DEVELOPMENT & BENCHMARKING OF WHOLE BUILDING HYGROTHERMAL MODEL

F. Tariku, K. Kumaran & P. Fazio

April 12th, 2010
OUTLINE

- Background
- Objective
- Development of Whole-Building Hygrothermal model (HAMFitPlus)
- Benchmarking
- Conclusion
FUNCTION OF A BUILDING

- Isolated space
- Indoor environment
ASSESSMENT TOOLS

- Performance of building envelope components
- Indoor humidity conditions
- Energy efficiency
DURABILITY ASSESSMENT

- LWR
- Sheathing Board
- Sheathing membrane
- Air space
- Cladding
- Dry wall
- Vapor Barrier
- Insulation

Outdoor
T
RH
Wind

Indoor
T
RH
DURABILITY MODEL

- Indoor boundary condition
 - Constant or seasonal variable
 - Variable: heat and mass balance in the room
INDOOR HUMIDITY ASSESEMENT

- Indoor humidity
 - Moisture generation
 - Ventilation

- Limitations:
 - Moisture buffering effects
 - 1/3 moisture absorption (El Diasty et al. 1993)
 - Construction moisture source (Christian 1994)
ENERGY PERFORMANCE ASSESSMENT

- Indoor Temperature & Energy demand

- Limitations: Moisture effect in energy calculation

- Construction
 - Thermal properties (ASHRAE 2005, Mendes et al. 2003)
 - Phase change

- Indoor
 - Latent heat load (Isetti et al. 1988)
OBJECTIVE

- Develop a model to alleviate the shortcomings of the stand-alone models

- Assess building performance in an integrated manner
 - Durability of building envelope
 - Indoor air condition and comfort
 - Energy efficiency
WHOLE BUILDING HYGROTHERMAL MODEL
APPROACH

- Develop
- Validate
- Integrate
- Validate

Climate
- Temperature
- Relative humidity
- Wind
- Solar radiation
- Precipitation
- Cloud cover

Material Properties
- Density
- Sorption isotherm
- Vapor permeability
- Liquid diffusivity
- Thermal conductivity
- Heat capacity
- Air permeability

Building Envelope Model
- Mass Energy Momentum Balance

Indoor Model
- Mass Energy Balance

HVAC system
- Heating
- Cooling
- Ventilation
- Humidification
- Dehumidification

Heat and Moisture gains
- Human Activities
 - Solar gain
 - Evaporation
 - Condensation
 - Moisture buffering

Climate
- Relative humidity
- Wind
- Solar radiation
- Precipitation
- Temperature

Background
Objective
WBHGM
Development
Benchmarking
Conclusion

11
Moisture Balance:

$$\Theta \frac{\partial \phi}{\partial t} = \text{div} \left(D_\phi \text{div} \phi + D_T \text{div} T \right) - \text{div} \rho_a V C_c \tilde{P} \phi$$

Energy Balance

$$\rho_m C_{p_{eff}} \frac{\partial T}{\partial t} + \rho_a V C_{p_a} + \omega C_{p_v} \text{div} T + \text{div} -\lambda_{eff} \nabla T = \dot{Q}_p$$

Darcy equation:

$$-\text{div} \delta_a \text{div} P = 0$$
INDOOR MODEL

- **Humidity balance:**

\[\rho_a \tilde{V} \frac{d \omega}{dt} = \dot{Q}_b^m + \dot{Q}_v^m + \dot{Q}_m^m + \dot{Q}_e^m + \dot{Q}_c^m + \dot{Q}_o^m \]

- **Energy balance:**

\[\rho_a \tilde{V} \frac{d h}{dt} = \dot{Q}_b^h + \dot{Q}_v^h + \dot{Q}_m^h + \dot{Q}_e^h + \dot{Q}_f^h + \dot{Q}_o^h \]
WBHG MODEL (HAMFitPlus)

- **Zone Enclosure**
- **Windows**
- **Internal Heat & Moisture source/sink--Lumped system**
- **Internal Heat & Moisture source/sink--Bulk system**

Mechanical Systems & Heat and Moisture Gains

- 8 inputs
- 24 inputs
- 2 inputs
- 2 inputs
- num of Furn x 2 inputs
- 36 plus inputs

