (unless a different deadline applicable to the Sunshine period applies). Persons making oral ex parte presentations are reminded that memoranda summarizing the presentation must: (1) list all persons attending or otherwise participating in the meeting at which the ex parte presentation was made; and (2) summarize all data presented and arguments made during the presentation. If the presentation consisted in whole or in part of the presentation of data or arguments already reflected in the presenter’s written comments, memoranda, or other filings in the proceeding, the presenter may provide citations to such data or arguments in his or her prior comments, memoranda, or other filings (specifying the relevant page and/or paragraph numbers where such data or arguments can be found) in lieu of summarizing them in the memorandum. Documents shown or given to Commission staff during ex parte meetings are deemed to be written ex parte presentations and must be filed consistent with rule 1.1206(b). In proceedings governed by rule 1.49(f) or for which the Commission has made available a method of electronic filing, written ex parte presentations and

224 For instance, there may not be technology available that is capable of distinguishing readily whether or not a 911 “call” is being placed by an individual with a disability.

225 See TCS Comments at 17; PlantCML Comments at 3; Sprint Nextel Comments at 8; L3 Comments at 25; VON Coalition Comments at 5; NENA Comments at 31; CTIA Comments at 10-11; AT&T Comments at 25-26; L.R. Kimball Comments at 20-21; Motorola Comments at 12-13; Bandwidth.com Reply Comments at 7.

227 Id.

228 47 C.F.R. §§ 1.1200 et seq.
memoranda summarizing oral \textit{ex parte} presentations, and all attachments thereto, must be filed through the electronic comment filing system available for that proceeding and must be filed in their native format (\textit{e.g.}, .doc, .xml, .ppt, searchable .pdf). Participants in this proceeding should familiarize themselves with the Commission’s \textit{ex parte} rules.

\textbf{B. Comment Filing Procedures}

122. Pursuant to sections 1.415 and 1.419 of the Commission’s rules, 47 CFR §§ 1.415, 1.419, interested parties may file comments and reply comments in response to this Notice of Proposed Rulemaking on or before the dates indicated on the first page of this document. Comments may be filed using the Commission’s Electronic Comment Filing System (ECFS). \textit{See Electronic Filing of Documents in Rulemaking Proceedings}, 63 FR 24121 (1998).

- Electronic Filers: Comments may be filed electronically using the Internet by accessing the ECFS: \texttt{http://fjallfoss.fcc.gov/ecfs2/}.
- Paper Filers: Parties that choose to file by paper must file an original and one copy of each filing. If more than one docket or rulemaking number appears in the caption of this proceeding, filers must submit two additional copies for each additional docket or rulemaking number.

Filings can be sent by hand or messenger delivery, by commercial overnight courier, or by first-class or overnight U.S. Postal Service mail. All filings must be addressed to the Commission’s Secretary, Office of the Secretary, Federal Communications Commission.

- All hand-delivered or messenger-delivered paper filings for the Commission’s Secretary must be delivered to FCC Headquarters at 445 12th St., SW, Room TW-A325, Washington, DC 20554. The filing hours are 8:00 a.m. to 7:00 p.m. All hand deliveries must be held together with rubber bands or fasteners. Any envelopes and boxes must be disposed of before entering the building.
- Commercial overnight mail (other than U.S. Postal Service Express Mail and Priority Mail) must be sent to 9300 East Hampton Drive, Capitol Heights, MD 20743.
- U.S. Postal Service first-class, Express, and Priority mail must be addressed to 445 12th Street, SW, Washington DC 20554.

\textbf{C. Accessible Formats}

123. To request materials in accessible formats for people with disabilities (braille, large print, electronic files, audio format), send an e-mail to \texttt{fcc504@fcc.gov} or call the Consumer & Governmental Affairs Bureau at 202-418-0530 (voice), 202-418-0432 (tty).

\textbf{D. Regulatory Flexibility Analysis}

124. As required by the Regulatory Flexibility Act of 1980, \textit{see} 5 U.S.C. § 604, the Commission has prepared an Initial Regulatory Flexibility Analysis (IRFA) of the possible significant economic impact on small entities of the policies and rules addressed in this document. The IRFA is set forth in the Appendix. Written public comments are requested on the IRFA. These comments must be filed in accordance with the same filing deadlines as comments filed in response to this Notice of Proposed Rulemaking as set forth on the first page of this document and have a separate and distinct heading designating them as responses to the IRFA.

\textbf{E. Paperwork Reduction Act Analysis}

125. The Notice of Proposed Rulemaking contains proposed new information collection...
requirements. The Commission, as part of its continuing effort to reduce paperwork burdens, invites the general public and OMB to comment on the information collection requirements contained in this document, as required by Paperwork Reduction Act. In addition, pursuant to the Small Business Paperwork Relief Act of 2002, we seek specific comment on how we might “further reduce the information collection burden for small business concerns with fewer than 25 employees.”

V. ORDERING CLAUSES

126. IT IS ORDERED, pursuant to Sections 1, 2, 4(i), 7, 201, 222, 251(e), 301, 302, 303, 307, 308, 309, 310, 319, and 332, of the Communications Act of 1934, as amended, 47 U.S.C. §§ 151, 152, 154(i), 157, 201, 222, 251(e), 301, 302, 303, 307, 308, 309, 310, 319, and 332; Section 706 of the Telecommunications Act of 1996, as amended, 47 U.S.C. § 1302; Section 4 of the Wireless Communications and Public Safety Act of 1999, as amended by the New and Emerging Technologies 911 Improvement Act of 2008, 47 U.S.C. § 615a; and Sections 104 and 106 of the Twenty-First Century Communications and Video Accessibility Act of 2010, 47 U.S.C. §§ 615c, 617, that this Notice of Proposed Rulemaking is hereby ADOPTED.

127. IT IS FURTHER ORDERED that the Commission’s Consumer and Governmental Affairs Bureau, Reference Information Center, SHALL SEND a copy of this Notice of Proposed Rulemaking, including the Initial Regulatory Flexibility Analysis, to the Chief Counsel for Advocacy of the Small Business Administration.

FEDERAL COMMUNICATIONS COMMISSION

Marlene H. Dortch
Secretary

APPENDIX

Initial Regulatory Flexibility Analysis

1. As required by the Regulatory Flexibility Act of 1980, as amended (RFA), the Commission has prepared this present Initial Regulatory Flexibility Analysis (IRFA) of the possible significant economic impact of the proposal described in the attached Notice of Proposed Rulemaking on small entities. Written public comments are requested on this IRFA. Comments must be identified as responses to the IRFA and must be filed by the deadlines for comments in the Notice of Proposed Rulemaking. The Commission will send a copy of the Notice of Proposed Rulemaking, including this IRFA, to the Chief Counsel for Advocacy of the Small Business Administration (SBA). In addition, the Notice of Proposed Rulemaking and IRFA (or summaries thereof) will be published in the Federal Register.

A. Need for, and Objectives of, the Proposed Rules

2. In the Notice, we address the potential regulatory implications of implementing possible short-term methods for sending text messages to 911. We do so because of the widespread availability and increasing use of text in communications systems and because many of the emerging IP-based mechanisms for delivering text also have the capability, with relatively minor technical adjustment, to also support delivery of photos, videos, and other data. We seek comment on what role, if any, the Commission should play to facilitate – and, if necessary, accelerate – the implementation of text-to-911 capabilities by providers in the short term. We explore the full range of options for the Commission, including both non-regulatory and regulatory approaches, and seek to adopt the least burdensome approach that would achieve the desired result. We also recognize that we must carefully assess the costs and benefits of different regulatory options to determine the Commission’s proper role.

3. We also explore the potential for using SMS as an interim solution for text-based communication to 911, given the near-universal availability and consumer familiarity with SMS. The responses to our December 2010 Notice of Inquiry in this proceeding identify a number of possible limitations when using SMS for emergency communications, but some commenters also contended that these limitations could be surmounted by appropriate engineering approaches. We also examine other short-term options that would rely on software applications capable of delivering text over the existing IP-based infrastructure. We examine the potential costs and benefits of both SMS-based and software-based interim approaches as compared to developing more comprehensive text-to-911 solutions over the longer term that will provide more reliable real-time communications and can also support delivery of photos and video.

