NG9-1-1 Call Processing Metrics Standard

Abstract: The intent of this document is to define normalized NG9-1-1 call processing metrics for computing useful statistics so that independent implementations can derive the same comparable measurements.

NENA NG9-1-1 Call Processing Metrics Standard

NENA-STA-019.1.2018
DSC Approval: 04/10/2018
PRC Approval: 05/21/2018
NENA Executive Board Approval: 05/24/2018
ANSI Approved: 07/02/2018
Next Scheduled Review Date: 05/24/2021

Prepared by:
National Emergency Number Association (NENA), Agency Systems Committee, NG9-1-1 Call Processing Metrics Working Group (WG)

Published by NENA
Printed in USA

© Copyright 2018 National Emergency Number Association, Inc.
1 Executive Overview

The intent of this document is to define normalized NG9-1-1 call processing metrics for computing useful statistics so that independent implementations can derive the same comparable measurements.
Table of Contents

1 EXECUTIVE OVERVIEW .. 2

2 CALL PROCESSING METRICS .. 8
 2.1 INTRODUCTION .. 8
 2.2 CALL RELATED DEFINITIONS ... 8
 2.2.1 Call ... 8
 2.2.2 Answered Call... 9
 2.2.3 Attempted Call.. 9
 2.2.4 Prematurely Disconnected Call .. 9
 2.2.5 Diverted Call .. 10
 2.2.6 Abandoned Call.. 10
 2.2.7 Misrouted Call.. 10
 2.3 CALL-RELATED METRICS .. 11
 2.3.1 Call Network Transit (in an ESInet) .. 11
 2.3.2 Inter-Network Transit .. 11
 2.3.3 Session Duration ... 12
 2.3.4 Successful Session Request Delay (SSRD) ... 12
 2.3.5 Session Disconnect Delay (SDD) ... 13
 2.3.6 Call Answered Delay ... 13
 2.3.7 Session Answered Delay ... 13
 2.3.8 Call Failed Delay ... 14
 2.3.9 Session Failed Delay .. 14
 2.3.10 Call Alerting Delay .. 15
 2.3.11 Session Alerting Delay ... 15
 2.3.12 Time to Invite Third-Party Delay .. 15
 2.3.13 Location Dereference Query Response Delay ... 16
 2.3.14 Location Inter-Notification Delay .. 16
 2.3.15 LoST Dereference Query/Response Delay .. 16
 2.3.16 Hold Time ... 17
 2.3.17 Park Time .. 17
 2.3.18 Call Queued Delay ... 17
 2.3.19 Announcement Duration .. 18
 2.3.20 Total Call Duration .. 18
 2.3.21 Call Media Quality Metrics ... 18
 2.3.22 Route Determination Time ... 19
 2.3.23 Message Session Relay Protocol (MSRP) Automated Response Message Delay 19
 2.3.24 MSRP Response Message Delay ... 20
 2.4 AGENT RELATED METRICS .. 21
 2.4.1 Agent Availability Metric .. 21
 2.4.2 Agent Secondary State Metric ... 21

3 NEW LOGEVENTS VALUES .. 22

4 NENA REGISTRY SYSTEM (NRS) CONSIDERATIONS ... 22
4.1 NEW VALUES FOR LogEvent

4.2 LogEvent AnnouncementTypes

4.2.1 LogEvent Request

4.2.2 Registry Title/Name

4.2.3 Parent Registry

4.2.4 Information Required to Create a New Value

4.2.5 Management Policy

4.2.6 Content

4.2.7 Initial Values

5 DOCUMENTATION REQUIRED FOR THE DEVELOPMENT OF A NENA XML SCHEMA

5.1 Schema Request

5.2 Schema Name

5.2.1 Schema Purpose

5.2.2 Parent Element

5.2.3 Child Elements

5.2.4 WSDL Needed

5.2.5 XML Example(s)

5.2.6 Additional Notes

5.3 Schema Name

5.3.1 Schema Purpose

5.3.2 Parent Element

5.3.3 Child Elements

5.3.4 WSDL Needed

5.3.5 XML Example(s)

5.3.6 Additional Notes

6 IMPACTS, CONSIDERATIONS, ABBREVIATIONS, TERMS, AND DEFINITIONS

6.1 Operations Impacts Summary

6.2 Technical Impacts Summary

6.3 Security Impacts Summary

6.4 Recommendation for Additional Development Work

6.5 Anticipated Timeline

6.6 Cost Factors

6.7 Cost Recovery Considerations

6.8 Additional Impacts (Non-Cost Related)

6.9 Abbreviations, Terms, and Definitions

7 RECOMMENDED READING AND REFERENCES

ACKNOWLEDGEMENTS
NENA
STANDARD DOCUMENT
NOTICE

This Standard Document (STA) is published by the National Emergency Number Association (NENA) as an information source for 9-1-1 System Service Providers, network interface vendors, system vendors, telecommunication service providers, and 9-1-1 Authorities. It is not intended to provide complete design or operation specifications or parameters or to assure the quality of performance for systems that process such equipment or services.

NENA reserves the right to revise this Standard Document for any reason including, but not limited to:

- Conformity with criteria or standards promulgated by various agencies,
- Utilization of advances in the state of the technical arts,
- Reflecting changes in the design of equipment, network interfaces, or services described herein.

This document is an information source for the voluntary use of communication centers. It is not intended to be a complete operational directive.

It is possible that certain advances in technology or changes in governmental regulations will precede these revisions. All NENA documents are subject to change as technology or other influencing factors change. Therefore, this NENA document should not be the only source of information used. NENA recommends that readers contact their 9-1-1 System Service Provider (9-1-1 SSP) representative to ensure compatibility with the 9-1-1 network, and their legal counsel, to ensure compliance with current regulations.

Patents may cover the specifications, techniques, or network interface/system characteristics disclosed herein. No license is granted, whether expressed or implied. This document shall not be construed as a suggestion to any manufacturer to modify or change any of its products, nor does this document represent any commitment by NENA, or any affiliate thereof, to purchase any product, whether or not it provides the described characteristics.

By using this document, the user agrees that NENA will have no liability for any consequential, incidental, special, or punitive damages arising from use of the document.

