WB7-3 Observations Regarding Window Testing and Failures

Roger G. Morse
Morse Zehnter Associates
Rensselaer Technology Park
165 Jordan Road
Troy, NY 12180
rgmorse@mzaconsulting.com
Window Testing

• Architect identifies a sampling of windows to be tested.
 – Representative sampling of each window type on the job
• Windows Leak Tested
 – Independent testing agency
 – ASTM E1105 or AAMA 502
• Windows Leak
• Window sub-contractor tunes up windows
• Windows retested and pass
• Windows and their installation are accepted once the sample windows meet requirements of the test.
Leak Test

• ASTM E1105 or AAMA 502

• Pressure differential across window
 – Interior negative or
 – Exterior positive

• Spray water to form a continuous film of water on surface
 – Does not attempt to mimic kinetic energy of wind blown rain
From ASTM E1105

FIG. 1 General Arrangement of Water Penetration Test Apparatus
Installer Tune-up

- Sealants at butt (mitered) joints in gaskets in corners,
- Cam locks, shimmed or adjusted to apply more pressure to gaskets
 - “dollar bill” test
- Sealant at fixed joints between aluminum extrusions
 - Corners of frames and sashes
 - Fasteners
End Result

• All windows are adjusted during “Tune Up”
• Testing of exemplar windows is a proper test of the window system
• Windows don’t leak when tester and contractor leave site
Problems with Testing

• May not include doors
• Testing normally performed after interior finishes in place
 – Hides wall leaks
 – May hide leaks within frame perimeter
Problems with End Result

• Great that windows are tested – how about the rest of the wall
• Windows may not leak at time of test but how about several years later
• Windstorms
Then Time Happens

• Sealants harden, shrink and crack
• Gaskets shrink and harden
 – End joints open up
 – Gaskets relax so air and water pass through gasketed joints at an increasing rate over time
• Buildings settle differentially twisting assemblies
• Users damage windows
• Fixed joints aren’t really fixed
Then Wind Happens

- Wind pressures during wind driven rain exceed those in leak test
- Pressures during a hurricane event drastically exceed test pressures
- Window must have some sort of pressure relieve feature to prevent water passage
 - Pressure balanced seals
 - Drainage subsills
Wind Creates Pressure Differentials
Wind Speed Increases with Height
Stack Effect – Warm Climate
Stack Effect – Cold Climate
Combined Effect – HVAC, Stack and Wind
Pressure Differentials

<table>
<thead>
<tr>
<th>Pressure Differential</th>
<th>PSF</th>
<th>Inches Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Pressure</td>
<td>9</td>
<td>1.73</td>
</tr>
<tr>
<td>Wind Pressure - High</td>
<td>86</td>
<td>17</td>
</tr>
<tr>
<td>Wind Pressure - Low</td>
<td>56</td>
<td>11</td>
</tr>
</tbody>
</table>
Paradigm Shift

• Good Old Days – Stupid & Simple
 – Huge water storage, inorganic materials, simple materials and assemblies

• Now – Smart & Sophisticated
 – High tech materials
 – Complex assemblies
 – High performing
 – Sustainable
 – Water sensitive
Good Old Day

- PLASTER
- 4" BRICK
- 2" AIR CAVITY
- FACE BRICK
- DAMP-PROOFING
- WEEP HOLE
- FLASHING
- SHELF ANGLE
Now
Current State of the Construction Industry

• Sophisticated High tech materials and systems
• Rapid product development
• Increasing specialization
 – Manufacturers
 – Contractors
• Increase in magnitude of natural forces affecting materials and assemblies
 – Insulation
 – Membranes
Case Study - Florida

- Windows in Florida
- Hurricanes
- General Guidance
 - ASTM E2112 – Standard Practice for Installation of Exterior Windows Doors and Skylights
- Specific Regional Guidance
 - Fenestration Manufacturers Association Standards
CSI Sections

- Division 03
 - Concrete,
- Division 04
 - Brick
 - Stone
 - Concrete Block
- Division 06
 - Wood framing
- Division 07
 - Flashing
 - Sealants
- Division 08
 - Windows
- Division 09
 - Painting
Manufacturers

- Window
- Flashing
- Sealants
- Brick
- Precast sill
- Concrete block

- Mortar
- Wood blocking
- Fasteners
- Metal furring
- Gypsum drywall
- Paint
Contractors

- Window
- Masonry
- Carpentry
- Drywall
- Painting
- Caulking
<table>
<thead>
<tr>
<th>FMA/AAMA</th>
<th>Type</th>
<th>Frame/Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Flanged</td>
<td>Wood Frame</td>
</tr>
<tr>
<td>200</td>
<td>Frontal Flanged</td>
<td>Surface Barrier CMU</td>
</tr>
<tr>
<td>250</td>
<td>Non-Frontal Flange (wood)</td>
<td>Surface Barrier CMU</td>
</tr>
<tr>
<td>300</td>
<td>Sliding Glass Door</td>
<td>Wood Frame</td>
</tr>
<tr>
<td>400</td>
<td>Sliding Glass Door</td>
<td>Surface Barrier CMU</td>
</tr>
</tbody>
</table>
Fenestration Manufacturer’s Association

- Drainable sill pan
- Recommended section for a precast sill that provides drainage
- Use of liquid applied sealants to form perimeter flashing continuous with sill pan
Strength of Approach

• Establishes draining subsill as a standard part of window assembly
• Attempts to consolidate critical tasks with one entity
• Written set of instructions
Starting to Appear in Guide Specifications

• Palm Beach County Schools
 – In window section

• Broward County Schools
 – Not yet

• Regional – not in national guide specs
Contractors Involved in Window Installation

- **Mason sub-contractor**
 - Install precast sill
 - prepare the masonry opening
- **Waterproofing sub-contractor**
 - Install the sill pan and perimeter coatings
- **Carpentry sub-contractor**
 - install wood bucks
- **Window sub-contractor**
 - install the window
- **Stucco sub-contractor**
 - stucco over the sill and on jambs and head
- **Painter**
 - sealant between stucco and window
 - paint
- **Drywall sub-contractor**
 - interior finishes
Specification Sections Involved

- Masonry
- Waterproofing
- Window
- Stucco
- Painting
Next Step

• New window specification section
 – consolidates all of the work required by the standard in a single specification section.

• Include in major guide specifications providers
 – NIBS Construction Criteria Base
 – Arcom (AIA) MasterSpec®,
 – CSI Spectext®.
Proposed ASTM E 1105 Changes

- Add Low Pressure Water Test (LPWT)
- Intended to jibe better with end user expectations of the test
Proposed ASTM E 1105 Changes

• **Low Pressure Water Test (LPWT)**
 – less than 75 pascals (1.57 lbf/ft²)
 – No visible water through window

• **High Pressure Water Test (HPWT)**
 – Current definition
 – Water may be visible inside window (except collector sills) - but not past it

• **Water penetration through perimeter frame**
WB7-3 Observations Regarding Window Testing and Failures

Roger G. Morse
Morse Zehnter Associates
Rensselaer Technology Park
165 Jordan Road
Troy, NY 12180
rgmorse@mzaconsulting.com