4. Next, we examine whether we should prioritize 911 traffic to ensure that people in need of assistance have reliable access to emergency services, especially during times of serious emergencies such as large-scale natural and manmade disasters. The August 23, 2011 East Coast earthquake and Hurricane Irene have been recent reminders that concentrated demands on the capacity of commercial communications networks during and immediately after emergencies can hinder the ability of consumers

to make voice calls, which in turn can jeopardize their ability to contact 911. We seek comment on how best to address this concern in both legacy networks and the emerging broadband networks that will support NG911, including options for prioritizing 911 traffic.

5. We take into consideration the potential regulatory implications of the long-term implementation of NG911, with particular focus on IP-based alternatives for delivering text, photos, videos, and other data to 911 that would leverage the increasing percentage of mobile devices that have the ability to access the Internet and would meet consumer expectations for the ways that they typically communicate.

6. We also address the potential regulatory implications of finding the path towards integration and standardization of IP-based text-to-911 as commercial providers migrate to all-IP networks and as 911 authorities deploy Emergency Services IP networks (ESInets) that will enable PSAPs to receive the full range of IP-based traffic, including voice, text, photos, video, and data. In this all-IP environment, text-to-911 is one of several non-voice services that will be supported by “native” IP communications end-to-end solutions, such as the Internet Multimedia Subsystem (IMS). However, providers may have varying timetables for developing the capacity to deliver IMS communications to PSAPs. PSAP deployment of ESInets is also likely to be non-uniform. We seek comment on the necessary steps for providers and PSAPs to support integrated IMS-based communications and the time that this process is likely to take.

7. With over 6,800 PSAPs in the United States, spanning a wide range of sizes and resources, individual PSAPs are likely to have highly varying timetables for developing the technical and operational capability to handle incoming texts in the short term, as well as texts and other media in the longer-term implementation of NG911. While there are significant public safety benefits to enabling the public to send texts and other media to 911 in areas where PSAPs are capable of receiving and processing them, we seek to avoid imposing unnecessary costs on providers to implement NG911 in areas where PSAPs have not yet achieved such capability. For this reason, we examine whether PSAPs should demonstrate a threshold level of technical NG911 capability as a precondition to any obligation by providers to deliver text or other media to PSAPs and whether such demonstration should be at the state or regional level. We also seek comment on potential state or local regulatory barriers to NG911 deployment and whether states should demonstrate that they have adopted legal or regulatory measures to eliminate such barriers to facilitate NG911 deployment.

8. Given that text-to-911 and other NG911 capabilities will likely not be simultaneously deployed nationwide, consumers may be uncertain where non-voice communication with 911 is available. Even where text-to-911 or other NG911 applications are available, the specific capabilities and operational characteristics of these applications may vary. We therefore address how to best educate consumers about the availability and limitations of text-to-911 and other NG911 solutions, particularly during the transition from legacy 911 to full implementation of NG911, without imposing an undue burden on providers.

B. Legal Basis

9. The legal basis for any action that may be taken pursuant to this Notice of Proposed Rulemaking is contained in Sections 1, 2, 4(i), 7, 201, 222, 251(e), 301, 302, 303, 307, 308, 309, 310, 319, and 332, of the Communications Act of 1934, as amended, 47 U.S.C. §§ 151, 152, 154(i), 157, 201, 222, 251(e), 301, 302, 303, 307, 308, 309, 310, 319, and 332, Section 706 of the Telecommunications Act of 1996, as amended, 47 U.S.C. § 1302, Section 4 of the Wireless Communications and Public Safety Act of 1999, as amended by the New and Emerging Technologies 911 Improvement Act of 2008, 47 U.S.C. §

235 See infra, note 41 (referencing 3GPP, IP Multimedia Subsystem (IMS) Emergency Sessions).
615a, and Sections 104 and 106 of the Twenty-First Century Communications and Video Accessibility Act of 2010, 47 U.S.C. §§ 615c, 617.

C. Description and Estimate of the Number of Small Entities to Which the Proposed Rules Would Apply

10. The RFA directs agencies to provide a description of and, where feasible, an estimate of the number of small entities that may be affected by the proposed rules.\(^{236}\) The RFA generally defines the term “small entity” as having the same meaning as the terms “small business,” “small organization,” and “small governmental jurisdiction.”\(^{237}\) In addition, the term “small business” has the same meaning as the term “small business concern” under the Small Business Act.\(^{238}\) A small business concern is one which: (1) is independently owned and operated; (2) is not dominant in its field of operation; and (3) satisfies any additional criteria established by the Small Business Administration (SBA).\(^{239}\)

11. Small Businesses, Small Organizations, and Small Governmental Jurisdictions. Our action may, over time, affect small entities that are not easily categorized at present. We therefore describe here, at the outset, three comprehensive, statutory small entity size standards.\(^{240}\) First, nationwide, there are a total of approximately 27.5 million small businesses, according to the SBA.\(^{241}\) In addition, a “small organization” is generally “any not-for-profit enterprise which is independently owned and operated and is not dominant in its field.”\(^{242}\) Nationwide, as of 2007, there were approximately 1,621,315 small organizations.\(^{243}\) Finally, the term “small governmental jurisdiction” is defined generally as “governments of cities, towns, townships, villages, school districts, or special districts, with a population of less than fifty thousand.”\(^{244}\) Census Bureau data for 2011 indicate that there were 89,476 local governmental jurisdictions in the United States.\(^{245}\) We estimate that, of this total, as many as 88,506 entities may qualify as “small governmental jurisdictions.”\(^{246}\) Thus, we estimate that most governmental jurisdictions are small.

\(^{238}\) 5 U.S.C. § 601(3) (incorporating by reference the definition of “small business concern” in the Small Business Act, 15 U.S.C. § 632). Pursuant to 5 U.S.C. § 601(3), the statutory definition of a small business applies “unless an agency, after consultation with the Office of Advocacy of the Small Business Administration and after opportunity for public comment, establishes one or more definitions of such terms which are appropriate to the activities of the agency and publishes such definitions(s) in the Federal Register.”

\(^{240}\) See 5 U.S.C. §§ 601(3)–(6).

\(^{241}\) See SBA, Office of Advocacy, “Frequently Asked Questions,” web.sba.gov/faqs (last visited May 6, 2011; figures are from 2009).

\(^{244}\) 5 U.S.C. § 601(5).

\(^{246}\) The 2007 U.S Census data for small governmental organizations are not presented based on the size of the population in each such organization. There were 89,476 small governmental organizations in 2007. If we assume that county, municipal, townships, and school district organizations are more likely than larger governmental organizations to have populations of 50,000 or less, the total of these organizations is 52,125. If we make the same assumption about special districts, and also assume that special districts are different from county, municipal, (continued….)
1. Telecommunications Service Entities

a. Wireless Telecommunications Service Providers

12. Pursuant to 47 C.F.R. § 20.18(a), the Commission’s 911 service requirements are only applicable to Commercial Mobile Radio Service (CMRS) “[providers], excluding mobile satellite service operators, to the extent that they: (1) Offer real-time, two way switched voice service that is interconnected with the public switched network; and (2) Utilize an in-network switching facility that enables the provider to reuse frequencies and accomplish seamless hand-offs of subscriber calls. These requirements are applicable to entities that offer voice service to consumers by purchasing airtime or capacity at wholesale rates from CMRS licensees.”

13. Below, for those services subject to auctions, we note that, as a general matter, the number of winning bidders that qualify as small businesses at the close of an auction does not necessarily represent the number of small businesses currently in service. Also, the Commission does not generally track subsequent business size unless, in the context of assignments or transfers, unjust enrichment issues are implicated.

14. **Wireless Telecommunications Carriers (except Satellite).** Since 2007, the Census Bureau has placed wireless firms within this new, broad, economic census category. 247 Prior to that time, such firms were within the now-superseded categories of “Paging” and “Cellular and Other Wireless Telecommunications.” 248 Under the present and prior categories, the SBA has deemed a wireless business to be small if it has 1,500 or fewer employees. 249 For the category of Wireless Telecommunications Carriers (except Satellite), Census data for 2007, which supersede data contained in the 2002 Census, show that there were 1,383 firms that operated that year. 250 Of those 1,383, 1,368 had fewer than 100 employees, and 15 firms had more than 100 employees. Thus under this category and the associated small business size standard, the majority of firms can be considered small.