NENA’s Committees have developed this document. Recommendations for changes to this document may be submitted to:

National Emergency Number Association
1700 Diagonal Rd, Suite 500
Alexandria, VA 22314
202.466.4911
or commleadership@nena.org

07/02/2018
Page 5 of 36

© Copyright 2018 National Emergency Number Association, Inc.
NENA: The 9-1-1 Association improves 9-1-1 through research, standards development, training, education, outreach, and advocacy. Our vision is a public made safer and more secure through universally-available state-of-the-art 9-1-1 systems and better-trained 9-1-1 professionals. Learn more at nena.org.

Document Terminology
This section defines keywords, as they should be interpreted in NENA documents. The form of emphasis (UPPER CASE) shall be consistent and exclusive throughout the document. Any of these words used in lower case and not emphasized do not have special significance beyond normal usage.

1. **MUST, SHALL, REQUIRED:** These terms mean that the definition is a normative (absolute) requirement of the specification.

2. **MUST NOT:** This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.

3. **SHOULD:** This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.

4. **SHOULD NOT:** This phrase, or the phrase "NOT RECOMMENDED" means that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.

5. **MAY:** This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option "must" be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option "must" be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides.)

These definitions are based on IETF RFC 2119.
Intellectual Property Rights (IPR) Policy

NOTE – The user’s attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, NENA takes no position with respect to the validity of any such claim(s) or of any patent rights in connection therewith. If a patent holder has filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license, then details may be obtained from NENA by contacting the Committee Resource Manager identified on NENA’s website at www.nena.org/ipr.

Consistent with the NENA IPR Policy, available at www.nena.org/ipr, NENA invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard.

Please address the information to:

National Emergency Number Association
1700 Diagonal Rd, Suite 500
Alexandria, VA 22314
202.466.4911
or commleadership@nena.org

Reason for Issue/Reissue

NENA reserves the right to modify this document. Upon revision, the reason(s) will be provided in the table below.

<table>
<thead>
<tr>
<th>Document Number</th>
<th>Approval Date</th>
<th>Reason For Issue/Reissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>NENA-STA-019.1-2018</td>
<td>07/02/2018</td>
<td>Initial Document</td>
</tr>
</tbody>
</table>
2 Call Processing Metrics

2.1 Introduction

Call processing metrics are measurements between events in the call processing chain and are used to drive reporting, analysis, and real-time monitoring. This document concentrates on operations and management metrics specific to NG9-1-1, but some are equivalent to SIP session metrics defined in RFC 6076 [2]. Instances where the metrics defined herein overlap with those in RFC 6076 [2] are identified. In addition to the SIP messages used in RFC 6076 [2] to derive metrics, this document identifies related LogEvents [3] to achieve the same. RFC 6076 [2] includes computed metrics such as computed ratios and percentages. Computations involving metrics are out of scope for this document. Accordingly, all computed metrics from RFC 6076 [2] have been explicitly ignored. Any calculation that looks at metrics applied to multiple calls to compute things like mean/average/worst case are beyond the scope of this document but any such computations/reports MUST be based on metrics defined in this document.

2.2 Call Related Definitions

Please note that the following definitions only apply to emergency calls.

2.2.1 Call

2.2.1.1 Definition

A generic term referring to any request for emergency assistance, regardless of the media used to make that request. This term may appear in conjunction with specific media, such as “voice Call”, “video Call”, “text Call”, or “data-only Call” when the specific media is of importance. The term “non-human-initiated Call” refers to an emergency call that is initiated automatically, carries data, does not establish a two-way interactive media session, and typically does not involve a human at the “initiating” end.

2.2.1.2 Determination Using LogEvents

A Call can be identified by the logging of a StartCall LogEvent from the view of the Functional Element (FE) logging the event.

2.2.1.3 Determination Using SIP Messages

The first INVITE the FE receives for a particular NENA Call Tracking Identifier
2.2.2 Answered Call

2.2.2.1 Definition
A Call (excluding non-human-initiated Calls) that has been answered by an Agent and two-way communication has been established, irrespective of whether the call was auto-answered for the Agent or if an auto-greeting message was played. For a non-human-initiated Call, that Call may be accepted by an automaton.

2.2.2.2 Determination Using LogEvents
The logging of a CallStateChange LogEvent containing callAnswered and AgencyAgentId.

2.2.2.3 Determination Using SIP Messages
The reception or transmission of the ACK message of the 200 OK message to the initial call’s INVITE.

2.2.3 Attempted Call

2.2.3.1 Definition
A call presented to a FE (such as Call Handling FE) regardless of whether successful completion status was achieved.

2.2.3.2 Determination Using LogEvents
The logging of the StartCall LogEvent.

2.2.3.3 Determination Using SIP Messages
The reception of an INVITE message.

2.2.4 Prematurely Disconnected Call

2.2.4.1 Definition
An Answered Call that terminated before the parties have finished their conversation.

2.2.4.2 Determination Using LogEvents
Impossible to determine at this time.

2.2.4.3 Determination Using SIP Messages
Impossible to determine.

1 Currently there is no LogEvent or SIP header that carry this information. It is feasible that it can be added in the future.
2.2.5 Diverted Call

2.2.5.1 Definition
A call that was rerouted due to the nominal destination’s unavailability or inability to accept.

2.2.5.2 Determination Using LogEvents
- For the nominal PSAP, diversion notifications are currently not logged.
- For the diverted-to PSAP, the logging of a CallSignalingMessage LogEvent containing the SIP INVITE message where the History-Info header specifies the call has been redirected.

2.2.5.3 Determination Using SIP Messages
- For the nominal PSAP, the reception of either MESSAGE or NOTIFY message which specifies that call has been redirected.
- For the diverted-to PSAP, the reception of a SIP INVITE message where History-Info header specifies call has been redirected.

2.2.6 Abandoned Call

2.2.6.1 Definition
A call placed to 9-1-1 in which the caller disconnects before the call can be answered by the Public Safety Answering Point (PSAP).

2.2.6.2 Determination Using LogEvents
Logging of a CallSignalingMessage LogEvent containing the SIP CANCEL message and/or a CallStateChange LogEvent containing callCancel.