INDOOR AIR MODEL

- 1/z

Background

Objective

WBHGM Development

Model

BuildingEnv. Model

Indoor Model

WBHG Model

Benchmarking

Conclusion
HVAC & HEAT and MOISTURE GAINS
HAMFitPlus OUTPUTS

- Building envelope
 - Moisture content
 - Temperature
- Indoor environment
 - Indoor air temperature
 - Indoor air relative humidity
- Energy
 - Heating, cooling and latent loads
 - Heat loss: Ventilation, construction
IEA/ANNEX 41 (2008)
TEST CASE (CMEX 1)

- Density (kg/m3): 650
- Conductivity (W/mK): 0.18
- Heat Capacity (J/kgK): 840
- Water vapour permeability (kg/m.s.Pa): Function of RH
- Sorption curve (kg/m3): Function of RH

U = 3.0 W/(K.m2)

150 mm Aerated concrete
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>129.6 m³</td>
</tr>
<tr>
<td>Ventilation rate</td>
<td>0.5 ACH</td>
</tr>
<tr>
<td>Heating/Cooling System</td>
<td>100%</td>
</tr>
<tr>
<td>(Infinite capacity)</td>
<td>Convection</td>
</tr>
<tr>
<td>Indoor temperature</td>
<td>20-27°C</td>
</tr>
<tr>
<td>(Thermostat Controlled)</td>
<td></td>
</tr>
<tr>
<td>External boundary condition</td>
<td>Copenhagen Weather</td>
</tr>
<tr>
<td>Solar and long wave radiation</td>
<td>Considered</td>
</tr>
<tr>
<td>Initial condition: Cons. & Indoor air</td>
<td>20°C & 80 %</td>
</tr>
</tbody>
</table>
RESULTS

INDOOR CONDITIONS
(July 5th)

Indoor Temperature

Indoor Relative humidity
RESULTS (Cont’d)

BUILDING ENVELOPE (July 5th)

Roof surface Temperature

Roof surface Relative humidity

All other models

HAMFitPlus

BM #1

BM #2

Conclusion

Background

Objective

WBHGM Development

Benchmarking
RESULTS (Cont’d)

ENERGY DEMAND
(July 5th)

Heating load
<table>
<thead>
<tr>
<th>Hours</th>
<th>Heating load (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.20</td>
</tr>
<tr>
<td>12</td>
<td>0.40</td>
</tr>
<tr>
<td>18</td>
<td>0.60</td>
</tr>
<tr>
<td>24</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Cooling load
<table>
<thead>
<tr>
<th>Hours</th>
<th>Cooling load (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-8.00</td>
</tr>
<tr>
<td>6</td>
<td>-7.00</td>
</tr>
<tr>
<td>12</td>
<td>-6.00</td>
</tr>
<tr>
<td>18</td>
<td>-5.00</td>
</tr>
<tr>
<td>24</td>
<td>-4.00</td>
</tr>
</tbody>
</table>
Field experiment (Holm and Lengsfeld, 2007)

Two rooms with identical geometry, orientation, BC
- Volume: 48.49 m³
- Floor area: 19.34 m²
- Indoor temperature: 20±0.2°C
- Reference and Test rooms

Differences
- Interior layer
 - Reference room—latex paint (walls & ceiling)
 - Test room—unpainted gypsum walls & alum. foil ceiling
- Ventilation
 - Reference room—0.63 ACH
 - Test room—0.68 ACH
MOISTURE GAIN (2.4 kg/day)

- Diurnal moisture production rate (g/hr)
- Hours of a day
BENCHMARKING #2
RESULTS

Reference Room
Indoor Relative Humidity

Test Room
Indoor Relative Humidity

Reference Room
Indoor Relative Humidity on Feb 17th

Test Room
Indoor Relative Humidity on Feb 17th
CONCLUSIONS

- HAMFitPlus model are developed & benchmarked
- Indoor boundary conditions for durability assessment
- Moisture buffering effects in indoor humidity predictions
- Effect of moisture in energy demand calculation, and equipment size
- Optimized building performance by integrated analysis of durability, indoor air and energy consumption
THANK YOU
FOR
YOUR ATTENTION!