15. **Wireless Service Providers.** The SBA has developed a small business size standard for wireless firms within the two broad economic census categories of “Paging” and “Cellular and Other Wireless Telecommunications.” Under both categories, the SBA deems a wireless business to be small if it has 1,500 or fewer employees. For the census category of Paging, Census Bureau data for 2002 show that there were 807 firms in this category that operated for the entire year. Of this total, 804 firms had employment of 999 or fewer, and three firms had employment of 1,000 or more. Thus, under this

(Continued from previous page)
category and associated small business size standard, the majority of firms can be considered small. For the census category of Cellular and Other Wireless Telecommunications, Census Bureau data for 2002 show that there were 1,397 firms in this category that operated for the entire year. Of this total, 1,378 firms had employment of 999 or fewer, and 19 firms had employment of 1,000 or more. Thus, under this second category and size standard, the majority of firms can, again, be considered small.

16. **Incumbent Local Exchange Carriers (Incumbent LECs).** Neither the Commission nor the SBA has developed a small business size standard specifically for incumbent local exchange services. The appropriate size standard under SBA rules is for the category Wired Telecommunications Carriers. Under that size standard, such a business is small if it has 1,500 or fewer employees.\(^{251}\) Census Bureau data for 2007, which now supersede data from the 2002 Census, show that there were 3,188 firms in this category that operated for the entire year. Of this total, 3,144 had employment of 999 or fewer, and 44 firms had had employment of 1000 or more. According to Commission data, 1,307 carriers reported that they were incumbent local exchange service providers.\(^{252}\) Of these 1,307 carriers, an estimated 1,006 have 1,500 or fewer employees and 301 have more than 1,500 employees.\(^{253}\) Consequently, the Commission estimates that most providers of local exchange service are small entities that may be affected by the rules and policies proposed in the Notice. Thus under this category and the associated small business size standard, the majority of these incumbent local exchange service providers can be considered small.\(^{254}\)

17. **A Competitive Local Exchange Carriers (Competitive LECs), Competitive Access Providers (CAPs), Shared-Tenant Service Providers, and Other Local Service Providers.** Neither the Commission nor the SBA has developed a small business size standard specifically for these service providers. The appropriate size standard under SBA rules is for the category Wired Telecommunications Carriers. Under that size standard, such a business is small if it has 1,500 or fewer employees.\(^{255}\) Census Bureau data for 2007, which now supersede data from the 2002 Census, show that there were 3,188 firms in this category that operated for the entire year. Of this total, 3,144 had employment of 999 or fewer, and 44 firms had employment of 1,000 or more. Thus under this category and the associated small business size standard, the majority of these Competitive LECs, CAPs, Shared-Tenant Service Providers, and Other Local Service Providers can be considered small entities.\(^{256}\) According to Commission data, 1,442 carriers reported that they were engaged in the provision of either competitive local exchange services or competitive access provider services.\(^{257}\) Of these 1,442 carriers, an estimated 1,256 have 1,500 or fewer employees, and 186 have more than 1,500 employees.\(^{258}\) In addition, 17 carriers have reported that they are Shared-Tenant Service Providers, and all 17 are estimated to have 1,500 or fewer employees.

\(^{251}\) 13 C.F.R. § 121.201, NAICS code 517110.

\(^{252}\) See *Trends in Telephone Service*, Federal Communications Commission, Wireline Competition Bureau, Industry Analysis and Technology Division at Table 5.3 (Sept. 2010) (*Trends in Telephone Service*).

\(^{253}\) See *id*.

\(^{254}\) See http://factfinder.census.gov/servlet/IBQTable?_bm=y&-fds_name=EC0700A1&-geo_id=&-skip=600&-ds_name=EC0751SSSZ5&-lang=en.

\(^{255}\) 13 C.F.R. § 121.201, NAICS code 517110.

\(^{256}\) See http://factfinder.census.gov/servlet/IBQTable?_bm=y&-fds_name=EC0700A1&-geo_id=&-skip=600&-ds_name=EC0751SSSZ5&-lang=en.

\(^{257}\) See *Trends in Telephone Service* at Table 5.3.

\(^{258}\) See *id*.
employees. In addition, 72 carriers have reported that they are Other Local Service Providers. Of the 72, 70 have 1,500 or fewer employees, and two have more than 1,500 employees. Consequently, the Commission estimates that most providers of competitive local exchange service, competitive access providers, Shared-Tenant Service Providers, and Other Local Service Providers are small entities that may be affected by rules adopted pursuant to the Notice.

18. Broadband Personal Communications Service. The broadband personal communications services (PCS) spectrum is divided into six frequency blocks designated A through F, and the Commission has held auctions for each block. The Commission initially defined a “small business” for C- and F-Block licenses as an entity that has average gross revenues of $40 million or less in the three previous calendar years. For F-Block licenses, an additional small business size standard for “very small business” was added and is defined as an entity that, together with its affiliates, has average gross revenues of not more than $15 million for the preceding three calendar years. These small business size standards, in the context of broadband PCS auctions, have been approved by the SBA. No small businesses within the SBA-approved small business size standards bid successfully for licenses in Blocks A and B. There were 90 winning bidders that claimed small business status in the first two C-Block auctions. A total of 93 bidders that claimed small business status won approximately 40 percent of the 1,479 licenses in the first auction for the D, E, and F Blocks. On April 15, 1999, the Commission completed the reauction of 347 C-, D-, E-, and F-Block licenses in Auction No. 22. Of the 57 winning bidders in that auction, 48 claimed small business status and won 277 licenses.

19. On January 26, 2001, the Commission completed the auction of 422 C and F Block Broadband PCS licenses in Auction No. 35. Of the 35 winning bidders in that auction, 29 claimed small business status. Subsequent events concerning Auction 35, including judicial and agency determinations, resulted in a total of 163 C and F Block licenses being available for grant. On February 15, 2005, the Commission completed an auction of 242 C-, D-, E-, and F-Block licenses in Auction No. 58. Of the 24 winning bidders in that auction, 16 claimed small business status and won 156 licenses.

259 See id.
260 See id.
261 See id.
263 See PCS Report and Order, 11 FCC Rcd at 7852, para. 60.
On May 21, 2007, the Commission completed an auction of 33 licenses in the A, C, and F Blocks in Auction No. 71. Of the 12 winning bidders in that auction, five claimed small business status and won 18 licenses. On August 20, 2008, the Commission completed the auction of 20 C-, D-, E-, and F-Block Broadband PCS licenses in Auction No. 78. Of the eight winning bidders for Broadband PCS licenses in that auction, six claimed small business status and won 14 licenses.

20. **Narrowband Personal Communications Services.** To date, the Commission has conducted two auctions of narrowband personal communications services (PCS) licenses. For purposes of the two auctions that have already been held, “small businesses” were entities with average gross revenues for the prior three calendar years of $40 million or less. Through these auctions, the Commission has awarded a total of 41 licenses, out of which 11 were obtained by small businesses. To ensure meaningful participation of small business entities in future auctions, the Commission has adopted a two-tiered small business size standard in the Narrowband PCS Second Report and Order. A “small business” is an entity that, together with affiliates and controlling interests, has average gross revenues for the three preceding years of not more than $40 million. A “very small business” is an entity that, together with affiliates and controlling interests, has average gross revenues for the three preceding years of not more than $15 million. The SBA has approved these small business size standards.

21. **Specialized Mobile Radio.** The Commission awards “small entity” bidding credits in auctions for Specialized Mobile Radio (SMR) geographic area licenses in the 800 MHz and 900 MHz bands to firms that had revenues of no more than $15 million in each of the three previous calendar years. The Commission awards “very small entity” bidding credits to firms that had revenues of no more than $3 million in each of the three previous calendar years. The SBA has approved these small business size standards for the 900 MHz Service. The Commission has held auctions for geographic area licenses in the 800 MHz and 900 MHz bands. The 900 MHz SMR was completed in 1996. Sixty bidders claiming that they qualified as small businesses under the $15 million size standard won 263 geographic area licenses in the 900 MHz SMR band. The Commission conducted the 800 MHz SMR auction for the upper 200 channels in 1997. Ten bidders claiming that they qualified as small businesses under the $15 million size standard won 38 geographic area licenses for the upper 200 channels in the 800

270 Id.

271 See Auction of AWS-1 and Broadband PCS Licenses Closes; Winning Bidders Announced for Auction 78, Public Notice, 23 FCC Red 12749 (WTB 2008).

272 Id.

275 47 C.F.R. § 90.814(b)(1).