2.2.6.3 Determination Using SIP Messages
The reception of a SIP CANCEL message and/or reception of a SIP NOTIFY message with the AbandonedCall event package.

2.2.7 Misrouted Call

2.2.7.1 Definition
A call routed to a PSAP that should not have received it due to a provisioning error (for example in the ECRF [Emergency Call Routing Function], in the PRF [Policy Routing Function], or the LIS [Location Information Server]) or other misconfigurations.
2.2.7.2 Determination Using LogEvents

The logging of a DiscrepancyReport LogEvent where
<DiscrepancyReportFunctionValuesCode> contains DiscrepancyReportRequest and the
Discrepancy Report specifies the call has been misrouted.

2.2.7.3 Determination Using SIP Messages

Impossible to determine.

2.3 Call-Related Metrics

For a PSAP, call-related metrics are measured when the request hits the Call Handling
Element but for other services (such as the Next Generation Core Services (NGCS)), they
can be measured at another FE (such as a BCF [Border Control Function] or ESRP
[Emergency Service Routing Proxy]) except as otherwise noted.

2.3.1 Call Network Transit (in an ESInet)

2.3.1.1 Definition

The difference in time between a call’s ingress into an ESInet and the time the call is
processed at the egress from the same ESInet.

2.3.1.2 Determination Using LogEvents

The difference in time between the StartCall LogEvent by the ingress FE and the StartCall
LogEvent by the egress FE.

2.3.1.3 Determination Using SIP Messages

The difference in time between the reception of the INVITE or MESSAGE for a call by the
ingress FE and the transmission of the INVITE or MESSAGE transaction for the same call by
the egress FE.

2.3.2 Inter-Network Transit

2.3.2.1 Definition

The difference in time between a call’s ingress into the ESInet and the time the call is
processed at the ingress of the next downstream network.

2.3.2.2 Determination Using LogEvents

The difference in time between the StartCall LogEvent by the ingress FE of one network
and the StartCall LogEvent by the ingress FE of the next downstream network.
2.3.2.3 **Determination Using SIP Messages**

The difference in time between the reception of the INVITE or MESSAGE request by the ingress FE and the reception of the INVITE or MESSAGE transaction for the same call by the ingress FE of the next downstream network.

2.3.3 Session Duration

2.3.3.1 Definition

The difference in time between the start of a session (INVITE) and the end of the same session (BYE or final response error code) for a unique SIP Call ID. For a PSAP, this is measured at the Call Handling FE and, for an NGCS, this would be measured at the ingress BCF.

2.3.3.2 Determination Using LogEvents

The difference in time between StartSession and EndSession LogEvents for a particular session with the same SIP CallId. For a PSAP, this is measured at the Call Handling FE and, for an NGCS, this would be measured at the ingress BCF.

2.3.3.3 Determination Using SIP Messages

The difference in time between INVITE message and the final session message (BYE or error code) for a particular session with the same SIP Call ID. For a PSAP, this is measured at the Call Handling FE and, for an NGCS, this would be measured at the ingress BCF.

2.3.4 Successful Session Request Delay (SSRD)

2.3.4.1 Definition

The difference in time from the session establishment request to the notification that the session is proceeding per RFC 6076 [2]. For example, the difference in time between the INVITE message (request) and the 180 RINGING message (response) associated with the same call.

2.3.4.2 Determination Using LogEvents

The difference in time between the StartSession LogEvent and the CallSignalingMessage LogEvent that contains the non-100 provisional response.
2.3.4.3 Determination Using SIP Messages
The difference in time between the INVITE and a non-100 provisional response message associated with the same session.

2.3.5 Session Disconnect Delay (SDD)

2.3.5.1 Definition
The difference in time between a request to terminate a session and its response received per RFC 6076 [2].

2.3.5.2 Determination Using LogEvents
The difference in time between the EndSession LogEvent and the CallSignalingMessage LogEvent that contains the response.

2.3.5.3 Determination Using SIP Messages
The difference in time between the BYE message and the final response to that BYE.

2.3.6 Call Answered Delay

2.3.6.1 Definition
The difference in time from a Call establishment request to the Call being established. This would include early media if any early media is exchanged.

2.3.6.2 Determination Using LogEvents
The difference in time between StartCall LogEvent and the CallStateChange LogEvent containing callAnswered.

2.3.6.3 Determination Using SIP Messages
The difference in time between the INVITE of the initial session signaling the Call and the 200 OK response of the session answered by an Agent.

2.3.7 Session Answered Delay

2.3.7.1 Definition
The difference in time from a session establishment request to the session being established for a unique SIP Call ID. This would include early media if any early media is exchanged.
2.3.7.2 Determination Using LogEvents
The difference in time between StartSession LogEvent and the SessionStateChange
LogEvent containing callAnswered for the same SIP Call ID.

2.3.7.3 Determination Using SIP Messages
The difference in time between the INVITE and its 200 OK response for the same SIP Call
ID.

2.3.8 Call Failed Delay

2.3.8.1 Definition
The difference in time from the Call establishment request to the issuance of an error
message.

2.3.8.2 Determination Using LogEvents
The difference in time between StartCall LogEvent and the CallSignalingMessage LogEvent
that contains the error.

2.3.8.3 Determination Using SIP Messages
The difference in time between the INVITE or MESSAGE request and the error response
sent, or timeout for the request. Please note that an abandoned call due to CANCEL falls
within this definition as it will fail with a 587 Request Terminated response.

2.3.9 Session Failed Delay

2.3.9.1 Definition
The difference in time from the session establishment request to the issuance of an error
message for a unique SIP Call ID.

2.3.9.2 Determination Using LogEvents
The difference in time between StartSession LogEvent and the CallSignalingMessage
LogEvent that contains the error for the same SIP Call ID.

2.3.9.3 Determination Using SIP Messages
The difference in time between the INVITE or MESSAGE request and the error response
sent, or timeout for the request for the same SIP Call ID. Please note that an abandoned
call due to CANCEL falls within this definition as it will fail with a 587 Request Terminated
response.
2.3.10 Call Alerting Delay

2.3.10.1 Definition
The delay between when the Call enters the alerting state (such as ringing or other notification) on an end-point device and the Call being answered.