276 Id.

MHz SMR band. The Commission conducted a second auction for the 800 MHz band in 2002 and included 23 BEA licenses. One bidder claiming small business status won five licenses.

22. The Commission conducted an auction of the 1,050 800 MHz SMR geographic area licenses for the General Category channels in 2000. Eleven bidders won 108 geographic area licenses for the General Category channels in the 800 MHz SMR band qualified as small businesses under the $15 million size standard. In an auction completed in 2000, the Commission awarded a total of 2,800 Economic Area licenses in the lower 80 channels of the 800 MHz SMR service. Of the 22 winning bidders, 19 claimed “small business” status and won 129 licenses. Thus, combining all three auctions, 40 winning bidders for geographic licenses in the 800 MHz SMR band claimed status as small business.

23. In addition, there are numerous incumbent site-by-site SMR licensees and licensees with extended implementation authorizations in the 800 and 900 MHz bands. We do not know how many firms provide 800 MHz or 900 MHz geographic area SMR pursuant to extended implementation authorizations nor how many of these providers have annual revenues of no more than $15 million. One firm has over $15 million in revenues. In addition, we do not know how many of these firms have 1,500 or fewer employees. We assume, for purposes of this analysis, that all of the remaining existing extended implementation authorizations are held by small entities, as that small business size standard is approved by the SBA.

24. AWS Services (1710–1755 MHz and 2110–2155 MHz bands (AWS-1); 1915–1920 MHz, 1995–2000 MHz, 2020–2025 MHz and 2175–2180 MHz bands (AWS-2); 2155–2175 MHz band (AWS-3)). For the AWS-1 bands, the Commission has defined a “small business” as an entity with average annual gross revenues for the preceding three years not exceeding $40 million and a “very small business” as an entity with average annual gross revenues for the preceding three years not exceeding $15 million. In 2006, the Commission conducted its first auction of AWS-1 licenses. In that auction, 31 winning bidders identified themselves as very small businesses. Twenty-six of the winning bidders identified themselves as small businesses. In a subsequent 2008 auction, the Commission offered 35

282 See generally 13 C.F.R. § 121.201, NAICS code 517210.

286 See id.
AWS-1 licenses.287 Four winning bidders identified themselves as very small businesses, and three of the winning bidders identified themselves as small businesses.288 Although we do not know for certain which entities are likely to participate in an auction of AWS-2 and AWS-3 spectrum, we note that the AWS-1 bands are comparable to those used for cellular service and personal communications service. The Commission has not yet adopted size standards for the AWS-2 or AWS-3 bands but has proposed to treat both AWS-2 and AWS-3 similarly to broadband PCS service and AWS-1 service due to the comparable capital requirements and other factors, such as issues involved in relocating incumbents and developing markets, technologies, and services.289

25. \textit{Rural Radiotelephone Service.} The Commission has not adopted a size standard for small businesses specific to the Rural Radiotelephone Service. A significant subset of the Rural Radiotelephone Service is the Basic Exchange Telephone Radio System ("BETRS"). In the present context, we will use the SBA’s small business size standard applicable to Wireless Telecommunications Carriers (except Satellite), \textit{i.e.}, an entity employing no more than 1,500 persons.290 There are approximately 1,000 licensees in the Rural Radiotelephone Service, and the Commission estimates that there are 1,000 or fewer small entity licensees in the Rural Radiotelephone Service that may be affected by the rules and policies adopted herein.

26. \textit{Wireless Communications Services.} This service can be used for fixed, mobile, radiolocation, and digital audio broadcasting satellite services in the 2305-2320 MHz and 2345-2360 MHz bands. The Commission defined “small business” for the wireless communications services (WCS) auction as an entity with average gross revenues of $40 million for each of the three preceding years and a “very small business” as an entity with average gross revenues of $15 million for each of the three preceding years.291 The SBA has approved these definitions.292 The Commission auctioned geographic area licenses in the WCS service. In the auction, which commenced on April 15, 1997 and closed on April 25, 1997, there were seven bidders that won 31 licenses that qualified as very small business entities and one bidder that won one license that qualified as a small business entity.

27. \textit{220 MHz Radio Service – Phase I Licensees.} The 220 MHz service has both Phase I and Phase II licenses. Phase I licensing was conducted by lotteries in 1992 and 1993. There are approximately 1,515 such non-nationwide licensees and four nationwide licensees currently authorized to operate in the 220 MHz band. The Commission has not developed a small business size standard for

287 See \textit{AWS-1 and Broadband PCS Procedures Public Notice}, 23 FCC Rcd at 7499. Auction 78 also included an auction of broadband PCS licenses.

290 NAICS Code 51210.

291 Amendment of the Commission’s Rules to Establish Part 27, the Wireless Communications Service (WCS), \textit{Report and Order}, 12 FCC Rcd 10785, 10879 ¶ 194 (1997).

small entities specifically applicable to such incumbent 220 MHz Phase I licensees. To estimate the number of such licensees that are small businesses, the Commission applies the small business size standard under the SBA rules. The SBA has deemed a wireless business to be small if it has 1,500 or fewer employees. For this service, the SBA uses the category of Wireless Telecommunications Carriers (except Satellite). Census data for 2007, which supersede data contained in the 2002 Census, show that there were 1,383 firms that operated that year. Of those 1,383, 1,368 had fewer than 100 employees, and 15 firms had more than 100 employees. Thus under this category and the associated small business size standard, the majority of firms can be considered small.

28. **220 MHz Radio Service – Phase II Licensees.** The 220 MHz service has both Phase I and Phase II licenses. The Phase II 220 MHz service is a new service and is subject to spectrum auctions. In the **220 MHz Third Report and Order**, the Commission adopted a small business size standard for defining “small” and “very small” businesses for purposes of determining their eligibility for special provisions such as bidding credits and installment payments. This small business standard indicates that a “small business” is an entity that, together with its affiliates and controlling principals, has average gross revenues not exceeding $15 million for the preceding three years. A “very small business” is defined as an entity that, together with its affiliates and controlling principals, has average gross revenues that do not exceed $3 million for the preceding three years. The SBA has approved these small size standards. Auctions of Phase II licenses commenced and closed in 1998. In the first auction, the FCC auctioned 908 licenses in three different-sized geographic areas: three nationwide licenses, 30 Regional Economic Area Group (EAG) Licenses, and 875 Economic Area (EA) Licenses. Of the 908 licenses auctioned, 693 were sold. Thirty-nine small businesses won 373 licenses in the first 220 MHz auction. A second auction included 225 licenses: 216 EA licenses and 9 EAG licenses. Fourteen companies claiming small business status won 158 licenses. A third auction included four licenses: 2 BEA licenses and 2 EAG licenses in the 220 MHz Service. No small or very small business won any of these licenses. In 2007, the Commission conducted a fourth auction of the 220 MHz licenses. The

293 13 C.F.R. § 121.201, NAICS code 517210 (2007 NAICS). The now-superseded, pre-2007 C.F.R. citations were 13 C.F.R. § 121.201, NAICS codes 517211 and 517212 (referring to the 2002 NAICS).

296 *Id.* at 11068 ¶ 291.

297 *Id.*

300 See “FCC Announces It is Prepared to Grant 654 Phase II 220 MHz Licenses After Final Payment is Made,” *Public Notice*, 14 FCC Rcd 1085 (WTB 1999).

Commission offered bidding credits to small businesses. A bidder with attributed average annual gross revenues that exceeded $3 million and did not exceed $15 million for the preceding three years (“small business”) received a 25 percent discount on its winning bid. A bidder with attributed average annual gross revenues that did not exceed $3 million for the preceding three years received a 35 percent discount on its winning bid (“very small business”). Auction 72, in which the Commission offered 94 Phase II 220 MHz Service licenses, concluded in 2007. In this auction, five winning bidders won a total of 76 licenses. Two winning bidders that identified themselves as very small businesses won 56 of the 76 licenses. One of the winning bidders that identified themselves as a small business won 5 of the 76 licenses.

29. **700 MHz Guard Band Licenses.** In the 700 MHz Guard Band Order, the Commission adopted size standards for “small businesses” and “very small businesses” for purposes of determining their eligibility for special provisions such as bidding credits and installment payments. A small business in this service is an entity that, together with its affiliates and controlling principals, has average gross revenues not exceeding $40 million for the preceding three years. Additionally, a “very small business” is an entity that, together with its affiliates and controlling principals, has average gross revenues that are not more than $15 million for the preceding three years. SBA approval of these definitions is not required. In 2000, the Commission conducted an auction of 52 Major Economic Area (“MEA”) licenses. Of the 104 licenses auctioned, 96 licenses were sold to nine bidders. Five of these bidders were small businesses that won a total of 26 licenses. A second auction of 700 MHz Guard Band

(Continued from previous page)

306 Id. at 5343 ¶ 108.

307 Id.

308 Id. at 5343 ¶ 108 n.246 (for the 746-764 MHz and 776-704 MHz bands, the Commission is exempt from 15 U.S.C. § 632, which requires Federal agencies to obtain Small Business Administration approval before adopting small business size standards).

licenses commenced and closed in 2001. All eight of the licenses auctioned were sold to three bidders. One of these bidders was a small business that won a total of two licenses.\(^{310}\)

30. **Upper 700 MHz Band Licenses.** In the *700 MHz Second Report and Order*, the Commission revised its rules regarding Upper 700 MHz licenses.\(^{311}\) On January 24, 2008, the Commission commenced Auction 73, which made available several licenses in the Upper 700 MHz band: 12 Regional Economic Area Grouping licenses in the C Block and one nationwide license in the D Block.\(^{312}\) The auction concluded on March 18, 2008, with 3 winning bidders claiming very small business status (those with attributable average annual gross revenues that do not exceed $15 million for the preceding three years) and winning five licenses.

31. **Lower 700 MHz Band Licenses.** The Commission previously adopted criteria for defining three groups of small businesses for purposes of determining their eligibility for special provisions such as bidding credits.\(^{313}\) The Commission defined a “small business” as an entity that, together with its affiliates and controlling principals, has average gross revenues not exceeding $40 million for the preceding three years.\(^{314}\) A “very small business” is defined as an entity that, together with its affiliates and controlling principals, has average gross revenues that are not more than $15 million for the preceding three years.\(^{315}\) The lower 700 MHz Service had a third category of small business status for Metropolitan/Rural Service Area (MSA/RSA) licenses—“entrepreneur”—which is defined as an entity that, together with its affiliates and controlling principals, has average gross revenues that are not more than $3 million for the preceding three years.\(^{316}\) The SBA approved these small size standards.\(^{317}\) The Commission conducted an auction of 740 licenses (one license in each of the 734 MSAs/RSAs and one license in each of the six Economic Area Groupings (EAGs)) in 2002. Of the 740 licenses available for auction, 484 licenses were won by 102 winning bidders. Seventy-two of the winning bidders claimed small business, very small business, or entrepreneur status and won licenses. A second auction commenced on May 28, 2003, closed on June 13, 2003, and included 256 licenses. Seventeen winning bidders claimed small or very small business status, and nine winning bidders claimed entrepreneur status.\(^{320}\) In 2005, the Commission completed an auction of 5 licenses in the Lower 700 MHz band. All three winning bidders claimed small business status.

32. In 2007, the Commission reexamined its rules governing the 700 MHz band in the *700 MHz Second Report and Order*.\(^{321}\) The Commission held an auction of A, B, and E block 700 MHz

\(^{311}\) *700 MHz Second Report and Order*, 22 FCC Rcd 15289.

\(^{314}\) See id., 17 FCC Rcd at 1087–88 ¶ 172.

\(^{315}\) See id.

\(^{316}\) See id., 17 FCC Rcd at 1088 ¶ 173.

\(^{317}\) See Alvarez Letter 1998.

\(^{320}\) See id.

licenses in 2008. Twenty winning bidders claimed small business status (those with attributable average annual gross revenues that exceed $15 million and do not exceed $40 million for the preceding three years). Thirty-three winning bidders claimed very small business status (those with attributable average annual gross revenues that do not exceed $15 million for the preceding three years).

33. **Offshore Radiotelephone Service.** This service operates on several UHF television broadcast channels that are not used for television broadcasting in the coastal areas of states bordering the Gulf of Mexico. There are presently approximately 55 licensees in this service. The Commission is unable to estimate at this time the number of licensees that would qualify as small under the SBA’s small business size standard for the category of Wireless Telecommunications Carriers (except Satellite). Under that SBA small business size standard, a business is small if it has 1,500 or fewer employees. Census data for 2007, which supersede data contained in the 2002 Census, show that there were 1,383 firms that operated that year. Of those 1,383, 1,368 had fewer than 100 employees, and 15 firms had more than 100 employees. Thus, under this category and the associated small business size standard, the majority of firms can be considered small.

34. **Wireless Telephony.** Wireless telephony includes cellular, personal communications services, and specialized mobile radio telephony carriers. As noted, the SBA has developed a small business size standard for Wireless Telecommunications Carriers (except Satellite). Under the SBA small business size standard, a business is small if it has 1,500 or fewer employees. According to Trends in Telephone Service data, 413 carriers reported that they were engaged in wireless telephony. Of these, an estimated 261 have 1,500 or fewer employees, and 152 have more than 1,500 employees. Therefore, more than half of these entities can be considered small.

35. **Satellite Telecommunications Providers.** Two economic census categories address the satellite industry. The first category has a small business size standard of $15 million or less in average annual receipts, under SBA rules. The second has a size standard of $25 million or less in annual receipts.

36. The category of Satellite Telecommunications “comprises establishments primarily engaged in providing telecommunications services to other establishments in the telecommunications and broadcasting industries by forwarding and receiving communications signals via a system of satellites or reselling satellite telecommunications.” Census Bureau data for 2007 show that 512 Satellite

324 13 C.F.R. § 121.201, NAICS code 517210.
326 13 C.F.R. § 121.201, NAICS code 517210.
327 Id.
328 Trends in Telephone Service, tbl. 5.3.
329 Id.
330 13 C.F.R. § 121.201, NAICS code 517410.
331 13 C.F.R. § 121.201, NAICS code 517919.
Telecommunications firms operated for that entire year. Of this total, 464 firms had annual receipts of under $10 million, and 18 firms had receipts of $10 million to $24,999,999. Consequently, the Commission estimates that the majority of Satellite Telecommunications firms are small entities that might be affected by our action.

37. The second category, “All Other Telecommunications,” comprises “establishments primarily engaged in providing specialized telecommunications services, such as satellite tracking, communications telemetry, and radar station operation. This industry also includes establishments primarily engaged in providing satellite terminal stations and associated facilities connected with one or more terrestrial systems and capable of transmitting telecommunications to, and receiving telecommunications from, satellite systems. Establishments providing Internet services or Voice over Internet Protocol (VoIP) services via client-supplied telecommunications connections are also included in this industry.” For this category, Census Bureau data for 2007 show that there were a total of 2,383 firms that operated for the entire year. Of this total, 2,346 firms had annual receipts of under $25 million, and 37 firms had annual receipts of $25 million to $49,999,999. Consequently, the Commission estimates that the majority of All Other Telecommunications firms are small entities that might be affected by our action.

a. Equipment Manufacturers

38. Radio and Television Broadcasting and Wireless Communications Equipment Manufacturing. The Census Bureau defines this category as follows: “This industry comprises establishments primarily engaged in manufacturing radio and television broadcast and wireless communications equipment. Examples of products made by these establishments are: transmitting and receiving antennas, cable television equipment, GPS equipment, pagers, cellular phones, mobile communications equipment, and radio and television studio and broadcasting equipment.” The SBA has developed a small business size standard for Radio and Television Broadcasting and Wireless Communications Equipment Manufacturing, which is all firms having 750 or fewer employees. According to Census Bureau data for 2007, there were a total of 939 establishments in this category that operated for part or all of the entire year. Of this total, 784 had less than 500 employees, and 155 had more than 100 employees. Thus, under this size standard, the majority of firms can be considered small.

39. Semiconductor and Related Device Manufacturing. These establishments manufacture “computer storage devices that allow the storage and retrieval of data from a phase change, magnetic, optical, or magnetic/optical media. The SBA has developed a small business size standard for this service 334220. See 13 C.F.R 121/201. See also

333 See http://factfinder.census.gov/servlet/IBQTable?_bm=y&-geo_id=&-_skip=900&-ds_name=EC0751SSSZ4&-_lang=en.
334 http://factfinder.census.gov/servlet/IBQTable?_bm=y&-geo_id=&-_skip=900&-ds_name=EC0751SSSZ4&-_lang=en.
337 http://factfinder.census.gov/servlet/IBQTable?_bm=y&-geo_id=&-_skip=900&-ds_name=EC0751SSSZ4&-_lang=en.
338 The NAICS Code for this service 334220. See 13 C.F.R 121/201. See also http://factfinder.census.gov/servlet/IBQTable?_bm=y&-fds_name=EC0700A1&-geo_id=&-_skip=300&-ds_name=EC0731SG2&-_lang=en.
category of manufacturing; that size standard is 500 or fewer employees storage and retrieval of data from a phase change, magnetic, optical, or magnetic/optical media.”