2.3.10.2 Determination Using LogEvents
The difference in time between a CallStateChange LogEvent containing callAlerting and a CallStateChange LogEvent containing callAnswered.

2.3.10.3 Determination Using SIP Messages
Because an implementation can answer a session in order to play an announcement, it is therefore impossible to determine when a Call is answered by an Agent using SIP messages.

2.3.11 Session Alerting Delay

2.3.11.1 Definition
The delay between when the Session enters the alerting state (such as ringing or other notification) on an end-point device and the Session being answered for a unique SIP Call ID.

2.3.11.2 Determination Using LogEvents
The difference in time between a SessionStateChange LogEvent containing callAlerting and a SessionStateChange LogEvent containing callAnswered for the same SIP Call ID.

2.3.11.3 Determination Using SIP Messages
The difference in time between a 180 Ringing, 182 Queued or 183 SessionProgress response and a 200 OK for a particular session.

2.3.12 Time to Invite Third-Party Delay

2.3.12.1 Definition
The difference in time between the time a Call is being answered and the time the same Call is offered to another party. This metric is only applicable to FEs which implement the Bridging Function.

2.3.12.2 Determination Using LogEvents
The difference in time between the CallStateChange LogEvent containing callAnswered and the StartCall LogEvent for the call to the third party.
2.3.12.3 Determination Using SIP Messages
The difference in time between the 200 OK response sent to the calling party and the INVITE message sent to the third party to join the session.

2.3.13 Location Dereference Query Response Delay

2.3.13.1 Definition
The difference in time between when a location dereference query is generated and the response is received.

2.3.13.2 Determination Using LogEvents
The difference in time between the LocationQuery and LocationResponse LogEvents.

2.3.13.3 Determination Using SIP Messages
The difference in time between a SIP SUBSCRIBE request and its first NOTIFY response.

2.3.13.4 Determination using i3 HELD Messages
The difference in time between a HELD (HTTP [hyper-text transfer protocol] Enabled Location Delivery) query request and its response.

2.3.14 Location Inter-Notification Delay

2.3.14.1 Definition
The time between two consecutive location update notifications for a specific subscription.

2.3.14.2 Determination Using LogEvents
The difference in time between one LocationResponse LogEvent and the next LocationResponse LogEvent for the same subscription.

2.3.14.3 Determination Using SIP Messages
The difference in time between one SIP NOTIFY and the next SIP NOTIFY message for the same subscription.

2.3.15 LoST Dereference Query/Response Delay

2.3.15.1 Definition
Time between when a LoST (Location to Service Translation) query is generated and the response is received.
2.3.15.2 Determination Using LogEvents
255 The difference in time between the LoSTQuery LogEvent and its applicable LoSTResponse LogEvent.

2.3.15.3 Determination Using LoST Messages
259 The difference in time between the LoST query message and its applicable LoST response message.

2.3.16 Hold Time
261
2.3.16.1 Definition
263 The time between when a Call is placed on hold and when that Call changes state.

2.3.16.2 Determination Using LogEvents
265 The difference in time between the holdCall CallStateChange LogEvent and the subsequent CallStateChange LogEvent.

2.3.16.3 Determination Using SIP Messages
267 Due to the different possibilities as to how the hold functionality can be implemented (e.g., transfer to a Music-on-Hold media server, one-way mute at the position, etc.), determining Hold Time using SIP messages is left undefined.

2.3.17 Park Time
271
2.3.17.1 Definition
273 The time between when a Call is placed in a parked state and when that Call changes state.

2.3.17.2 Determination Using LogEvents
276 The difference in time between the parkCall CallStateChange LogEvent and the subsequent CallStateChange LogEvent.

2.3.17.3 Determination Using SIP Messages
279 Due to the different possibilities as to how the park functionality can be implemented, determining Park Delay using SIP messages is left undefined.

2.3.18 Call Queued Delay
281
2.3.18.1 Definition
283 The time between when a Call is placed in a queue waiting to be offered to an agent and when that Call changes state.
2.3.18.2 Determination Using LogEvents
The difference in time between the CallQueued CallStateChange LogEvent and the subsequent CallStateChange LogEvent.

2.3.18.3 Determination Using SIP Messages
Due to the different possibilities as to how the queue functionality can be implemented, determining Call Queued Delay using SIP messages is left undefined.

2.3.19 Announcement Duration
2.3.19.1 Definition
The time between the beginning and the end of an announcement.

2.3.19.2 Determination Using LogEvents
The difference in time between the StartAnnouncement LogEvent and the EndAnnouncement LogEvent.

2.3.19.3 Determination Using SIP Messages
Due to the different possibilities in announcements that can be implemented, determining Announcement Duration using SIP messages is left undefined.

2.3.20 Total Call Duration
2.3.20.1 Definition
The time between the beginning and the end of a Call for a particular NENA Call ID (urn:nena:uid:callid:).

2.3.20.2 Determination Using LogEvents
The difference in time between the StartCall LogEvent and the associated EndCall LogEvent for a particular NENA Call ID.

2.3.20.3 Determination Using SIP Messages
The difference in time between the INVITE message and the final disposition message (BYE or final response error code) for a particular NENA Call ID.

2.3.21 Call Media Quality Metrics
Reports on several quality metrics of the media for a Call.

2.3.21.1 Definition
Contains the media quality statistics reported in the EndMedia LogEvent. It includes, among other items, the jitter, delay, and packet loss statistics for the Call.
2.3.21.2 Determination Using LogEvents
Statistics reported in the MediaQualityStats element of the EndMedia LogEvent.

2.3.21.3 Determination Using SIP Messages
Statistics in sender and receiver reports that come with a Real Time Control Protocol (RTCP) BYE message (as defined in RFC 3550[4], Section 6) at the end of a media exchange.

2.3.22 Route Determination Time

2.3.22.1 Definition
The time between when the Call entered the ESRP and when the route is determined for that Call.

2.3.22.2 Determination Using LogEvents
The difference in time between the StartCall or CallProcess LogEvent and the Route LogEvent.

2.3.22.3 Determination Using SIP Messages
The difference in time between when the INVITE is received by the ESRP and when the INVITE is transmitted to the next hop downstream.