According to data from the 2007 U.S. Census, in 2007, there were 954 establishments engaged in this business. Of these, 545 had from 1 to 19 employees; 219 had from 20 to 99 employees; and 190 had 100 or more employees. Based on this data, the Commission concludes that the majority of the businesses engaged in this industry are small.

D. Description of Projected Reporting, Recordkeeping, and Other Compliance Requirements for Small Entities

40. The Notice of Proposed Rulemaking does not adopt any recordkeeping or reporting requirements.

E. Steps Taken to Minimize Significant Economic Impact on Small Entities, and Significant Alternatives Considered

41. The RFA requires an agency to describe any significant, specifically small business alternatives that it has considered in reaching its proposed approach, which may include the following four alternatives (among others): “(1) the establishment of differing compliance or reporting requirements or timetables that take into account the resources available to small entities; (2) the clarification, consolidation, or simplification of compliance or reporting requirements under the rule for small entities; (3) the use of performance, rather than design, standards; and (4) and exemption from coverage of the rule, or any part thereof, for small entities.”

42. Throughout the NPRM, we examine, and seek comment on, alternatives to address the regulatory implications discussed in Part A of the IRFA. Specifically, we consider and seek comment on alternatives such as implementing faster or slower implementation of both short-term and long-term NG911 capabilities.

43. The NPRM also addresses a variety of means by which the Commission can further enhance its regulatory goal of expediting the development and widespread deployment of the short-term text-to-911 and long-term text and multimedia solutions discussed above in Part A. These alternatives include regulatory versus incentive-based solutions, state and/or regional approaches, federal approaches, and other mechanisms for implementing NG911.

44. We also discuss and seek comment on how to minimize the cost burden on small entities. In particular, the Notice seeks detailed data that quantifies the benefits that text-to-911 and other NG911 applications will bring to the public and to emergency responders, while also quantifying the costs to providers, PSAPS, and consumers.

45. With regard to text-to-911, we consider various methods of achieving our goal of implementing text-to-911 as an interim solution. These alternatives include approaches based on SMS and existing architecture, as well as approaches based on software applications. Balancing these considerations, we believe that PSAPs, providers, and vendors should have the option to implement SMS-to-911 as a short-term alternative. We also further examine the software application approach and consider a variety of possible means of implementing that solution.

340 http://factfinder.census.gov/servlet/IBQTable?_bm=y&-geo_id=&-_skip=300&-ds_name=EC0731I1&-_lang=en.

Regarding 911 prioritization, the NPRM examines several alternatives to implementing 911 prioritization, including solutions based on Long Term Evolution (LTE). We also seek comment on timeframes and methods of implementation that reduce the burden on small entities. The NPRM seeks to meet the Commission’s goal of improving consumers’ ability to reach 911 in the wake of a disaster in a manner that reduces the burden on small entities.

Finally, the NPRM examines a variety of means by which consumers can be educated about the possible limitations of NG911. These alternatives included leveraging existing consumer education programs, government approaches, and private sector approaches. The NPRM also examines various mechanisms for informing consumers who attempt to send text messages to 911 in locations where text-to-911 is not supported.

D. Federal Rules that May Duplicate, Overlap, or Conflict with the Proposed Rules

48. <None.>
STATEMENT OF
CHAIRMAN JULIUS GENACHOWSKI

Re: Facilitating the Deployment of Text-to-911 and Other Next Generation 911 Applications; Framework for Next Generation 911 Deployment, PS Docket Nos. 11-153, 10-255

It has been less than two weeks since the 10th anniversary of 9/11; and less than a month after a rare East Coast earthquake, and after Hurricane Irene caused major flooding and serious damage. These events remind us of the vital importance of our mission to harness the power of communications technology to enhance public safety and save lives, and of the need to ensure that our emergency response systems keep pace with how people communicate.

Public safety is a priority of every member of this Commission. It has been a focus of mine since my first day as Chairman, when I instructed the Public Safety and Homeland Security Bureau to conduct a thorough review of the agency’s preparedness for emergencies. Since then, working together, we have advanced our public safety agenda on multiple fronts, and I’m proud of our accomplishments. But there is still work to be done.

With input from the public safety community, our federal partners, and other stakeholders, we have worked to establish an interoperability framework for a nationwide public safety broadband network. The future of that network is in the hands of Congress, including authorizing voluntary incentive auctions to fund the public safety network. I am hopeful that Congress will act, but I am also concerned about further delay. Every day that passes risks not only the economic benefits of incentive auctions; it also delays the substantial public safety benefits of the network, and increases the costs of building the network.

An interoperable mobile broadband network for first responders is necessary to harness communications technology for public safety, but it is not sufficient. And so we’ve pursued and continue to pursue multiple initiatives.

Working with FEMA, local public safety authorities, and the wireless industry, we are launching on an accelerated basis the Personal Localized Alerting Network. In the event of an emergency, PLAN allows government officials to send text-like, targeted alerts to all enabled mobile devices in a geographic area. In just a few months, PLAN will go live in New York City, and it will launch nationwide in April 2012.

We have worked with industry to develop best practices to improve the reliability of our communications networks, and we have developed our outage reporting systems to provide situational awareness about communications outages in emergencies. To ensure that our networks keep pace with technological change, we’ve launched proceedings to consider additional steps to ensure network reliability, including whether to expand outage reporting to the broadband networks that the public increasingly relies on.

We have stepped up our support of restoration efforts in the wake of disasters. For example, we sent FCC personnel to Haiti after the January 2010 earthquake to help with on-the-ground assessment of communications infrastructure, and since the Japan earthquake in March we have been working with our colleagues in Japan both to provide assistance and to learn lessons for the future. Here at home, Hurricane Irene once again proved the value of our Roll Call technology units that can provide vital situational awareness of wireless transmissions – from mobile to broadcast – during times of disaster.
We continue to explore new and innovative ways to use communications technology to assist in disaster recovery efforts. Today’s report from the Public Safety and Homeland Security Bureau on deployable aerial communications architecture is a promising example of such innovation.

We have increased our outreach and public education efforts to help the public understand how they can use communications technology to prepare for and respond to disasters. Yesterday, we joined with FEMA to release a tip sheet with recommendations for how consumers can best communicate with public safety and family during and after disasters. We will work with other governmental entities as well as the private sector to maximize consumer awareness of these tips and advice.

Which brings us to 9-1-1, a cornerstone of our public safety communications infrastructure. Last month, I announced a five-step plan for accelerating the deployment of Next Generation 9-1-1. Next Generation 9-1-1 is the emergency response system that will run on the broadband networks of the 21st century. NG9-1-1 will add incredible value to our 9-1-1 system and all the people who rely on it.

The plan lays out the comprehensive and coordinated strategy we need to avoid patchwork deployment and years of delay in developing NG9-1-1. The five steps are:

- Develop location accuracy mechanisms for NG9-1-1;
- Enable consumers to send text, photos, and videos to PSAPs;
- Develop an NG9-1-1 cost-effectiveness model;
- Facilitate the completion and implementation of NG9-1-1 technical standards; and
- Develop a NG9-1-1 governance framework.

We are implementing this plan. In July, we launched the first step with our Order and Further Notice on location accuracy, which sought to close the accuracy gap between mobile and landline 9-1-1 calls and to lay the groundwork for location accuracy in Next Generation 9-1-1 networks and applications.

With the NPRM we consider today, we are moving on the second step of our action plan: to enable consumers to send text, photos, and videos to PSAPs. Our action rests on two basic concepts.

The first concept is that in an emergency, consumers should be able to reach out for help with whatever means of communications they are accustomed to using. When I visited DC’s 9-1-1 call center on September 9th, I asked Director Jennifer Greene about the challenges she faced. She told me that her biggest concern is “keeping up with how the community communicates.”