2.3.23 Message Session Relay Protocol (MSRP) Automated Response Message Delay

2.3.23.1 Definition
The time between the reception of a session initiation message from the caller and the reception of an automated response message from the PSAP.

2.3.23.2 Determination Using LogEvents
Not applicable. MSRP messages are not logged explicitly (they are captured as media by the Logging Service).

2.3.23.3 Determination Using SIP/MSRP Messages
The difference in time between the INVITE message of a MSRP session requested by the caller and the first automated MSRP SEND from the PSAP.
2.3.24 MSRP Response Message Delay

2.3.24.1 Definition
The time between the reception of a MSRP message from the caller and the response message from the agent.

2.3.24.2 Determination Using LogEvents
Not applicable. MSRP messages are not logged explicitly (they are captured as media by the Logging Service).

2.3.24.3 Determination Using SIP/MSRP Messages
The difference in time between the first MSRP SEND message from the caller (either after a session has been established or after a MSRP SEND message from the agent) and the first subsequent MSRP SEND message from the agent. For example, in the following SIP/MSRP call, MSRP Response Message Delay is the difference in time between messages (4) and (6), (8) and (12) and (16) and (18).

<table>
<thead>
<tr>
<th>Caller</th>
<th>Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>[(1) (SIP) INVITE]</td>
<td>[(2) (SIP) 200 OK]</td>
</tr>
<tr>
<td>------------------------></td>
<td></td>
</tr>
<tr>
<td>[(3) (SIP) ACK]</td>
<td></td>
</tr>
<tr>
<td>------------------------></td>
<td></td>
</tr>
<tr>
<td>[(4) (MSRP) SEND]</td>
<td>[(5) (MSRP) 200 OK]</td>
</tr>
<tr>
<td>------------------------></td>
<td></td>
</tr>
<tr>
<td>[(6) (MSRP) SEND]</td>
<td>[(7) (MSRP) 200 OK]</td>
</tr>
<tr>
<td><------------------------</td>
<td></td>
</tr>
<tr>
<td>[(8) (MSRP) SEND]</td>
<td>[(9) (MSRP) 200 OK]</td>
</tr>
<tr>
<td><------------------------</td>
<td></td>
</tr>
<tr>
<td>[(10) (MSRP) SEND]</td>
<td>[(11) (MSRP) 200 OK]</td>
</tr>
<tr>
<td><------------------------</td>
<td></td>
</tr>
<tr>
<td>[(12) (MSRP) SEND]</td>
<td>[(13) (MSRP) 200 OK]</td>
</tr>
<tr>
<td><------------------------</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Agent Related Metrics

In this section determinations only pertain to difference in time between AgentStateChange LogEvents.

2.4.1 Agent Availability Metric

2.4.1.1 Definition

Measured as the time an agent enters a primary agent state (Available or Not Available) until the time the agent transitions to another primary agent state.

2.4.1.2 Determination Using LogEvents

Difference in elapsed time between entering a PrimaryAgentStateValuesCode and the time of transition to the next PrimaryAgentStateValuesCode value.

2.4.2 Agent Secondary State Metric

2.4.2.1 Definition

Measured as the time an agent enters a secondary agent state (e.g., LoggedOut, Break, Waiting, Active, Hold, Reserved) until the time the agent transitions to another secondary agent state.
2.4.2.2 Determination Using LogEvents

Difference in elapsed time between entering a SecondaryAgentState and the time of transition to the next SecondaryAgentState value.

3 New LogEvents Values

This document creates five new LogEvents entries in the LogEvent Registry.

- **StartAnnouncement** and **EndAnnouncement**: used by an element to log the beginning and the end of the playing of an (multimedia) announcement to the caller, such as an automatic answer greeting or an interactive media response announcement. The type of announcement is included in a `<AnnouncementType>` tag. The CallIdURN, IncidentIdURN, and sipCallId in the header are those of the emergency call over which the announcement is played. An optional, locally defined `<AnnouncementTag>` identifies the specific announcement played, for example, the name of the VoiceXML announcement script. This document creates a registry for Announcement Types in Section 4.2.

- **StartSession/EndSession**: Each element that is call stateful logs the beginning and end of its processing of a SIP Session with Start Session and End Session events. This allows differentiation between the start and end of a Call versus the start and end of a session that establishes a Call. For StartSession and EndSession, the Timestamp MUST be the time of the INVITE, BYE, or the final error code received or sent by the element logging the event. A `<CallDirectionValuesCode>` tag has one of two values, “incoming” and “outgoing”, where “incoming” means a session was received and “outgoing” means a session placed by the element.

- **SessionStateChange**: Used by an element to log a state change, such as logging an “answered” event by a device. The new state is included in a `<SessionStateText>` tag, values from this field MUST be from the CallStates Registry. The CallIdURN, IncidentIdURN, and sipCallId in the header are from the session whose state has changed. A `<DirectionValuesCode>` tag has one of two values: “incoming”, meaning the element logging the state change received a message or other notice that changed the state; and “outgoing”, meaning this element caused the state change. An optional `<SessionStateChangeReason>` tag contains the reason why the state changed. The content of this tag is not standardized at this time.

4 NENA Registry System (NRS) Considerations

Whenever a standard has a list of items, especially where the list is used in an XML data structure, and the list is expected to change over time, the list should be maintained in a “Registry”. A registry is, at heart, just a table of data, with rows and columns. The Registry is established by a standard, which defines the columns and what they are used for. Each entry in the registry is a row, and has values for the columns specified. The standard that
creates the registry usually defines the initial values (row and column content). It also
specifies how a new value is added: we call that a “Management Policy”.

Registries can be hierarchical (Registry contains sub-registries, nested as needed) if you
have a group of registries that are related.

Registries are maintained by the NENA Registry System (NRS), which operates according to
NENA-STA-008.2 (formerly 70-001). The existing registries, with all of the content of the
registry, are available in stable locations in the NENA website. Registries are stored as XML
objects, although through custom style sheets, the registry content is human-readable. The
intent of storing the registries at stable URLs, in XML form, is that implementers of
standards that use registries can automatically include current values in their
implementations. NRS will only modify registries according to the management policy
specified for that registry.
4.1 New Values for LogEvent

Add **StartAnnouncement** and **EndAnnouncement** to the **LogEvent** registry, source as `<this document>`:

<table>
<thead>
<tr>
<th>Value</th>
<th>Purpose</th>
<th>Reference</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>StartAnnouncement</td>
<td>Used by an element to log the beginning of the playing of a (multimedia) announcement to the caller, such as an automatic answer greeting or an interactive media response announcement.</td>
<td><code><This document></code></td>
<td>MM/DD/YYYY</td>
</tr>
<tr>
<td>EndAnnouncement</td>
<td>Used by an element to log the end of the playing of a (multimedia) announcement to the caller, such as an automatic answer greeting or an interactive media response announcement.</td>
<td><code><This document></code></td>
<td>MM/DD/YYYY</td>
</tr>
</tbody>
</table>

4.2 LogEvent AnnouncementTypes

4.2.1 LogEvent Request

NRS is requested to create a new registry, LogEvent AnnouncementTypes. Announcement types used within the StartAnnouncement and EndAnnouncement LogEvents in the `<AnnouncementType>` field are listed in the “LogEvent AnnouncementTypes” Registry.

4.2.2 Registry Title/Name

The name of this registry is the “`LogEventAnnouncementTypes`”.

© Copyright 2018 National Emergency Number Association, Inc.
4.2.3 Parent Registry

None.

4.2.4 Information Required to Create a New Value

A new entry to “LogEventAnnouncementTypes” requires a name and a definition of the announcement type, and must be suitably explicit to differentiate the type from existing types.

4.2.5 Management Policy

Addition of a new entry requires “Expert Review”. The expert shall consider how the new type is differentiated from existing types. Too many types result in differences among implementers as to which type is to be used. Too few result in ambiguity about the actual type. The expert shall attempt to balance these forces with a bias towards simplicity.

4.2.6 Content

Each entry in this registry contains:

- The UTF-8 “name” of the entry
- A short description of the entry

4.2.7 Initial Values

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoAnswerGreeting</td>
<td>Indicates an announcement played automatically after a call is answered by an agent. Typically recorded with the agent’s voice, this type of recorded greeting is used to standardize the answering of calls.</td>
</tr>
<tr>
<td>NoAgentsAvailableAnnouncement</td>
<td>Indicates an announcement indicating no agents are currently available to take the call and the call will be answered by the next available agent.</td>
</tr>
<tr>
<td>StandardAnnouncement</td>
<td>Indicates an announcement played to all calls regardless of the availability of agents to take the call.</td>
</tr>
</tbody>
</table>

5 Documentation Required for the Development of a NENA XML Schema

5.1 Schema Request

Add two new entries in the `<EventValuesCodeSimpleType>`:

- StartAnnouncement
• EndAnnouncement

5.2 Schema Name
The name of this Schema is StartAnnouncement.

5.2.1 Schema Purpose
Used by an element to log the beginning of the playing of an (multimedia) announcement to the caller, such as an automatic answer greeting or an interactive media response announcement. When LogEventType is StartAnnouncement, then this element must be provided.

5.2.2 Parent Element
LogEvent

5.2.3 Child Elements

<table>
<thead>
<tr>
<th>ELEMENT DESCRIPTION</th>
<th>OCCURS</th>
<th>DATA TYPE</th>
<th>DATA DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnnouncementType</td>
<td>1</td>
<td>AN</td>
<td>Must be one of the entries found in the LogEvent AnnouncementTypes registry</td>
</tr>
<tr>
<td>AnnouncementTag</td>
<td>0 or 1</td>
<td>AN</td>
<td>Optional locally defined description of announcement</td>
</tr>
</tbody>
</table>

5.2.4 WSDL Needed
No

5.2.5 XML Example(s)

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSpy v2014 rel. 2 sp1 (http://www.altova.com)-->
  <nena-lgt:LogEventTimestamp>2001-12-17T09:30:47Z</nena-lgt:LogEventTimestamp>
  <nena-lgt:AgencyId>psap.com</nena-lgt:AgencyId>
  <nena-lgt:ElementId>CallHandlingFe.psap.com</nena-lgt:ElementId>
  <nena-lgt:AgencyAgentId>Jane.Doe@psap.com</nena-lgt:AgencyAgentId>
  <nena-lgt:AgencyPositionId>String</nena-lgt:AgencyPositionId>
  <nena-lgt:CallIdURN>http://www.altova.com/</nena-lgt:CallIdURN>
  <nena-lgt:IncidentIdURN>http://www.altova.com/</nena-lgt:IncidentIdURN>
</nena-lex:LogEventMessageRequest>
```
5.2.6 Additional Notes

- None

5.3 Schema Name

The name of this Schema is **EndAnnouncement**.

5.3.1 Schema Purpose

Used by an element to log the end of the playing of a (multimedia) announcement to the caller, such as an automatic answer greeting or an interactive media response announcement. When LogEventType is EndAnnouncement, then this element must be provided.

5.3.2 Parent Element

LogEvent

5.3.3 Child Elements

<table>
<thead>
<tr>
<th>ELEMENT DESCRIPTION</th>
<th>OCCURS</th>
<th>DATA TYPE</th>
<th>DATA DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnnouncementType</td>
<td>1</td>
<td>AN</td>
<td>Must be one of the entries found in the LogEvent AnnouncementTypes registry</td>
</tr>
<tr>
<td>AnnouncementTag</td>
<td>0 or 1</td>
<td>AN</td>
<td>Optional locally defined description of announcement</td>
</tr>
</tbody>
</table>

5.3.4 WSDL Needed

No

5.3.5 XML Example(s)

```xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- Sample XML file generated by XMLSpy v2014 rel. 2 sp1 (http://www.altova.com) -->
```
5.3.6 Additional Notes

- None

6 Impacts, Considerations, Abbreviations, Terms, and Definitions

6.1 Operations Impacts Summary

Agencies may use this standard as a reference in preparation of procurement documents for a NG9-1-1 system and in reviewing agencies’ current systems or current policies to see if they conform. This standard may change how statistics are collected and reported. Reporting systems for NG9-1-1 may require operations personnel to identify differences between their current measurement systems and the metrics contained in this standard.

6.2 Technical Impacts Summary

System designs and/or measurements may change based on the adoption of the metrics defined in this standard. The metrics defined in this document are based on NG9-1-1 events and are therefore applicable to NG9-1-1 deployments only.

6.3 Security Impacts Summary

There are no known security impacts from implementing this standard.

6.4 Recommendation for Additional Development Work

Metrics for incident processing and agent state transitions will need to be developed.
6.5 Anticipated Timeline
This document provides specifications for systems that need to generate statistics. This document is not implementable on its own but is expected to be used immediately upon publication and on an ongoing basis for NG9-1-1.

6.6 Cost Factors
Some costs to the vendors for implementing the metrics in this document are expected. While implementations typically carry a cost, specific costs cannot be determined.

6.7 Cost Recovery Considerations
Not applicable.

6.8 Additional Impacts (non-cost related)
Having standardized statistics will improve the ability to make comparisons between systems and agencies in the processing of 9-1-1 calls. Definition of standardized call processing metrics will influence 9-1-1 Management Information Systems (MIS) to fully utilize all available call processing metrics. This document does not specify performance metrics and is not intended to replace documents that do specify performance metrics such as NFPA 1221 [5] or NENA STA-010 [1].

6.9 Abbreviations, Terms, and Definitions
See NENA-ADM-000, NENA Master Glossary of 9-1-1 Terminology, located on the NENA web site for a complete listing of terms used in NENA documents. All abbreviations used in this document are listed below, along with any new or updated terms and definitions.

<table>
<thead>
<tr>
<th>Term or Abbreviation (Expansion)</th>
<th>Definition / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Call</td>
<td>An emergency Call in which the caller disconnects before the Call can be answered by the Public Safety Answering Point (PSAP).</td>
</tr>
<tr>
<td>Answered Call</td>
<td>A Call (excluding non-human-initiated Calls) that has been answered by an Agent and two-way communication has been established, irrespective of whether the Call was auto-answered for the Agent or if an auto-greeting message was played. For a non-human-initiated Call, that Call may be accepted by an automaton.</td>
</tr>
<tr>
<td>Term or Abbreviation (Expansion)</td>
<td>Definition / Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Attempted Call</td>
<td>A Call presented to a FE (such as a Call Handling FE) regardless of whether successful completion status was achieved.</td>
</tr>
<tr>
<td>BCF (Border Control Function)</td>
<td>Provides a secure entry into the ESInet for emergency calls presented to the network. The BCF incorporates firewall, admission control, and may include anchoring of session and media as well as other security mechanisms to prevent deliberate or malicious attacks on PSAPs or other entities connected to the ESInet.</td>
</tr>
<tr>
<td>Call</td>
<td>A generic term referring to any request for emergency assistance, regardless of the media used to make that request. This term may appear in conjunction with specific media, such as “voice Call”, “video Call”, “text Call”, or “data-only Call” when the specific media is of importance. The term “non-human-initiated Call” refers to an emergency Call that is initiated automatically, carries data, does not establish a two-way interactive media session, and typically does not involve a human at the “initiating” end.</td>
</tr>
<tr>
<td>Diverted Call</td>
<td>A Call that was rerouted due to the nominal destination’s unavailability or inability to accept. Calls may be diverted for conditions that are scheduled (e.g., maintenance, hours the PSAP is not staffed, etc.), or for events that cannot be scheduled (e.g., equipment or network failure, disasters, etc.)</td>
</tr>
<tr>
<td>Term or Abbreviation (Expansion)</td>
<td>Definition / Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| **ECRF (Emergency Call Routing Function)** | A functional element in an NGCS which is a LoST protocol server where location information (either civic address or geo-coordinates) and a Service URN serve as input to a mapping function that returns a URI used to route an emergency call toward the appropriate PSAP for the caller’s location or towards a responder agency.
- External ECRF: An ECRF instance that resides outside of an NGCS instance.
- Internal ECRF: An ECRF instance that resides within and is only accessible from an NGCS instance. |
<p>| ESInet (Emergency Services IP Network) | An ESInet is a managed IP network that is used for emergency services communications, and which can be shared by all public safety agencies. It provides the IP transport infrastructure upon which independent application platforms and core services can be deployed, including, but not restricted to, those necessary for providing NG9-1-1 services. ESInets may be constructed from a mix of dedicated and shared facilities. ESInets may be interconnected at local, regional, state, federal, national, and international levels to form an IP-based internetwork (network of networks). The term ESInet designates the network, not the services that ride on the network. See NG9-1-1 Core Services. |
| ESRP (Emergency Service Routing Proxy) | An i3 functional element which is a SIP proxy server that selects the next-hop routing within the ESInet, based on location and policy. There is an ESRP on the edge of the ESInet. There is usually an ESRP at the entrance to an NG9-1-1 PSAP. There may be one or more intermediate ESRPs between them. |</p>
<table>
<thead>
<tr>
<th>Term or Abbreviation (Expansion)</th>
<th>Definition / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE (Functional Element)</td>
<td>An abstract building block that consists of a set of interfaces and operations on those interfaces to accomplish a task. Mapping between functional elements and physical implementations may be one-to-one, one-to-many, or many-to-one.</td>