For an increasing number of wireless users, that means texting 9-1-1 should be available. Texting is also important for people who are deaf or hard of hearing, who are discarding their TTYs and turning with increasing frequency to more advanced but widely available methods of communications like smartphones. And we shouldn’t stop at texting. It is of course increasingly commonplace to take photos or video on a mobile phone; people should be able to send that information directly to 9-1-1.

But today, if a mobile phone user attempts to send even a simple text to 9-1-1, it goes nowhere. That’s what happened to the students at Virginia Tech who texted 9-1-1 during the terrible shooting several years ago. A tragedy during the 1990s – the carjacking and murder of Jennifer Koon in New York – was significant in spurring the initial focus on NG9-1-1, and is worth recalling. During the incident, Jennifer Koon was able to call 9-1-1 from her car phone but couldn’t speak for fear of alerting her attacker. The PSAP kept the line open in the hopes the caller would say something, but she never did and was found dead two hours later. The ability to text 9-1-1 might have saved her life.
We have been urging the communications and technology communities to develop ways to implement Next Generation 9-1-1 quickly and cost-effectively. And it is encouraging that even as the 9-1-1 community works on long-term implementation of NG9-1-1, many vendors, service providers, and PSAPs are actively exploring and conducting trials of various text-to-9-1-1 methodologies. This technology could provide for text-to-9-1-1 implementation within a year and at lower costs than previously imagined.

In today’s Notice, we are seeking comment on these trials and initiatives, including a text-to-9-1-1 proposal by Neustar, which I had the opportunity to see firsthand last week; a text-to-9-1-1 proposal by Intrado; the recently initiated SMS-to-9-1-1 trial in Durham, North Carolina; and the ATIS Interim Non-Voice Emergency Services initiative. This is the time to focus on innovation and problem-solving. I urge all companies, nonprofits, and research institutions in this area to develop by the end of this calendar year proposals to accelerate deployment of text-to-9-1-1 applications. We would like testing and test data so that we can move quickly on this national challenge. While accelerated text-to-9-1-1 methodologies may not provide all the functionality of a fully-realized NG9-1-1 system, they could yield significant public safety benefits while work on longer-term alternatives continues. The FCC will do its part to consider all alternatives and move forward quickly.

In addition to empowering people to communicate with 9-1-1 in all the ways they are used to communicating, the second concept underlying our action today is to make sure that Next Generation 9-1-1 gives first responders critical tools they need to manage a wide range of information during an emergency, through 21st century emergency command technology.

How might this work? Imagine a crane collapse that blocks a major city thoroughfare, causing injuries to numerous drivers and pedestrians and structural damage to nearby buildings and utilities. With NG9-1-1 technology, first responders in PSAPs would have access to texts, photos, and videos sent from the scene and could combine these with information from traffic cameras, automated sensors, databases with maps or building plans, and other sources. This would allow faster and more efficient assessment of the scope of the emergency, the amount and severity of injuries and property damage, and the impact on surrounding traffic and buildings. Using this real-time information, emergency managers would be able to decide how to optimize the deployment of police, fire, and emergency medical personnel, identify the need for any special equipment, determine the fastest routes for first responders to and from the scene, and decide whether to send alerts or evacuation notices to people in the area.

A few years ago, this technology may have sounded like science fiction, but today it’s increasingly available for commercial purposes. Innovators are developing these technologies for first responders – from complex database access to mapping to gunshot sensors and other sensors – and the fundamental goal of today’s Notice is to accelerate the development and deployment of these technologies as part of our emergency response communications infrastructure. I’m pleased that today in our new Technology Experience Center we will be showing demonstrations of NG911 and other public safety-related technologies.

Let me mention one more important topic in today’s Notice -- a matter highlighted by our recent earthquake. Some wireless networks experienced congestion immediately following the earthquake, which prevented some 9-1-1 calls from going through. Unless we address this head-on, emergency events that result in a surge of mobile calls risk a level of congestion that can effectively block access to 9-1-1 from mobile devices during the period of congestion. That is why today’s Notice considers the question of whether and how to prioritize 9-1-1 calls on both existing and next-generation mobile networks.
Some of the initiatives we are addressing – including 9-1-1 prioritization and enabling texting-to-9-1-1 – would increase the demands on our 9-1-1 call centers. In today’s Notice, we seek comment on ways that technology can provide a solution. In many areas, innovators and researchers are tackling the challenges of digital information overload. I call on our universities and the technology industry to help develop cost-effective tools and processes to enable PSAPs to better manage the flow of multiple NG9-1-1-related information streams. I have also directed our Public Safety and Homeland Security Bureau to coordinate with the Department of Defense to determine whether technologies used for situational awareness on battlefields could have application for our first responders in the event of emergencies.

Finally, even as we seek ways to reduce the cost of NG9-1-1 development and deployment, it is inevitable that upgrades to our 9-1-1 system will require funding. While the FCC is not a grant-making institution, we can provide policymakers with information about the costs associated with deploying the network infrastructure required to link PSAPs and carriers. Therefore, we are initiating the third step of our five-step plan – to develop a cost-effectiveness model -- with the cost study that the Public Safety and Homeland Security Bureau has presented today. This important study will inform states and localities, as well as Congress and federal agencies, about the cost implications of design choices as they plan their NG9-1-1 networks.

While we have now taken action to implement the first three steps of our action plan, we will also be initiating the remaining steps – establishing technical standards and governance – by working with our local, state, and federal partners, public safety, and commercial and other stakeholders and through agency action. I want to acknowledge the presence today of several leaders in this effort to make Next Generation 9-1-1 a reality, and thank them for their work so far: Greg Riddle, the President of the Association of Public Safety Communications Officials, or APCO, and Brian Fontes, CEO of the National Emergency Number Association, or NENA. In short, I am committed to doing what it takes to launch NG9-1-1 nationwide as quickly and cost-effectively as possible. This is an important national challenge, and I encourage broad engagement as we move forward.

I thank each of my colleagues and the staff of our Public Safety and Homeland Security Bureau for their considerable and ongoing work in this area, and thank the other bureaus – including our Consumer and Governmental Affairs Bureau and Wireless Telecommunications Bureau – for their excellent input and collaboration.
STATEMENT OF
COMMISSIONER MICHAEL J. COPPS

Re: Facilitating the Deployment of Text-to-911 and Other Next Generation 911 Applications;
Framework for Next Generation 911 Deployment, PS Docket Nos. 11-153, 10-255

Any meeting where we can vote for improved public safety communications is a good meeting in my book. In an agenda filled with important matters, nothing trumps enhancing the safety of our citizens. With this item today we consider a short-term plan to enable texting to 911 and a longer-term route to include more advanced texting, pictures, and videos to 911. “Longer-term” connotes no less priority, of course, and I know my colleagues will keep these both on the front burner.

Consumers increasingly rely on – and many of them prefer – texting as a primary source of communication. Texting will become increasingly important as we harness the new tools of technology to the requirements of a safe and secure nation. We saw again recently how quickly networks get over-taxed and congested, so we must do everything we can to encourage the utilization of new technologies to report emergencies and the aftermath of those emergencies. We have to get beyond thinking about critical communications as just traditional voice and realize that consumers don’t make a lot of these distinctions among services and technologies that so often seem to fixate us and stymie us here in Washington, and especially they don’t make them when they are in trouble and need action fast. Indeed today’s consumers might rightly wonder: what’s so “next generation” about texting?

In addition to responding to consumer expectations, texting is sometimes the only safe option in cases where making a call can mean risking your life. And for the disabilities communities, texting represents an enormous and critical opportunity to protect lives and property. These communities have been forced to wait on the sidelines of the communications game for far too long, so I’m pleased to see today’s action as part of our larger effort to implement the landmark Twenty-first Century Communications and Video Accessibility Act.

We’re not trying to identify a silver bullet here. Texting is neither a total response nor a perfect tool. The record so far points out that, unlike phone calls, texts can take precious more time to get to recipients. And, importantly, they lack the automatic location information that accompanies calls to 911 and that is so important is responding to emergencies. Public Safety Answering Points (PSAPs) will need time and resources to build-in the capability to receive, process and respond to texts.

I would note that texting to 911 is apparently not new to this world and is actually on its way to becoming reality in other parts of the world, including Estonia, Iceland, and the United Kingdom. We have an opportunity to look at the progress in these areas and incorporate lessons learned in our own public safety strategies. I am pleased the Notice asks questions about this.

As mentioned, we also look in this item to the longer term by asking how we can enhance 911 by making use of all the technologies that the Commission has worked so hard to encourage. With smartphones taking pictures and video everywhere around us, it would be irresponsible not to offer first responders all these new tools to help them respond quickly and effectively to emergencies.

We also ask if carriers should prioritize 911 calls over all other calls when networks get overwhelmed, something we saw during the recent East Coast earthquake. I look forward to hearing about the feasibility and the good that could come from prioritization, but we must also remember that not all critical emergency communication is 911-bound. What we do not want is a system that would have the unfortunate effect of preventing us from checking on our children, parents, and other loved ones.
during a time of crisis. I look forward to learning more about how we can balance these important considerations.

Finally, I would note that there still lingers over all these initiatives to modernize 911 a question about the proper role for us, the FCC. I, for one, believe Job Number One here is protecting the people. We need not and should not be timid about asserting our authority in this critical area. I always look forward to hearing stakeholder viewpoints, but I am committed to the idea that we need to go beyond aspiration and beyond encouragement to doing everything we can to actually make this happen. Again, it is the lives and property of our citizens that are at stake.

Today’s Notice explores the full range of issues, including how to educate consumers about the limitations of text to 911 and how to stay aware of changes in the tools available during times of emergency. If there are other questions we should have asked and didn’t, I hope commenters will queue them up and provide responses. I am optimistic that we will find ways to address all concerns, particularly if we develop the find of fulsome record needed to do justice to this item.

My thanks to the Chairman for his continued leadership on public safety, to my colleagues for the concerns and knowledge they have consistently demonstrated, and to Admiral Barnett and the fine staff of the Public Safety Bureau for making this such a good item. My thanks as well to our public safety partners both in government and in the private sector. We will rely on your help as we move forward on a next generation 911.
STATEMENT OF
COMMISSIONER ROBERT M. McDOWELL

Re: Facilitating the Deployment of Text-to-911 and Other Next Generation 911 Applications; Framework for Next Generation 911 Deployment, PS Docket Nos. 11-153, 10-255

Helping to ensure the safety of the American people is a core priority for government and this agency in particular. As our robust communications market continues to create innovations that are literally improving the human condition across the globe, the opportunity for new technology to help save lives has never been greater. Today, we continue our noble endeavor of exploring paths to deploy next generation technologies for emergency communications (what we are calling “next generation” 911, although I suspect that term will become quaint before too long). As we go forward, with our gaze fixed on the goal of modernizing this framework, we should take extra care to avoid tripping over pragmatic realities on the ground, such as limited legal authority, technical limitations and unfunded mandates.

Especially given today’s economy, the Commission must be careful not to impose costly requirements on industry that would, in turn, require large taxpayer financed investments by public safety or overhauls of existing emergency communications systems. As part of this proceeding, we should examine all potential costs. As we all recognize, today money is either unavailable or tightly managed. Therefore, I thank the staff for preparing the white paper on 911 costs. The document is detailed and thorough. I have no doubt that it will serve as a useful tool – both internally and externally – as we work together to grapple with these complex legal, economic and technical issues.

Furthermore, I am pleased that today’s notice contains questions about the Commission’s legal authority. Ensuring clear and effective communications in times of emergency is a key aspect of the Commission’s mission. At the same time, however, some providers of current and future application-based communications services are not FCC licensees and thus fall outside of the Commission’s jurisdiction. Given the importance of the topic, however, I am eager to hear all good faith legal arguments.

In addition, we could all learn more about consumer expectations. The lessons learned from deployment of wireless Enhanced 911 will help guide us in our pursuit of a workable framework for next generation 911 deployment. For instance, should the Commission require public safety entities to demonstrate a specified level of technical capability at the statewide or local level as a precondition to carriers delivering text or other media to them? What steps should be taken, and when and by whom, to educate consumers on the status of this work-in-progress?

I also appreciate the white paper on Deployable Aerial Communications Architecture in emergency situations. The recent trifecta of an earthquake, hurricane and tropical storm hitting the East Coast, has heightened the need for in-depth analysis of potential communications solutions. Thank you for this excellent primer.

Finally, in this instance, I support our decision to refrain from including draft rules at this point in the process. Usually, I am a proponent of including draft rules with notices of proposed rulemaking. As we remain at a preliminary stage, however, final proposals have yet to be developed. As I have noted, we must develop a strong record illustrating the costs and technical feasibility of implementing this technology. Accordingly, I approve of this prudent approach to develop the record further before drafting proposed rules.

Thanks again to all who have contributed today. I am pleased we are taking a comprehensive approach and I applaud your work.
STATEMENT OF COMMISSIONER MIGNON L. CLYBURN

Re: Facilitating the Deployment of Text-to-911 and Other Next Generation 911 Applications; Framework for Next Generation 911 Deployment, PS Docket Nos. 11-153, 10-255

This NPRM takes a proper approach toward promoting the development and deployment of NG9-1-1 technology. American ingenuity and investment in broadband IP networks and applications, has already led to innovations that could greatly improve public safety communications. These innovations include M2M communications, such as environmental sensors, which can detect chemical spills, and gunshot sensors, to improve law enforcement response to crimes.

It is important that we do all we can to accelerate the ability of PSAPs to receive the most advanced multi-media services IP technology can provide. But, as this item explains, we must thoughtfully evaluate the challenges our Nation will face, as our emergency communications services attempt to leverage the advanced features of IP based networks. PSAPs, like all other local government agencies, must carefully manage their budgets, and upgrading to IP networks can impose significant costs. Also complicating the matter, is that there are over 6,800 PSAPs nationwide, and each has varying resources and timetables for improving their operational capability.

The challenges PSAPs face become even more difficult during large scale catastrophes. As the item explains, the August 23, 2011 East Coast earthquake and Hurricane Irene demonstrated, that concentrated demands on the capacity of commercial communications networks, hindered the ability of consumers to make voice calls. It is not realistic to expect all PSAPs to immediately manage the demands, that come with handling the most advanced IP multi-media services, when many PSAPs are having trouble handling voice traffic during large scale disasters.

This NPRM balances the interests of advancing emergency communications by allowing PSAPs to manage their resources for their needs. It begins by charting a development path for three classes of text-capable communications -- Short Message Service (SMS), IP-based messaging, and Real-Time Text (RTT). We should establish the proper policies necessary, to help more PSAPs receive and use text messages, before asking them to take on the expense required to manage the more complex and advanced IP technologies too quickly. It is also reasonable to try to identify short term and long term goals, in developing a national plan, for transitioning PSAPs to NG9-1-1 technologies. The cost model white paper should help the FCC measure the costs and benefits of any approach it considers to promote NG9-1-1 technologies.

I was particularly pleased to see, that the item devotes so much attention, to properly educating consumers about what types of communications PSAPs can receive. For those consumers who prefer to text an emergency message, it is critical that they know if the PSAP they are trying to contact can accept text messages. All stakeholders should take an approach that welcomes the most creative ideas on this issue. I applaud the staffs of the FCC and FEMA, for releasing, yesterday, a consumer tip sheet to inform consumers of the current limitations of PSAPs to receive text messages, and to provide other advice.

When it comes to educating consumers that PSAPs may not be able to receive their emails or texts, it seems to me that commercial service providers, and handset manufacturers, will play particularly important roles. They interact most often with consumers and they have considerable experience with measuring consumer expectation. Also, to the extent that part of the solution involves having service providers and handset manufacturers play a direct role in educating consumers, these entities know the
most cost effective manner, for their companies, to provide education tools. I hope that commercial service providers, will work with the public safety community and consumer advocates, to help us craft the most cost effective campaign possible to educate consumers about the best ways to send emergency communications.

I commend Chairman Genachowski, Admiral Barnett, and the staff of the Public Safety Homeland Security Bureau, for exploring aerial communications platforms, and other innovations, to enhance emergency preparedness. Although we should continue to improve the reliability of legacy and broadband networks, we must also prepare for the reality that, despite best efforts, networks will go out of service. Aerial platforms can provide rapid response solutions to temporarily restore critical communications. The military has successfully used a number of aerial solutions that are deployable within the first 12-18 hours of a disaster. I understand there may be technical and coordination issues when using these various solutions with commercial networks. I hope the relevant stakeholders can help us address these issues and arrive at a workable solution.

The FCC is also showing leadership by holding a technology demonstration to draw attention to the latest innovations for providing emergency communications. Welcome to all those entities who are taking part in the demonstration.