</tr>
<tr>
<td>HELD (HTTP Enabled Location Delivery)</td>
<td>A protocol that can be used to acquire Location Information (LI) from a LIS within an access network as defined in IETF RFC 5985.</td>
</tr>
<tr>
<td>IETF (Internet Engineering Task Force)</td>
<td>Lead standard-setting authority for Internet protocols.</td>
</tr>
<tr>
<td>Location-to-Service Translation (LoST) Protocol</td>
<td>A protocol that takes location information and a Service URN and returns a URI. Used generally for location-based call routing. In NG9-1-1, used as the protocol for the ECRF and LVF.</td>
</tr>
<tr>
<td>LIS (Location Information Server)</td>
<td>A Location Information Server (LIS) is a functional element in an IP-capable originating network that provides locations of endpoints (i.e., calling device). A LIS can provide Location-by-Reference, or Location-by-Value, and, if the latter, in geo or civic forms. A LIS can be queried by an endpoint for its own location, or by another entity for the location of an endpoint. In either case, the LIS receives a unique identifier that represents the endpoint, for example an IP address, circuit-ID or Media Access Control (MAC) address, and returns the location (value or reference) associated with that identifier. The LIS is also the entity that provides the dereferencing service, exchanging a location reference for a location value.</td>
</tr>
<tr>
<td>LogEvent</td>
<td>An XML document structure defined in NENA STA-010 that is used to convey Call processing and Incident processing event information to the Logging Service.</td>
</tr>
<tr>
<td>Misrouted Call</td>
<td>A Call routed to a PSAP that should not have received it due to a provisioning error (for example in the ECRF, in the PRF, or the LIS) or other misconfigurations.</td>
</tr>
<tr>
<td>Term or Abbreviation (Expansion)</td>
<td>Definition / Description</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>NG9-1-1 Call Processing</td>
<td>The sequence of steps performed by operations personnel and NG9-1-1 systems in the handling of a NG9-1-1 Call.</td>
</tr>
<tr>
<td>NGCS (Next Generation 9-1-1 (NG9-1-1) Core Services)</td>
<td>The base set of services needed to process a 9-1-1 call on an ESInet. Includes the ESRP, ECRF, LVF, BCF, Bridge, Policy Store, Logging Services, and typical IP services, such as DNS and DHCP. The term NG9-1-1 Core Services includes the services and not the network on which they operate. See Emergency Services IP Network.</td>
</tr>
<tr>
<td>Prematurely Disconnected Call</td>
<td>An Answered Call that terminated before the parties have finished their conversation.</td>
</tr>
<tr>
<td>Public Safety Answering Point (PSAP)</td>
<td>An entity responsible for receiving 9-1-1 calls and processing those calls according to a specific operational policy.</td>
</tr>
<tr>
<td>Session Initiation Protocol (SIP)</td>
<td>An IETF-defined protocol (RFC 3261) that defines a method for establishing multimedia sessions over the Internet. Used as the call signaling protocol in VoIP, i2 and, i3.</td>
</tr>
<tr>
<td>WSDL (Web Service Description Language)</td>
<td>The Web Services Description Language (WSDL) is an XML-based language used to describe the services a business offers and to provide a way for individuals and other businesses to access those services electronically. WSDL is the cornerstone of the Universal Description, Discovery, and Integration (UDDI) initiative spearheaded by Microsoft, IBM, and ARIBA. UDDI is an XML-based registry for businesses worldwide, which enables businesses to list themselves and their services on the Internet. WSDL is the language used to do this. WSDL is derived from Microsoft’s Simple Object Access Protocol (SOAP) and IBM’s Network Accessible Service Specification Language (NASSL). WSDL replaces both NASSL and SOAP as the means of expressing business services in the UDDI registry. An XML-based interface definition language that is used for describing the functionality offered by a web service.</td>
</tr>
</tbody>
</table>
7 Recommended Reading and References

1. NENA Detailed Functional and Interface Standards for the NENA i3 Solution, National Emergency Number Association, NENA-STA-010 (originally 08-003).

3. NENA Detailed Functional and Interface Standards for the NENA i3 Solution, National Emergency Number Association, NENA-STA-010 (originally 08-003), Section 5.13.3.2, LogEvent Event Types.

6. NENA Master Glossary of 911 Terminology, NENA-ADM-000
ACKNOWLEDGEMENTS

The National Emergency Number Association (NENA) Agency Systems Committee, Call Processing Metrics Working Group developed this document.

NENA recognizes the following industry experts and their employers for their contributions in development of this document.

Executive Board Approval Date: 05/24/2018

<table>
<thead>
<tr>
<th>Members</th>
<th>Employer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rick Blackwell, ENP, Agency Systems Committee Co-Chair</td>
<td>Greenville County Office of E9-1-1, SC</td>
</tr>
<tr>
<td>Michael Smith, Agency Systems Committee Co-Chair</td>
<td>Equature/DSS Corp</td>
</tr>
<tr>
<td>Dan Mongrain, Working Group Co-Chair</td>
<td>Motorola Solutions, Inc.</td>
</tr>
<tr>
<td>Jerry Schlesinger, Past Working Group Co-Chair</td>
<td>Intelligent Systems, Inc.</td>
</tr>
<tr>
<td>Steve McMurrer, ENP, Technical Editor</td>
<td>Fairfax County, VA</td>
</tr>
<tr>
<td>Mark Brown</td>
<td>North Central Texas Council of Governments</td>
</tr>
<tr>
<td>Guy Caron, ENP</td>
<td>Bell Canada</td>
</tr>
<tr>
<td>Jenna DiPlacido</td>
<td>Broward County Office of Regional Communications and Technology, FL</td>
</tr>
<tr>
<td>Lisa Dodson, ENP</td>
<td>TriTech Software Systems</td>
</tr>
<tr>
<td>Christopher Duxler</td>
<td>ECaTS</td>
</tr>
<tr>
<td>Jordan Elliston</td>
<td>ECaTS</td>
</tr>
<tr>
<td>Bob Finney III, ENP</td>
<td>Collier County Sheriff’s Office, FL</td>
</tr>
<tr>
<td>David Hopkins, ENP</td>
<td>Steuben County, NY</td>
</tr>
<tr>
<td>Mary Kozak</td>
<td>El Paso County, TX</td>
</tr>
<tr>
<td>Christian Militeau, ENP</td>
<td>West Safety Services</td>
</tr>
<tr>
<td>Matt Schreiner</td>
<td>Motorola Solutions, Inc.</td>
</tr>
<tr>
<td>Stephen Verbil</td>
<td>Connecticut Department of Emergency Services and Public Protection</td>
</tr>
<tr>
<td>Lisa Wirtanen</td>
<td>AT&T</td>
</tr>
</tbody>
</table>
Special Acknowledgements:

Delaine Arnold, ENP, Committee Resource Manager, has facilitated the production of this document through the prescribed approval process.

The Agency Systems Committee is part of the NENA Development Group that is led by:

- Pete Eggimann, ENP and Jim Shepard, ENP, Development Steering Council Co-Chairs
- Roger Hixson, ENP, Technical Issues Director
- Chris Carver ENP, PSAP Operations Director